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It is shown that the depolarizing effects in the arc of an electron-positron storage ring can be minimized by minimizing 
certain Fourier harmonics of the particle trajectories. In more detail it is shown that the strength of the depolarizing res- 
onance [(g-2)/2] y = n ± Q x  is related to the harmonics of the closed orbit, the strength of the depolarizing resonance 
[(g-2)/2] y = m ±Qz to the harmonics of the vertical betatron oscillations, and the strength of the depolarizing resonance 
[(g-2)/2] "y=i+_Qs to the harmonics of the closed orbit and the dispersion orbit. For all these depolarizing resonances 
compensation schemes are discussed. 

1. I n t r o d u c t i o n  

In the last decade the spin polarization of electrons and positrons circulating in a storage ring was used 
in many different ways. The most important application of the polarization was the measurement of the 
qua rk - I /2  spin at SPEAR [1] and the precision measurements of the masses of the T and the J /g ' - reso-  
nances at VEPP, DORIS and CESR [2]. 

Although the time constant for the build-up of the polarization into the vertical direction by the 
Sokolov-Ternov effect is approximately the same for all existing electron-positron machines, the de- 
polarizing mechanisms become worse with increasing machine size [3]. From the experience at DESY it is 
known that it is relatively easy to have a high degree of polarization at DORIS (beam energies up to 5.6 
GeV). It turned out to be much more difficult to have polarized beams at PETRA (beam energy up to - 23 
GeV). For the future storage rings (i.e. HERA, LEP, TRISTAN) no polarization can be expected unless 
they are designed and constructed for polarization. The most interesting results are expected when the 
particles have longitudinal polarization in the interaction region [4]. The spins have to be rotated after the 
arc, where they are vertical, into the longitudinal direction and after the interaction region back into the 
vertical direction by so-called spin-rotators. Even in an ideal machine these rotators have strong depolariz- 
ing effects. The reason for this depolarizing effect is the following. The particles of the beam are different 
in energy, momentum and position. The rotation into the longitudinal direction and back depends in 
general on these parameters. Therefore a vertically polarized beam is slightly depolarized after a pass 
through the rotator. The depolarization can be minimized when certain conditions, so called spin 
transparency conditions, are fulfilled [5]. 

In this paper the spin transparency condition for the arc is discussed. In such a spin-transparency 
condition it must be taken into account that the spins are depolarized by the sequence of quadrupoles and 
bending magnets. It will be shown in this paper that spin-transparency in an imperfect machine (a real 
machine with all sorts of errors) can be approximately achieved when some Fourier harmonics in the 
particle trajectories are minimized. 

In more detail it is shown that 
- the strength of the Qs resonance is connected to harmonics in the closed orbit and the dispersion orbit, 
- the strength of the Qx resonance to harmonics in the closed orbit, 
- the strength of the Qz resonance to harmonics in the betatron-trajectories. 

* Present address: SPS Division, CERN, Geneva, Switzerland. 

0168-9002/85/$03.30 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



232 R. Rossmanith, R. Schmidt / Compensation of depolarizing effects in storage rings 

As a consequence three different corrections have to be applied to compensate the resonance effects and 
to make the arc spin-transparent: 
- Eight correction dipoles can compensate the harmonics of the vertical closed orbit. This cure reduces the 

strength of the Qx and the Qs resonances. The scheme was both simulated and experimentally tested in 
the storage ring PETRA [6]. 

- The vertical dispersion is in general strongly influenced by asymmetric beam bumps in the interaction 
regions. Moving these bumps in an intelligent manner the depolarizing effects caused by synchrotron 
resonances are reduced by reducing the strength of some harmonics of the dispersion. 

- Resonances driven by vertical oscillations can be compensated with the help of eight quadrupoles. These 
quadrupoles are used in a similar way as the correction coils for the Qx/s-resonance compensation. 
Numerical calculations using the SLIM program [7] demonstrate that the applied compensation 

optimizes the degree of polarization from less than 30% up to more than 80%. The calculations are done for 
the storage ring PETRA in an optics currently used as luminosity optics. 

2. The polarizing and the depolarizing effects 

The polarization of an electron beam in a storage ring is built up by the so-called Sokolov-Ternov 
effect. The spin of a particle can flip when the particle emits synchrotron radiation in a magnetic field. The 
probability of a spin-flip in one direction is higher than the probability in the other. For electrons the 
polarization is built up in the direction opposite to the magnetic field [8]. The maximum degree of 
polarization in a plane, perfect storage ring is 92.4%. 

The second effect which changes the polarization is the continuous rotation of the spins in electromag- 
netic fields. This effect is described by an equation of motion, the Thomas-BMT equation [9]: 

d s / d t = ~ × s ,  ~2= e mT[(1 + a T ) B ±  +(1 +a)Bii  ], (1) 

with 
$ 

Ta 
a 

T 

spin vector, 
the so-called spin-tune with: 
the anomalous magnetic moment of the electron = (9 - 2)/2, 
the gamma-factor, 

B j_/ll the magnetic field parallel and orthogonal to the direction of motion (electric fields are omitted). 
In the following it will be explained that depolarization occurs when the direction opposite to the 

deflecting field and the spin direction do not coincide. The deviation of the spins from this direction is 
caused by machine imperfections, vertically deflecting magnets, and longitudinal magnetic fields. 

The first depolarizing mechanism is caused by a reduction of the effectiveness of the Sokolov-Ternov 
effect. To explain this it is assumed that an electron travels on the closed orbit. The closed orbit shall 
deviate from the ideal plane closed orbit due to vertically deflecting magnets and field and alignment errors 

~ ~  Closed orbit 
[ 

Fig. 1. Spin base  vectors I, m and  n. 
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of magnets. The magnetic field along the closed orbit is described by 

B(s)= Bo(s) + noo(S). 

B 0 is the magnetic field on the ideal orbit, Bco the additional field on the closed orbit, s is the length along 
the closed orbit. (1) can be solved for B(s).  The solution of this equation consists of one real vector n and 
two complex vectors T/ and 71". The complex vectors can be expressed by the real vectors n, I and m (see 
fig. 1). 

7 2  1 1/= (1+ im)e  -i'~, 7)* = - ~ - ( ! -  im)e  +i*. (2) 

q) = 3,aa, where a is the angle by which the electron is deflected in the bending magnets. 
In general, the n-axis and the direction of the magnetic field do not coincide. The polarization is built up in 
the direction of the transversal magnetic field but only the component along n(s)  can survive. 

The maximum degree of polarization is reduced to [10]: 

~ (  ds/Ip]3 )e Bn 
emax ~ 0.924 (3) 

~ (d s / l p l3 )  _ 2 _1" hey ' ~ ~ i-p-~ ds 

e B is the unit vector in the magnetic field direction, 
ey = v/Ivl, v is the velocity of the electrons, 
p is the bending radius. 

The second depolarizing mechanism is caused by the emission of synchrotron radiation. After the 
emission of a photon the electron moves in a complicated way around the closed orbit. The fields acting on 
the particle can be divided into two parts: 

a ( , )  = &o(t)  + to(t), (4) 

faco describes the periodic field on the closed orbit and to describes the aperiodic perturbation. Due to 
radiation damping to(t) becomes small after several damping times. The spin of a particle, parallel to n 
before emission, points after the damping into the direction n + 8s. The polarization is reduced propor- 
tional to 18sl 2 due to the above mentioned fact that only the component along n can survive [11]. This 
depolarizing mechanism excites the depolarizing resonances and is the main limitation for the polarization 
in a storage ring. 

In a machine without strong vertical deflections or longitudinal fields both depolarizing effects have a 
common cause. The spin is rotated in the arcs away from the direction of the bending field. The reason for 
this rotation is described in the following. 

In the arcs the spins are subsequently rotated by the bending magnets and the quadrupoles. The bending 
field rotates the spin around the vertical (z-axis) with an angle ~,aa, the deflection angle times the spin tune 
(fig. 2). 

The vertical projection of the spin remains constant. Between the bending magnets quadrupole fields 
and small radial fields (correction coils or errors of the quadrupoles) rotate the spin around the radial axis 
(x-axis). 

These rotations change the projection of the spin on the vertical axis. The rotation angle is proportional 
to the change of the vertical slope of the particle (fig. 2). 

In a storage ring the size of PETRA or HERA some hundred bending magnets are installed. Between all 
these bending magnets the spin is rotated by quadrupole fields. The individual rotations are small ( -  some 
mrad) but they can add up, depending on the path of the electron. 

The basic idea in this paper is the following: A sequence of dipoles and quadrupoles rotate the spin. The 
rotations around the radial axis can only add if the rotations of the bending field and the "black box" (fig. 
2) have a certain relation. It is only necessary to correct the dangerous Fourier-components of the rotations 
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contributing to the relation. It will be shown that for the closed-orbit, the betatron, and the synchrotron 
oscillation similar correction schemes can be developed. 

3. The strength of the depolarizing resonances 

3.1. General remarks on the influence of aperiodic perturbations on the degree of polarization 

In the following the strength of the depolarizing resonances excited by photon emission is calculated. 
The argumentation in this section is similar to the argumentation found in several papers, e.g. Yokoja 

[12]. Details can be found in these papers. The BMT equation for the spin of an electron in the aperiodic 
field ~o(t) must be solved (see eq. (4)): 

d s / d t  = [Qco(t) + ~ ( t ) ]  × s  (5) 

with I~co the periodic field on the closed orbit and o~(t) the aperiodic field.The equation can be solved by a 
perturbation approach: 

s = n + S s .  

n is the solution of the BMT equation on the closed orbit (see Section 2). The vector 8s is combined by the 

Electron t ra jec to ry  

I 

, I ['glockbox'7  Cq *upo,e, 
~ 1 ' !  i i and I ,, ~ ~  '-''[ ',correction , 

. . . . . . .  I I coi ls) I I ~nd'ng m~gn~t I i I 

AZ' =- Z I ' - Z 2 '  

I 
Z 

spin rotation around Z 
wi th the angle a ' l a  

Fig. 2. Spin rotation in the arcs. 
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e z  
(direct ion of the bending f ie ld 
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Fig. 3. Reference frame. 
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eigenvectors of the BMT equation (eq. (2)) n, 7, ~l*, with unknown coefficients: 

1 
~s = an + - ~  b~ + b*~*. 

If ~ ( s )  is small compared to ~2co a is equal to zero, b can be calculated as 

b = i v ~  f t?o~( t )~ l*( t )d t ,  

18sl 2 is given by 

I ,~sl2=bb * (t---> oo). 

(6) 

(7) 

3.2. The strength of the Qz-resonance 

After the emission of a photon the electron performs inter alia vertical betatron oscillations. To calculate 
the resonance strength b, ~ ( t )  is calculated first. Then it will be shown that the integral b (eq. (6)) can be 
expressed as a product of a ring-periodic integral and a resonance factor. The reference frame is given in 
fig. 3. 
We assume an electron moving on the (nominal) closed orbit with nominal energy. After the emission of a 
photon, the electron has lost the energy ~ .  The emission of the photon changes the direction of the 

• ~" "  . . Photon ~ . . .  
. \ - : , ,  / /  

I ".'~- ~ . . . . . .  j ':.~. f . . '  . 

emission of c l osed -  orbi t  betatron oscil lat ion af ter  
a photon nominal after emission photon emission around 

energy (dispersion orbit)  dispersion orb i t  

Fig. 4. Excitation of vertical oscillations. 
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electron. Firstly, the recoil of the photon changes the direction by a small angle of the order 1/'y. Secondly, 
if the vertical dispersion at the point of emission is not zero the electron starts to perform betatron 
oscillations around the off-energy closed orbit (fig. 4). 

The distance of the electron from the nominal closed orbit is given by: 

~z( t ) = ~zl~( t )e - t /~  + ~c cos ~bs( t ) Dz(s )e-t /~; (8) 

8z B is the betatron amplitude, 
~k~ is the synchrotron phase, 
D~ is the vertical dispersion, a ring-periodic function D~(s + L) = D~(s), 
z~/s the damping time for vertical and longitudinal motion, 
s is the length variable along the ring, s is regarded as a function of t. 

Calculation of to(t): due to vertical oscillations the electron experiences a radial magnetic field along its 
path. For a radial field to(t) is given by (see eq. (1)): 

e 
to(t) = ~-~7(1 + a'y)B~e~. (9) 

B~ is the product between the gradient and the position: 

B~(t) = E° ~z ( t ) l , ( s ) ,  
ec 

with 
E 0 the nominal energy of the electrons, 
k ( s ) the gradient field: k ( s ) = ( ec / Eo )SBx/rz. 

Bx is inserted into to(t) using the expression for 8z from eq. (8): 

t0(t) = C(1 + a2t)k(s ) (  6z#(t)e-t/ 'ze~ + 8, cos ~s( t )Dz( t )e  -t/z, ). (11) 

The following calculation for the strength of the Q~-resonance takes into account only the first part in 
the brackets: 

to(t) = C(1 + ay)k(s )Sz#( t )e - t / '~e~.  

The second term in the brackets leading to Q~-resonances is discussed in the following section. 
This expression for to(t) is inserted into b (eq. (6)). It is shown in the appendix that: 

Ce-2~ri('/a±QD--e-2~ri(ya ± QD 1 fs°+Le±i+~ei*ex(l-im)fff~k(s)dS'so (12) b 

The depolarization is expressed by an integral around the ring including the optics parameters + and ]~ 
and the n, l, m-vectors. C is a constant including the optics parameters at the emission point. From the 
denominator the conditions for resonance are obtained: 

ya = n ___ Qz. 

3.3. The strengths of the Qs and Qx resonances 

In the last section the strength of the Q~ resonance was calculated to be: 

e-2~ri(a~, ± Qz) 
fso+ i ~ z e i , e x ( l _ i m ) ~ k ( s ) d s .  (13) bz=Ce-2~i(av+Qz)- 1 So Le± 

In the following the coupling between horizontal and vertical motions due to skew quads etc. is neglected. 
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The influence of these effects on polarization is discussed in detail in a paper published 1972 by Derbenev 
and Kondratenko [14]. In an uncoupled machine a similar calculation can be made for the horizontal 
betatron motion exciting the Q~ resonances: 

e - 2 " r i ( a ' r  -+ QO f So+L +iq, 
b~ = Ce_2 . i ( , v+~  ~ -  1 JSo e-  " ei*ez(I - i m ) f ~ k ( s ) d s .  (14) 

The influence of the synchrotron resonances on the depolarization is given by two terms: a contribution 
from the vertical motion is explained in eq. (11): 

8z o = 8 ,  COS ~bs(t)Dz(s)e - t / ' s ,  

and an analogous contribution from the horizontal motion: 

8x D = 8, cos ~bs(t)Dx(s)e t/,~. 

The disturbing field ~(t)= (Ta + 1)[e~SZDk(S) --eflXDk(S)]: 

e - 2 ~ i ( a y  ± QD fSo+ Ce -+ i~,ei*(e~ D~ - e~D~)(I - im)k(s  )ds. (15) b~ = Ce_2~ri(ay+QD__ l So 

These three expressions had been derived by Yokoya [12]. 
The correction schemes suggested in the following reduce the strength of the resonances by reducing the 

value of the three integrals b~/~/s. 

4. Compensation of the depolarizing effects caused by closed orbit distortions 

In the following the depolarizing effect caused by the deviation of the n-vector 8n from the vertical axis 
is discussed. It is shown that the deviation is driven by Fourier components of the closed orbit. By a special 
orbit-correction scheme it is possible to reduce these Fourier components, to reduce the deviation of the 
n-vector, and to improve the degree of polarization. This cure reduces the strength of the Qx and Qz 
resonances. By reduction of 8n the vertical components of I and m get smaller, the product of I, m and e z 
in eqs. (14) and (15) also becomes smaller. 

The n-vector is a solution of the BMT equation: 

dn 1 .  
= c ( 9 0  + 89 )  × n ,  (16) 

9 o contains the field on the ideal orbit, 89  the additional fields on the real closed orbit. Both quantities are 
ring-periodic. 

With ]891 << 191 the following solution is possible: 

n = n o + 8n, (17) 

where n o is the n-vector on the ideal closed orbit. It is shown in ref. [6] that the solution for 8n can be 
written in the form: 

lSn(s)l=2(1-cos2'rya)llJ, 812x c°s dpds +['Is x sin ~bds , (17) 

with 

e 
8 9 . ( s )  = ~--~T(1 + ay)B~(s). 

4~ = ay a is defined in eq. (2). As shown in fig. 2 the Bx-fields are located between the bending magnets. 
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The integral f j+L . . .  can be written as sum: 

where 
s, is the end of the bending magnet i, 
si+ l is the beginning of the bending magnet i + 1 
a~ is the deflecting angle of the electrons after bending magnet i. 

(1 + a T ) { ( ~  ers ,+~ )2 ( ~  e S,+~ )z} 
- -  f B~ds (19) 18"1= 2(1 ~ c--~s ~ a y )  sin a y a , - - I  Bxds + cos i=1 mcy as, aTa~ mcy i= 1 s, 

The integral (e/mc'y)f,s ,+' B x is known as the change of the angle of the closed orbit between two bending 
magnets Az~ (see fig. 2). 

With this definition 18nl becomes: 

I nl = 2(1 - cos 2rr~,a) ~ sin aTct~Az; + cos aTa~kz'j . (20) 
i = 1  i = 1  

Az' can be expressed as a Fourier-sum 

A z ' =  ~. (a N cos an + b, sin an). 
n = l  

If a~, has a half-integer value (ay = n + 0.5) [Sn[ is proportional to: 

1 (a2+b2).  
( k -  aT) 2 

The Fourier harmonics k = n and k = n + 1 have the strongest influence on 18nl. 
Correction scheme: The field errors in a storage ring are randomly distributed. With the help of 

correction dipoles the deviation of the closed orbit can be reduced to a mean value of approximately 1 mm. 
An example of the degree of polarization with such closed orbit deviations is given in fig. 5A. 

In the storage ring PETRA a harmonic orbit correction scheme was successfully applied [6]. The scheme 
reduces the Fourier components next to the spin-tune. A vertical correction coil changes the orbit and 
therefore the amplitudes of all harmonics. The currents of 8 coils can be changed in such a way that only 
one amplitude of the four amplitudes next to the spin tune is changed. The four dangerous harmonics can 
be compensated successively. 

For this method the ring symmetry is used in the following way. A machine with four identical 
quadrants is assumed (i.e. PETRA or HERA). Each quadrant is mirror-symmetric with respect to its 
middle axis (fig. 6). The eight vertical correction dipoles are installed in the octants at symmetric positions. 
If dipole 1 is turned on the vertical closed orbit gets a kick 8 a and 8 z becomes [6]: 

~ z ( S ) J ~ z ( S a )  
8 z ( s ) =  2~r sinrrQz cos(Iq, z(s)-q,z(sl)l-, az)81, (21) 

where sa is the position of the correction coil. 
From 8z(s) the rotation angles of the spin between the bending magnets 3,a Az; are calculated. The 

Fourier amplitudes a ,  and b, for the nth harmonic component are given by: 

a n l )  ~ C O S z  x - , 

1 bna i x sin tnai)'azl(ai)" (22) 
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The index nl relates to the n th harmonics of the first correction coil. For the calculation of these 

amplitudes the computer-code F U R I E  was developed. 
The amplitudes for the other coils are related to the amplitude of the first coil by symmetry conditions, 

i.e. for the second coil we obtain 

and for an2 , b.2: 

(24) 
• = sin % bn2 = t 

substituting a, ~ - a ,  + ~r/2 the relation between the amplitudes of the second and the first coil is: 
f / ~ / "  . / ' t ~  

a.2 = cos--~-a m + s,n--~-b.,, (25) 

• / 't  "8" / ' / ¢ 7  

= - cos-~-- b m " 

$0- 
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v=Ox+24 v =49.5 v = 7 5 - 0 .  

Fig. 5. Compensation of  the Q, and Qx resonances. A - without correction; B - closed orbit corrected along straight sections; C - 
dangerous Fourier components of  the closed orbit corrected; D - both corrections were applied. 
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F i g .  6. C o r r e c t i o n  e l e m e n t s  a t  P E T R A .  

The Fourier amplitudes of the other coils are calculated in a similar way. (see table 1). 
If the currents of the 8 coils are changed in the way indicated in table 2 only one of 8 amplitudes is 

changed. E.g. if the currents are 

11 =I, 12= +aa/b3I, 13= -a3/b3I, 14= - 1  

15 = - I ,  16 = - a 3 / b 3 I ,  17 = a 3 / b 3 I ,  18 = I ,  

only the amplitude a4n +1 i s  changed, all seven other amplitudes remain constant. 
The deviation of the n-vector from the vertical can be reduced by this method by a factor in the order of 

10. The closed orbit itself changes only slightly. The improvement of the degree of polarization using this 
method is shown in fig. 5C. 

Table 1 

F o u r i e r  a m p l i t u d e s  o f  8 c o r r e c t i o n  co i l s  a t  s y m m e t r i c  p o s i t i o n s .  The currents of the first coil are denoted by  a o, b o etc. It is shown in  

the table how the currents of the other coils are related to the amplitudes of the first coil. 

C o i l  i n  F o u r i e r  c o m p o n e n t  

o c t a n t  a ( 4 n )  b ( 4 n )  a(4n + 1 )  b(4n + 1 )  a(4n + 2 )  b(4n + 2 )  a(4n + 3 )  b(4n + 3 )  

1 a o bo a l  b l  a2  b2 a3  b3 

2 a o - b  o b 1 a 1 - a 2 b 2 - b3 - a3  

3 a 0 b 0 - b I a I - a 2 - b  2 b 3 - a3  

4 a 0 - b  0 - a  I b I a 2 - b  2 - a 3 b3 

5 a o b o - a I - b  I a 2 bE -- a3  -- b3 

6 a 0 - b 0 - b  I - a  1 - a 2 b 2 b3 a3  

7 a 0 b 0 b I - a~ - a 2 - b 2 - b 3 a3  

8 a o - b  o a 1 - b I a 2 - b  2 a 3 - b 3  
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Table 2 
A correction scheme where only one of eight Fourier coefficients is influenced. The magnitudes are defined in the previous table. 

a(4n) b(4n) a(4n  + 1) b ( 4 n  + 1) a(4n  +2) b ( 4 n  +2) a(4n  + 3) b ( 4 n  +3) 

1 I I I 1 I I 1 I 
2 1 - I a 3 / b 3 1  b a / a 3 I  - I 1 - a l / b i 1  - b l / a l l  

3 I 1 - a 3 / b 3 I  b 3 / a 3 1  - I - I a l / b l l  -- b l / a l l  

4 I - 1  - I  I I - I  - I  I 

5 I I - I  - 1  I I - I  - I  

6 I - I - a 3 / b 3 I  - b 3 / a 3 1  - I I a l / b l l  b l / a l l  

7 I I a 3 / b 3 I  - b 3 / a 3 1  - I - I - a l / b l l  b I / a l l  
8 I - I  I - I  I - I  I - I  

5. Compensation of the depolarizing effects caused by the vertical dispersion 

The vertical dispersion is for the most part produced by closed orbit deviations in the strong interaction 
quadrupoles. The vertical dispersion contributes to the strength of the Qs resonance. The dispersion can be 
reduced by correcting the closed orbit in the interaction region in the following way: 

With correction dipoles it is possible to minimize the deviation of the vertical closed orbit along the 
interaction region without changing the orbit in the arcs and, as a consequence, the n axis. This correction 
reduces the vertical dispersion and improves the degree of polarization (fig. 5B). 

Beside this evident method a more sophisticated method will be derived in the following by compensat- 
ing the dangerous Fourier harmonics of the dispersion. 

The depolarization strength of the Qs resonance driven by vertical dispersion is: 

bs (vert. dispersion)-fsi°+LeiGeie'exDz(! + i m ) k ( s ) d s  

(this is the second part of eq. (15)). 
Assuming n = e z: 

s ° + L  i 
bs(vert, dispersion) -f~0 e ~'Dzk(s)ds .  

(It is assumed that the synchrotron phase changes only slightly during one turn.) 
D z • k is proportional to the radial field on the dispersion orbit. The further calculation is similar to the 

calculation of the deviation of the n-vector. (compare eq. (17)). 
The integral has to be taken over the radial field D z k ( s  ) instead of the radial field 812x. Instead of 

correcting the Fourier components of the closed orbit the Fourier components of D z' near the spin tune ),a 
have to be minimized: )2(. )2 

b,(vert, dispersion) = sin'ya~iADji + ~ cos ya~iAD"  i 
i=1 i ~ l  

with AD; i = D;i+ 1 - D" i. 
This can be done by the help of 8 beam bumps at symmetric positions. The bumps have to be moved in 

a similar way as the 8 dipole coils for the correction of the Fourier amplitudes of the closed orbit. 

6. Compensation of the Q~-resonance 

Different from Qx/s resonances which exist only in an imperfect machine several Qz resonances can be 
seen even in an ideal storage ring. They are excited by the recoil of the emitted photons. In an imperfecl 
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machine with a nonvanishing vertical dispersion the oscillations and therefore the Q~ resonance are much 
more stronger (see sect. 3.1). 

To compensate the Q~ resonances the Fourier components of the betatron trajectories have to be 
changed. This can only be done by changing the gradient fields of the quadrupoles. The following 
argumentation is divided into two parts. Firstly, the resonance strength is calculated from the Fourier 
components of the betatron trajectories. Secondly, it is shown how the resonances can be compensated by 8 
quadrupoles at symmetric positions of the ring. 

In a flat machine with small distortions eq. (13) becomes 

e2:i<v:-+ e : )~ :°+Le+- i+ :e iO~/ -~k(s )ds ,  (29) 
bz(s ) = C e_:~i(~--~± e:-----~- 1 So 

There exist two different types of resonances: 

y a = n + O z  ( + t y p e ) , v a = n - o ~  ( - t y p e ) ,  (30) 

leading to two different integrals I+ and I_ in the expression for bz. On the resonance, ~ = 3,aa = (n + Q~)a 
is fulfilled. Therefore the integrals are given by: 

t"so+L . 
I+=J_ e'"~e-i(+:-Q::)~-~k(s)ds, 

$ 0 (31) 
I = fs]°+ =ei':e +i<+:-Q::)~flf~ k(  s )ds. 

~ z  - Q:a, Vcfl and k(s)  are ring-periodic. The strength of the resonances is proportional to the square of 
the integral in eq. (31): 

I+/_-2 (a I q_ b 2 ) 2 + ( a 2 ~ - b l )  2 for 3,a = n - O~ and 7a = n + O z .  (32) 

The coefficients are 

a l}  : f  s°+Lsin (na) (cos  ~pz cos 
bl "/So cos 

~ } -  s°+Lsin 
- f so  cos (na) (cos  tp: sin 

These coefficients are calculated by 

f++,cos / A=:: 
~, sin ~kz ~ A z ' =  

Qza + sin ~b sin Q ~ a ) ~ k ( s ) d s ,  

Qza - sin ~bz cos Qza)~f~k(s )ds ,  

the program F U R I E  using the equation: 

! ¢ 
Zci+ 1 -- Zci ' 

Z S l + l  - -  Z s t .  

(33) 

(34) 

The integral is performed from the end of bending magnet i to the next one. 
Az'~/c is the change in the angle of the sine- and cosine-like betatron trajectory between the two bending 

magnets (fig. 2). 
The coefficients a and b can be written as a sum: 

(35) bl = 

a2 i=1  
b: i . 

cosSm } nai(co s QzotiAztci + sin Q:aiAz'~i ), 

Slon s }nai(sin QzaiAz'~i - cos QzctiAz'i). 

6.1. Machine without gradient errors 

For a symmetric machine without gradient errors only the resonances ya = PnQ z occur (P  is the 
periodicity, for PETRA and HERA P = 4). 
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All the other Qz resonances do not appear due to the fact that the integrals (eq. (31)) are zero for 
n =g Pk. 

Fig. 7 shows the Q~ resonances at PETRA in the energy region between 14-21 GeV, calculated by the 
SLIM-program [7]. The relative strength of the resonances is calculated by a Fourier analysis using eq. (32). 
The strength of these resonances depends only on the optics for the ideal machine. 

6.2. Machine with gradient errors 

In a non-ideal machine the symmetry gets lost due to the gradient errors of the magnetic fields. All Qz 
resonances occur. Field errors also change the symmetry but the influence on the strength of the Qz 
resonances is very small. 

Fig. 8 shows the degree of polarization as a function of the beam energy for the resonances ya = Q~ + 26 
and ,{a = 73 - Q~. The calculation is performed with randomly distributed gradient and field errors. The 
so-called ME8-optics was used (fl~ = 8 cm at the interaction points). The strength of the gradient errors is 
chosen in such a way that the flz-function differs by about 10% at symmetric points. 

Curve A: The same random distributed field errors as in the calculation of fig. 5A are assumed. 
Curve B: The correction schemes for the correction of the Qs and Qx resonances were applied. After the 

correction the degree of polarization is mostly limited by Q~ resonances. 
One possibility to change the influence of the resonances is a change of the Q~ value. During the 

operation of the machine this can be done only to a limited extent. 
Another possibility is the reduction of the depolarizing strength of the resonances. In the following it is 

shown that this can be done with the help of 8 quadrupole magnets. 

6.3. Correction scheme 

If an additional quadrupole field 3k(s )  is switched on the beam optics changes. If 3k(s)<< k a linear 
approach is possible: 

B=Bo+ ~#, G = G o + G .  

relative strengths of the resonances 

11 17 3.4 l0 0.3 
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t 1 t f 
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Fig.  7. D e p o l a r i z i n g  r e s o n a n c e s  v = Qz + 4 n  for  P E T R A  in  the  ene rgy  reg ion  1 3 - 2 1  GeV.  

/ 

t 
v = Q=,, 2& 
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The betatron trajectories of the particles are given by 

Zo(S ) = A ~  sin(~kz + 8).  

8 has an arbitrary value, A is a constant. 
The betatron trajectories in the distorted optics are 

z(s)=A~o+$~ sin(~kz + 8 + 6~kz). 

For small perturbations we get 

z (  s ) = zo + ~Z, 

80. 

60 

z,0 

20 

P I%) 
C 

21.7 2~.8 21'.9 E [GeV] 

t t l 
v=2L+Qx  v=26+Qz v :73-Qz v =?5-QK 

Fig. 8. Correct ion the Q, resonance. A - dipole f ield errors and gradient fic|d errors; B - after correction of  the orbi t  harmonics and 
the dispersion; C - after an additional correction o f  the Q: resonance. 
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Table 3 

Compensation of Fourier components of the betatron motion by quadrupoles at symmetric positions. The current change of the first 
quadrupole is denoted by A, B, C etc. 

Quadrupole Fourier component 

in octant for ay = n - Q: for a7 = n + Qz for ay  = n - Qz for a T = n + Qz 

a4n+] b4n+l a4n+l b4n+l (/4n+ 2 b4n+2 a4n+2 b4n+2 

1 A B C - D  E F G H 
2 B A D - C  - E  F - G  - H  

3 - B  A - D  - C  - E  - F  - G  - H  

4 - A  B - C  - D  E - F  G H 

5 - A  - B  - C  D E F G H 

6 - B  - A  - D  C - E  F - G  - H  

7 B - A  D C - E  - F  - G  - H  

8 A - B  C D E - F  G H 

with 

1 8B s in(~ ,+o++)+~oS~k+cos ( , /%+8) ]A.  8 z =  

If more than one additional quadrupole field is switched on, the effects of the different quadrupoles on the 
betatron trajectories adds linearly. The Fourier amplitudes of the trajectories also add up linearly. 

In the following the correction of the amplitudes for the 4n + 2 harmonics component is demonstrated. 
The numerical calculations are performed for the resonance ya = 26 + Qz (and for 7a = 73 - Qz). 

A gradient error is caused by changing the strength of the quadrupole Q1. The harmonic amplitudes 
al(Q1), bl(Q1 ), a2(Q1 ) and b2(Q1 ) of the betatron trajectories caused by the change of the quadrupole 
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Fig. 9. Correction of the Qz resonance with different strengths. 
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strength are calculated by using eq. (36) with the program FURIE. 
The strength of the resonance 7a = n + Qz is defined by (a 1 + b2) 2 + (a 2 T- bl) 2 = A 2 + B 2. 
For the change of the first quadrupole A and B are given by: 

A(Q1) = a l (Ql  ) _ b](Q1), B(Q1) = a2(Q1 ) -T- b~(Q1) 

The amplitudes of the 4n + 2 harmonics caused by the other seven quadrupoles at symmetric positions 
in the octants are related to the amplitudes of the first quadrupole due to symmetry conditions. The 
amplitudes can be found in table 3. The currents for the quadrupoles are changed in such a way that only 
one amplitude is changed. These currents are used to compensate A and B for the 26 and the 73 
harmonics. 

The improvement in the degree of polarization after applying this method on the distorted ME8-optics is 
shown in fig. 8. Curve C shows the degree of polarization after applying all three correction schemes. 

Fig. 9 shows the degree of polarization in an optics where only the A-amplitude has a nonzero value. 
The strength of a set of quadrupoles was changed step by step. The depolarizing resonance vanishes when 
A is cancelled. 

In a machine with gradient errors all Qz resonances are found. The strongest are still the resonances 
"ta = P n  +_ Qz. Their strength differs by more than a factor of 10 (see fig. 7). The working point of the 
machine should be chosen to be as far as possible away from these resonances. 

The influence of the weaker 4 resonances can be compensated by the harmonic correction. If the 
currents of the 8 quadrupoles are changed by ( I, I, I, I, I, I, I, I )  or (I ,  - I, I, - I, I, - I, I - I )  the resonance 
strength changes. This was done for the correction of the resonance 7a = 24 + Q~ (see fig. 10). 

The authors wish to thank many persons for discussions and encouragement: Drs. Barber, Kewisch, 
Mais, Ripken and Voss of DESY, Dr. A. Chao from SLAC, Drs. Derbenev, Kondratenko, Nikitin, 
Shatunov and Skrinski of Novosibirsk, Drs. Montague and Placidi of CERN, Drs. Courant, Krisch, Ratner 
and Terwilliger of Brookhaven and University of Michigan, Ann Arbor, and Dr. Ruth from LBL. 
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Appendix 

Calculation of the depolarizing strength b 

The aperiodic field to(t) is given by to( t )=  C(1 + ay)k(s) 8zBe-'/'zex, with the betatron amplitude [13] 

&~(t) = ~ ( C  cos +z + S sin ~k.,), (36) 

1 
C - - 8 c D z 0 ,  

(o0oo ) 
S = - &  ~ + B z o D ' o - & ,  , 

fl and ~ are the optics functions, the subscript 0 indicates the point of emission. 8,/ is the kick from the 
recoil of the photon, ~ ( s )  the betatron phase with q~z0 = 0. 

8z~ can be written as a complex function: 

8Z B = c ( e - i ~ : e  i'k° --  e i ~ e - i ~ ° )  f l ~ - ~ .  (37) 

The constants c and ~0 contain the optics parameters at the point of emission. 
Combining 8za with to, b (eq. (6)) becomes 

b=c f  °~=o (e + i<ei ' ; ° -  ei';ze-i+°)ex ( I - i m ) e  + i*~/~ (s)  k(s)e-'/~dt. (38) 

The integral can be written as: 

ft f t  f t  °° (39) 
oo To • J r -  , 

=0 =o =To 

with T o the revolution time. 
The integrand includes the ring periodic functions ex, !, m, fl~ and k. The betatron phase @z and the 

spin phase ~, can be written in a quasi-periodic way 

¢:( t-  To)=@~(t)-Qz, ep(t- To)=O(t)-2~rya. (40) 

With a transformation of the variable t -o T O using eq. (39) the integral f,~-To'''is 

- e -2~i(Y~-+ Q:) =o . . . .  (41) 

This expression is inserted into eq. (39). After a simple transformation eq. (12) is obtained. 
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