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We calculate the O++ glueball mass for p = 5.5, 5.7 and 5.9 on lattices ranging in size from 63 X 12 to lo3 x 20 using the 

source method. The calculation is accurate enough to identify the asymptotic exponential decay of the correlation functions 

which makes sure that we are extracting the ground state. It also allows us to determine the infinite volume limit. We find 

the mass to be remarkably consistent with asymptotic scaling: its p dependence definitely differs from that of the string 

tension. If we take the p = 5.7, 5.9 data only, we are =la from asymptotic scaling and ==lo from the same p dependence as 

the string tension. 

I. Introduction. Recent “second generation” cal- 
culations of the string tension [ 1,2] K and deconfin- 
ing temperature [3] indicate appreciable deviations 
from asymptotic scaling 

flUGo> = (~AL)[(87?/33) p151’121 

X exp[-(4n2/33) p] (1) 

in the interesting coupling region 5.5 S fl 5 6.0, where 
accurate calculations are presently feasible. This im- 
plies that either we are not yet in the continuum re- 
gion (of these quantities) or higher order corrections 
to the two-loop perturbative &function 

p(g) = -(l 1/16n2)g3 - [102/(16n2)2] g5, (2) 

are not small in the regime where the corrections sub- 

ject to the cut-off are already negligible (or both). In 
the latter case we would expect p(g) to be universal 
and to gradually approach the asymptotic form (2). 
To confirm this property, and finally to extract the /3- 
function for a correct interpretation of the results, it 
will be necessary to calculate a variety of (other) phys- 
ical quantities within the pure glue theory. 

In this paper we are concerned with obtaining sim- 
ilarly definitive results for the 0* ghreball mass. Such 
a calculation must satisfy the following conditions: 

(i) Typically the glueball mass is extracted from the 
asymptotic behaviour of the correlation function. To 
be sure that one is extracting the true ground state the 
correlation function must be “measured” far enough 
that the asymptotic exponential decay is accurately 
displayed. 
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(ii) Tire calculation should be performed over a 
sufficient range of  lattices to determine the infinite 
volume limit. 

(iii) We should be ainfing for statistical errors (of 
the masses) <10% at all/3. 

Previous glueball mass calculations do not satisfy 
(all of) the above conditions. Two classes of  methods 
have been used: the variational method [4] "mea- 
sures" correlations between fluctuations in the vacu- 
um, with a variational improvement of the wave-func- 
tional designed to maximise the projection onto the 
lowest glueball state; the source method [5] disturbs 
the vacuunr and "measures" the asymptotic decay 
with distance of this disturbance. The best results at 
larger/3 are with the former method. Accurate "mea- 
surements" of  correlation functions up to 2 lattice 
spacings have been performed on 43 • 8 [6], 53 • 8 [7] 
and 84 [8] lattices. The "measurements" at 3 lattice 
spacings (except at/3 = 5.9 [6,8]) are generally too in- 
accurate to be useful. From these "measurements" 
the conclusion [8] was that the glueball mass satisfied 
asymptotic scaling for 5.1 ~/3 ~ 5.9 with minor finite 
size effects. However, there was no hard numerical 
evidence that the lowest glueball mass was indeed be- 
ing "measured" at two lattice spacings. 

To perform a calculation of the type being envis- 
aged here with the variational method would be very 
expensive. The calculations in this paper use the 
source method to which we now turn. 

2. The source method. To introduce a source alter 
the path integral 

f [ d U ]  e -#S(U) 
(3) 

-~ f[dU] [dO] Fj(~r)exp [ - / 3 S ( U ) - S j ( U ,  O)]. 

Typically, we might choose 

Sj(tr, fO = W [1 
n 

.u~v 

--~ Re Tr(Un,uUn+p.,v On+~+~,uOn+~,v)] . (4) 

To retain the transfer matrix of the undisturbed the- 
ory choose J to be localized at t = 0, i.e. l ' j  = 0 unless 
t = 0. Let i t ( U )  be a wave-functional of  links at time t, 

then by inserting intermediate eigenstates in the usual 
way 

(01~t (U) ~0(U) IJ)-- ~ (Ol~ln)(nl~lJ) exp(-Ent)  
?/ 

(0101 g)(g I~lJ)  exp ( - E g t ) ,  (5) 

where we explicitly have chosen 0 such that (0 I~10)= 
0, and I g) is the state of  lowest energy above the vacu- 
um. Choosing a translationally invariant (zero-momen- 
tum) source and ~ we thus obtain the glueball mass 
mg = Eg. 

Some comments on advantages and disadvantages 
of the method: 

(i) For a strong source the fluctuations of ~0(U) in 
(5) are negligible, as compared to the variational meth- 
od where one "measures" the correlation of the fluc- 
tuations. This means that the source method should 
have a much better signal/error ratio, and that (naive- 
ly) the computer time needed for a given such ratio 
will be independent of (spatial) volume in contrast to 
the variational method where it increases with the vol- 
ume [8]. This is the crucial feature of  the source meth- 
od that will allow us to "measure" correlation func- 
tions at large distances. 

(ii) The important  disadvantage of  the source meth- 
od is that the coefficients in the expansion (5) need 
not be positive. This is in contrast to the variational 
method where the corresponding coefficients are 
I(n[~l 0)12, and so at non-asymptotic times the corre- 
lation function always gives an upper bound to the 
glueball mass. The source method will in general give 
us no information on mg at non-asymptotic distances: 
it is only worth using if we pursue it to the point 
where we accurately identify the asymptotic  expo- 
nential decay. 

The source used in the bulk of the present calcula- 
tions consists of setting all space-like links at t = 0 to 
unity [9,10]. (Further  below we discuss some other 
sources.) This is equivalent to no source, but integrat- 
ing only over those gauge configurations which have 
Un,v=l ,2,  3 = 1 at t = O, i.e. the state at t --- O, Ix), is 
the unit eigenstate of  the field operators Un,u= 1, 2, 3. 
So if  we integrate over a Wilson loop ~t (U) = 4~t (U) - 
($(U)) at time t, we have 

(01~t(U)lx)  - ~ (0 [~b lg ) (g lx )exp ( -mg t  ) . (6) 
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Note that I X) is a 0 ++, zero-momentum state. 
Of course, such a structureless "white" source pro- 

jects on all 0 ++ states and a priori the lowest glueball 
might dominate only at inaccessibly large distances. 
However, the variational calculations [6 -8 ]  teach us 
that for 13 not too much greater than 5.5 the smallest 
loops appear to be the most efficient projectors onto 
the lowest mass glueball, i.e. it is relatively small and 
structureless and should be adequately projected upon 
by even a "white" source. A further defect of such a 
source, which simultaneously extends through the 
whole spatial volume V, is that we expect (gl .-- gNI X) 
(Igl ... gN) is a state with N glueballs) to peak for N 
V and hence (g IX) to decrease (rapidly ?) with V for 
large enough V. Hence our strategy is to begin calcula- 
tions at/3 = 5.5 and to increase/3 (and V) until the 
method fails (which it does by/3 = 6.0). 

3. Calculations and results. We work with the stan- 
dard Wilson action and the "white" source as de- 
scribed above on periodic L 3 • Lt  lattices. We "mea- 
sure" expectation values of 1 X I, 1 X 2, 2 X 2, 1 X 3, 

2 X 3 and, on the larger lattices, 1 X 4, 2 X 4 Wilson 
loops as a function of distance (in time) from the 
source. For a periodic lattice we expect an asymptotic 
behaviour 

(OldPtlx) = C c o s h [ ( ? - ~ L t )  mga] + (dp), (7) 
t large 

where t = fa. If one wishes to use the value of (4~) as 
"measured" in source-free calculations at the same/3, 
there are finite volume ambiguities that can be signifi- 
cant at our level of accuracy. The most consistent 
method is to use lattices with large Lt and to fit mg, 
(¢) and C simultaneously on the same data, which is 
what we do. 

We compute correlation functions on a 63 • 12 lat- 
tice at t3 = 5.5, on 63 • 16 and 83 • 16 lattices at/3 = 
5.7 and on a 103 • 20 lattice at/3 = 5.9. Attempts to 
extract the glueball mass from correlation functions 
on a 123 • 24 lattice at/3 = 6.0 have not been success- 
ful so far with this source. Typically we use about 
1000 sweeps to reach equilibrium and about 20 000 
sweeps for "measurements" (in most cases we perform 
more sweeps as we get further from the source - see 
ref. [11] for details), and these come in three se- 
quences from independent starting configurations. 

A given correlation function is fitted by the func- 

tional form (7) first for all 1 ~< f ~< Lt - 1, then for 
2 <~ F <~L t - 2 and so on until a X 2 is achieved that is 
acceptable given the number of degrees of freedom. 
The error on the mass can be determined by seeing 
how far we can vary the mass without dropping the X 2 
below, say, a 20% confidence level. This procedure 
for estimating errors turns out to be complicated by 
the fact that the fluctuations far along the correlation 
function are highly correlated. For a more detailed dis- 
cussion we refer to ref. [11 ] : one estimates the effec- 
tive number of degrees of freedom (or the error corre- 
lation matrix) and gets the error accordingly. Where 
there may be ambiguities we split the data into se- 
quential subsets to check the errors. 

In figs. l a - l c  we present the data for typical loops 
(which according to the variational calculation [6] 
have a large projection on Ig)) with the best fits. We 
obtain the masses from analysing all loops. The results 
are given in table 1 and, to make deviations from 
asymptotic scaling more visible, are plotted in units of 
A L in fig. 2 by using the two-loop perturbative expres- 
sion (1) for a(fl). The corresponding (fitted) vacuum 
expectation values of some of the Wilson loops are 
listed in table 2. 

4. Volume and fl dependence. The (spatial) volume 
dependence of mg has been determined by Liischer 
[ 12] to be 

mg(Ls) = mg(~°) { 1 - (3/16rr) [X/mg(OO)] 2 

X {exp [ -  ½ X/-3mg(°°) aLs]/mg(°°) aLs} 

X [1 + O(L-1)]} , (8) 

where ?, is the (dimensionful) triple-glueball coupling 
constant. With our 6 3 • 16 and 8 3 • 16 results we can 
determine G = (3/16r 0 [?qmg(OO)] 2. We obtain 

G = 1 5 5 + 4 5 ,  (9) 

which indicates that glueballs interact very strongly. A 
similar value has been obtained recently by Miinster 
[ 13] from strong coupling expansions. Applying this 
correction to our data in table 1 we obtain the glue- 
ball masses in the infinite volume limit as in table 3. 
The corrected masses are also plotted in fig. 2. 

We see (for the first time) that finite size effects on 
the glueball mass are substantial. However, they are 
not visible at two lattice spacings because the correla- 
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Table 1 

L 3. L t Fitted range mga 

5.5 63 .12  2~<f~<10 1.07_+0.03 

63-16 3~<f~<13 0 .66±0.04 
5.7 83.16 3 < ~ f < 1 3  0.86_+0.04 

5.9 103 -20 4 ~</'~< 16 0.62 -+ 0.04 

t ion  func t i on  has  no t  ye t  reached  its a s y m p t o t i c  expo- 

nent ia l  fall-off. (Remark :  to  ensure  t ha t  only  the  

a s y m p t o t i c  vo lume co r rec t ion  (8)  is re levant  we need  

" m e a s u r e m e n t s "  on  more  la t t ice  sizes.) 

5. ( A s y m p t o t i c )  scaling? In fig. 2 we p lo t  the/3 de- 

pendence  o f  x / ~ ( ~ )  [2] which  remains  w h e n  we ex- 

press x / ~ i n  un i t s  of  AL as for  the  glueball  mass. We 

conc lude :  

,q Fig. 1. <01~tlx) a sa  function o f f =  t/a for (a) the 1 X 2 loop 
on the 63 • 12 lattice at/3 = 5.5, (b) the 2 X 2 loop on 63 • 16 
and 83 • 16 lattices at/3 = 5.7 and (c) the 2 × 2 loop on the 
103. 20 lattice a t~ = 5.9. 
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Fig. 2. mg(~) ( - ~ ( ~ )  [2]) in units of A L (0.38 A L) as a 
function oft3. Also shown are the "raw" values: the open 
circles correspond to the results obtained on the 63 • 12, 
83 • 16, 103 • 20 lattices at 13 = 5.5, 5.7, 5.9; the open square 
corresponds to the result obtained on the 63 • 16 lattice at 
fl= 5.7. 

Table 2 

(3 L3s.Lt Loop (4)) 

l x l  
5.5 63 -12 

l x 2  

1 x 1  
63-16 1 x 2  

2 x 2  
5.7 

1 x 1  
83.16 1 X2 

2 x 2  

1 x 1  
5.9 103 • 20 1 x 2 

2 x 2  

0.49628 -+ 0.00016 
0.25910 ± 0.00020 

0.54892 ± 0.00025 
0.32432 -+ 0.00034 
0.13208 ± 0.00025 

0.54914 + 0.00007 
0.32470 ± 0.00005 
0.13222 -+ 0.00006 

0.58177 -+ 0.00002 
0.36778 ± 0.00005 
0.17412 ± 0.00005 

Table 3 

13 mg(~) a 

5.5 1.14 -+ 0.03 
5.7 0.90 + 0.04 
5.9 0.67 ± 0.04 

(i) Taken  over the whole  range 5.5 ~ / 3  ~< 5.9 the 

0 ++ glueball  mass  adheres  r e m a r k a b l y  accura te ly  to  

a s y m p t o t i c  scaling. 

(ii) The b e h a v i o u r  o f ~ i s  qui te  d i f fe ren t  over 

this  fl range. There  is no  universa l /3- funct ion  t ha t  can  

a c c o m m o d a t e  b o t h  x / K a n d  mg d o w n  to /3  = 5.5.  

(iii) I f  we res t r ic t  our  a t t e n t i o n  to 13 = 5.7 and/3 = 

5.9 then  we find tha t  rng(OO) is wi th in  ~ l  o o f  asymp- 

tot ic  scaling on  the  one h a n d  and  wi th in  ~1 o of  

mg(OO)/x/K-(o~) be ing  c o n s t a n t  on the  o ther .  

We hope  to reduce  tile e r ror  on our/3 = 5.9 data  

suff ic ient ly  and  to be able to calculate  at h igher  val- 

ues of/3 by  using a more  ref ined source so as to re- 

solve the  two possibi l i t ies  in (iii). 

6. Other states, other sources. In the  same way as 

one cons t ruc t s  wave- func t iona ls  o f  d i f fer ing jPC [6,7] 

and m o m e n t u m  [8] in tile var ia t ional  approach ,  one 

can, a lmost  trivially, cons t ruc t  sources tha t  will pro- 

jec t  on p :/: 0 or on to  o the r  q u a n t u m  n u m b e r s  j P C  
We have p e r f o r m e d  2 ++ source ca lcu la t ions  wi th  

smaller  statistics.  The source we have used was, a m o n g  

others ,  

Un, u=l, 3 = 1 , Un,~= 2 = - 1  , at  t =  0 .  (10)  

(I t  does no t  m a t t e r  tha t  Un,u=2 = - 1  is no t  an S U ( 3 )  

mat r ix . )  On this  basis we es t imate  tha t  we needed  

-~50 000  sweeps on the 83 • 16 la t t ice  a t / 3 =  5.7 and  

-~100 000  sweeps on  the 103 • 20  la t t ice  at/3 = 5.9 for  

a " g o o d "  2 ++ ca lcula t ion  which  is no t  impract ica l .  

We have also been  invest igat ing (and  still are) dif- 

f e ren t  0 ++ sources. Here we m e n t i o n  a couple  o f  ex- 

amples  ( for  more  details see ref. [11] ) .  We have com- 

pared  our  p resen t  source on a 43 • 16 la t t ice  at/3 = 2.3 

in S U ( 2 )  wi th  a source where  the Un ,u=l ,2 ,  3 at  t = 0 
are r andomly  chosen  (i.e. charac ter i s t ic  of/7 = 0). The 

loops  n o w  app roach  thei r  a s y m p t o t i c  values f rom be- 

low (i.e. C in eq. (7)  is negat ive) ,  bu t  we f ind no  sig- 

n i f icant  d i f ference  in t e rms  o f  s ignal /er ror  or projec- 

t ion  o n t o  ] g ) b e t w e e n  the two types  o f  source. 

For  a very d i f fe ren t  source we go back  to  eqs. (3) ,  

(4)  and  take (Jn, u = l , 2 , 3  = 1, "/j = 1 at  t =  0 a n d  T j =  0 
otherwise.  With this  source all the l ink  variables in the  

lat t ice are upda ted ,  excep t  t ha t  n o w  the  space-like 

l ink  variables at  t = 0 in te rac t  wi th  the  source as well 

as wi th  each other .  We have c o m p a r e d  this  source wi th  

the  source used in this paper  on a 43 • 16 la t t ice  at  fl = 

2.3 in S U ( 2 )  and  on  a 63 • 16 la t t ice  at/3 = 6 .0  in 

SU(3) .  With this source we ob ta in  a def in i te  improve-  

m e n t :  the  co r re l a t ion  func t i on  is f la t te r  w h e n  we are 

close to the  source,  and  we es t imate  tha t  we gain abou!  

a la t t ice  spacing in the  onse t  o f  the a s y m p t o t i c  expo-  

nent ia l  decay.  These results  ce r ta in ly  d e m o n s t r a t e  tha t  
one can  and  should  improve  the  source used here in .  A 
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systematic "var ia t ional"  source me thod  can be based 
on using as new sources the field configurat ions sev- 

eral lattice spacings away from the frozen source. On 

these time-slices the transfer matr ix will have filtered 

out  most of  the higher mass excitat ions.  
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