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We introduce a new method for the derivation of high-order low-temperature expansions of 
the inverse correlation length and present an O(u 8) expansion for the Ising model on a 
3-dimensional simple cubic lattice. This corresponds to an O(v 16) high-temperature expansion for 
the dual  model with 4-spin interaction which is equivalent to the 3-dimensional Z 2 lattice gauge 
theory. The preliminary series analysis admits the rough estimates u c = 0.4079(58), u 1 = 
-0 .1368(74)  and u 2 = -0.296(11) for the location of the physical and two unphysical singularities 
in the complex u-plane. The critical exponent v' at u c, u 1 and u 2 is determined as 2v'  = 1.255(17), 
2 v ' =  0.008(1) and 2 v ' =  0.80(2) respectively. Finally, we indicate further applications of our 
method.  

1. Introduction 

As is well known, so far nobodY succeeded in an exact solution of the 3-dimen- 
sional spin-spin Ising model. Hence the only sources of information about the 
critical properties of this model have been renormalization group techniques [1] and 
high- and low-temperature series expansions (for a review see [2]). While in the last 
10 years considerable progress has been made in the derivation of longer high-tem- 
perature series culminating in the work by Nickel [3], the longest low-temperature 
series expansion of the inverse correlation length K in particular has already been 
published in 1975 [4]. The reason is of course that low-temperature series expansions 
are more difficult to obtain than their high-temperature counterparts. It is the main 
intention of this article to introduce a n e w  m e t h o d  which enabled the author to 
extend the low-temperature series expansion of r of ref. [4] by 3 orders in u. 

2. The models 

We first fix the notation. We consider two generalized Ising models [5] in zero 
magnetic field defined on a 3-dimensional simple cubic (sc) lattice A with lattice 
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spacing a. The first model is the usual spin-spin Ising model with the hamiltonian 

- H / k T =  fl E SiSj" (1) 

The spins s i = _ 1 are located at the sites i of the lattice and the sum runs over all 
nearest-neighbor pairs. The second model has a generalized 4-spin interaction 

- H * / k T  = fl* Y'~ VI  Ge, (2) 
p £E Op 

where the spins live on the links £ of the lattice and the sum runs over all 
non-oriented plaquettes p of A. The product is to be taken over the 4 links in the 
boundary  of p. We note that this model is equivalent to the Z 2 euclidean lattice 
gauge theory in 3 dimensions, if we identify - H * / k T  with the lattice action S. The 
spins correspond to the gauge fields attached to the links of the lattice and the 

coupling fl* is related to the bare coupling constant go of the theory by fl* = 2/g~. 
Finally, we recall that the two models introduced above are related by the duality 

t ransformation.  For later use, we will be more specific. If we denote the dual lattice 
by  A* which in our case is isomorphic to A because the sc lattice is self-dual, the 
duality transformation • is a map: 

[ A - , A *  
* : t H * .  (3)  

Cubes, plaquettes, links and sites of A are mapped one-to-one to sites, links, 

plaquettes and cubes of the dual lattice A* respectively [5]. The dual couplings fl and 
fl* are related by 

tanh fl* = exp( - 2f l ) .  (4) 

In particular, the duality transformation maps the low-temperature phase of the 
usual spin-spin Ising model to the high-temperature or strong coupling phase of the 
Z 2 euclidean lattice gauge theory in 3 dimensions. 

3. Calculation of series expansion 

We now describe the essential features of our method. First we note that the 
inverse correlation length r along a lattice axis of the spin-spin Ising model is 
mapped  to the mass gap m of the lattice gauge theory which can be determined via 
the asymptot ic  decay of the connected correlation function F [6]: we denote x 3 to be 
the time coordinate; for two local operators 01 , 02 we get 

F ( x 3 )  := (01(x3)02(0))  - (01(x3) ) (02(0) )  ~ const x e x p ( - m x 3 ) ,  (5) 
X3 ---~ O0 
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Fig. 1. The leading-order contribution in the cluster expansion of F stretching in time direction x 3 . 

where we choose for 01, O 2 the gauge-invariant product of the gauge fields attached 
to the links in the boundary of two space-like plaquettes Pl and P2 separated x 3 
lattice spacings in time direction. In addition we sum over all possible space-like 
positions of Pl and P2 separately, in order to project out the zero-momentum part. 
As described in ref. [6], F can now be calculated in a cluster expansion, which is 
valid to all orders in the expansion parameter/3*. The dusters are sets of plaquette- 
connected polymers, the polymers themselves being connected graphs on the lattice 

[7]. Geometrically, the polymers are closed surfaces on A which for gauge group Z 2 
have no branch-lines. 

The leading-order contribution to the duster  expansion of F is the 1-polymer 

cluster X0, the long straight tube connecting PI and P2 (fig- l). For the leading order 
term mt°) of the mass gap m :-- mt°) + Am this yields in lattice units 

mt°)a = - 4 log v - - 2 log u, (6) 

in terms of the high-temperature/strong coupfing variable v or the low-temperature 
variable u defined by 

v := tanh/3",  

u := e x p ( - 4 / 3 )  = 0 2 . (7) 

If  we take only those dusters into account, which can be obtained by local 
modifications of X 0, the duster  expansion of F exponentiates in the form 

1 2 2 ) ,  (8) e -rex3 = e-mt°'X3e -zimx3 = e-mt°'x3(l -- Amx 3 + ~ . ( A m )  x3. . .  

and corrections Am to the leading-order term mt°) of the mass gap can be 
determined f rom the term linear in x 3 in the cluster expansion of F. The problem is 
to generate these corrections systematically in a unique way. For this purpose the use 
of a computer  is inevitable, if one aims at a reliable, high-order determination of Am. 

First we reformulate the duster  expansion of ref. [6] in terms of geometrically 
local quantities. If  we introduce the concept of the decoration, which roughly 
speaking is a local modification of the leading-order cluster Xo, any duster  C 
contributing to the cluster expansion of F can be represented as a set of decorations 
(fig. 2). Due to a partition theorem, this representation is unique, which is a very 
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Fig. 2. Two clusters contributing to the duster  expansion of F and the corresponding sets of decorations. 

impor tant  feature of our method because double-counting of contributions is 
avoided by construction. We note for completeness that there is a special type of 
decorations which are treated separately. They are obtained by cutting X 0 into 
several rings of 1-plaquette diameter and closing these rings with additional plaquettes 
at their open ends. However, these decorations can be taken into account in closed 
form for any (multiply) decorated X 0 and are therefore not discussed in further 
detail now. For  details we refer to [8]. 

What  can be learned from fig. 2 is that clusters which transform into each other 
by translation of one or more decorations are represented by the same set of 
decorations. Hence, mapping clusters to sets of decorations induces a class decom- 
position of the set of clusters contributing to the cluster expansion of F. The 
cardinality of  any class of clusters is easily calculated from the geometrical proper- 
ties of the associated set of decorations. Therefore the cluster expansion of F is 
mapped  to the determination of the set ~ of all non-equivalent decorations D. As the 
correction to the mass gap due to a given class of clusters can be determined from 
the cardinality of that class and the properties of the associated set of decorations, 
the evaluation of 0~ is also sufficient for a systematic computation of A m. 

Next  we want  to sketch how the determination of 0~ is related to the even simpler 
problem of the cluster expansion of the free energy log Z. 

Every decoration D has an entrance and an exit side where tube parts enter which 

may  carry additional decorations but ultimately connect D to Pl and P2. Entrance 
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Fig. 3. A 4-point configuration K (4), its dual envelope and some of the associated decorations. 

and exit sides are called Pin and Pout and are indicated by dashed lines (fig. 2). 
Closing D at Pin and Pout, i.e. adding Pin and Pout to the support of D (which is the 
set of plaquettes carrying the non-trivial representation of Z2), results in a cluster 

G o contributing to the cluster expansion of log Z. 
Conversely, starting from a cluster CD, in general there exist several candidates for 

Pin and Pout. Making use of the geometrical properties of CD and the partition 
theorem which fixes the properties the Pin and Pout have to fulfill, we can evaluate 
the set of all Pin and Pout in a uniquely determined way. As this is equivalent to the 
determination of the set of all decorations D associated with CD, the determination 
of ® is mapped to the computation of the cluster expansion of log Z. 

The first step in the cluster expansion of log Z is the classification of all C D 
according to the supports of the included polymers. As Z :  has only one non-trivial 
representation, this step is trivial in the case under consideration, because we have a 
one-to-one mapping from the supports of the included polymers to the correspond- 
ing polymers. However, in the case of gauge groups with a more complicated 
structure, this step becomes essential [8]. 

Next we classify the supports I CDI according to their envelope E. The envelope of 
some I CDI is loosely speaking I CDI with the inner plaquettes removed (fig. 3). 
Because in d = 3 dimensions, to each envelope E which is a closed surface on A, 
there exists exactly one volume V with the property OV = E, the classification of all 
[CD[ according to their envelopes is equivalent to their classification according to 
their volumes. 

For  the reconstruction of all [ CD [ which have identical volume, it is advantageous 
to recall that the volumes may be considered as chains ofplaquette-connected cubes 
on the lattice. Making use of the cell structure of the volumes, the determination of 
{ CD } causes no principal difficulties, and the remaining step in the cluster expan- 
sion of log Z and therefore in the cluster expansion of F as well as the strong 
coupling expansion of the mass gap m is the unique generation of all volumes 
needed in a calculation of a given order in the expansion parameter fl*. In particular 
for a high-order computation of Am, the volumes may be of considerable extent and 
may have a complicated geometry. Even the topology may become non-trivial at 
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already rather low order. Moreover, as we expect a very large number of non-equiv- 
alent vo lumes  to! be needed i in i a highl-order computation of A m, the requirements 
on an useful method are a compact and complete description as well as an a priori 
unique generation of each volume. It must be emphasized that this second demand is 
absolutely necessary, because due to computer time and storage requirements one 
cannot  afford to store the data of all volumes and to scan through this set each time 
a new volume is generated in order to avoid double-counting. 

For  the solution of this problem, we again make use of the cell structure of 
volumes of A and also use the duality between cubes on A and sites or lattice points 
on A*. By duality, each volume which is a chain of plaquette-connected cubes is 
mapped  to a nearest-neighbor point configuration on A*. To fulfill the uniqueness 
requirements mentioned above, we therefore constructed an algorithm which gener- 
ates every nearest-neighbor point configuration K ~") with n points (n -- 1, 2, 3 . . . .  ) 

through a unique sequence 

K 0 )  - .  K (2) ~ • . . K ( , , -  1) ~ K (n) (9) 

of 1-point, 2-point . . . . .  (n - 1)-point nearest-neighbor point configurations on A*. 
This means that we have a tree structure on the set of point configurations on A*. 
Besides avoiding double-counting by construction, our algorithm meets the speed 

requirements naturally. 
In  dos ing  this section, we note that the application of our algorithm is not 

restricted to the problem discussed above, but it is in particular perfectly suited for 
the derivation of high-order strong coupling expansions of the mass spectrum of 
pure Yang-Mills theories in 3 and 4 dimensions. In fact, this is the main purpose our 
algorithm has been invented for. Moreover, as it is already clear from the above 

description, a subset of this algorithm can be used to get high-order expansions of 
the free energy log Z. 

4. Series analysis 

Making use of our algorithm we have been able to generate correction terms up to 
O(uS). In lattice units, we get for r along a lattice axis 

8 

x a =  - 2 1 o g u +  F ( u ) =  - 2 1 o g u +  ~'. mkuk + O ( u 9 ) ,  (10) 
k = 0  

with the coefficients m k given in table 1. To obtain these coefficients, more than 
1.5 >( 106 point  configurations on A* have been generated, mapped to volumes on A 
and investigated within a total amount  of CPU time of approximately 12.5 h on an 
IBM 3081-D. For comparison, we quote the corresponding numbers for a u 5 
calculation, which are about 1800 point configurations and roughly 20 s of CPU 

time. 
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TABLE 1 
Coefficients mk, gk and h k of the series expansion of ~a, A' 2 

and A' 1 as defined in eqs. (10), (14) and (15) 

425 

k 0 1 2 3 4 5 6 7 8 

87 251 331 8793 55927 
m k 0 1 _1~ ~ ~ T 2 ~ -  8 
gk 1 - 1 10 - 14 93 - 201 972 - 3470 17254 
h k 1 - 1 9 - 12 74 - 159 719 - 2788 14022 

T o  b e g i n  w i t h ,  w e  a n a l y s e  F(u)  d e f i n e d  in  (10) .  A s  t h e  e x p a n s i o n  c o e f f i c i e n t s  m k 

alternate in sign, t h e  dominant singularity l ies  o n  t h e  r e a l  negative u - a x i s  as  e x p e c t e d .  

T o  o b t a i n  q u a n t i t a t i v e  r e s u l t s ,  w e  a p p l i e d  ratio methods, Neville tables [9], Shanks 

extrapolation [10] a n d  Padb approximants. W h e r e a s  r a t i o  m e t h o d s  a n d  N e v i l l e  t a b l e s  

a p p l i e d  t o  t h e  s e r i e s  e x p a n s i o n  o f  F (  - u )  d o  n o t  a d m i t  a n  e s t i m a t e  o f  t h e  l o c a t i o n  o f  

t h e  d o m i n a n t  s i n g u l a r i t y ,  S h a n k s  e x t r a p o l a t i o n  y i e l d s  t h e  p r e d i c t i o n  0 .17  ~< f~ ~< 0 .29  

I 
-1.0 

O o/ 

-I .0  

O 

O O 

O O 

C, 1 - ~  
Tile= v 

O O 

-1.0 

lu 

1.0 

Fig. 4. The poles of all the Pad~ approximants to F(u). Open circles represent poles which have been 
found in one approximant only. Poles indicated by a full circle, a full triangle or a full box have been 

obtained in two, three or four and more Pad6 approximants respectively. 
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for the modulus f~ of the dominant singularity. This is in agreement with the results 
f rom ref. [11], where an unphysical singularity has been found to be located at 

U 2  = - -  0.2860(2). 
The singularity structure of F(u)  is displayed in fig. 4: as a single open circle at 

some position in the complex u-plane indicates that only a single Padk approximant  
to F(u)  has a pole at that location, the significant items are accumulations of poles. 

We observe such accumulations around u = -0 .31  and along a circle with radius 
l ul --0.13 open towards the real positive u-axis, which indicates stable, unphysical 

singularities u2, u I in the low-temperature series of K at u 2 = -0 .31  and u 1 = -0 .13 .  
Whereas the existence of u 2 is in accordance with the results from [11], u x has so far 
not been reported in the literature. 

Finally, as can be seen from fig. 4, we note that the analysis of F(u)  is not 
particular useful for the determination of the physical singularity u c = 0.412045(5) 

[121. 
To  obtain independent estimates for u 1 and u z and to get predictions for the 

location of u c as well as estimates for the critical exponent v' at uc and the 
unphysical  singularities, we investigated in addition the quantities A' z and A'~ [4,13]: 

1 = e x p ( - r a )  = (~/a)2[1  + O ( ( ~ / a ) - 2 ) ] ,  (11) 
A'2 := 2[cosh(Ka) - 1] [1 - e x p ( - K a ) ]  2 

1 ( ~ / a ) [ l + O ( ( ~ / a ) - ' ) ]  
A'I '=  1 - e x p ( -  Ka) (12) 

where ~ is the true or exponential correlation length along a lattice axis (X3) defined 

by  

f - x  = K:= lim x;llogF(x3). (13) 
X3 --+ OO 

As can be read off from eqs. (11) and (12), in the critical region A' 2 and A' 1 behave 
asymptotical ly like positive powers of the true correlation length 4. Hence we expect 
them to be more useful in our analysis than xa itself. 

Using the expansion of ra, we obtain 

8 

A'2(u ) = u 2 G ( u ) =  u 2 ~_, gku~ + O(u11), (14) 
k = 0  

8 

A'l(U ) = 1 + u 2 H ( u ) =  1 + u 2 ~_, hkuk + O ( u l l ) .  (15) 
k = 0  

The coefficients g ,  and h k can be found in table 1. 
We first try to determine the location of the singularities and apply the same 

methods of series analysis as previously. Ratio methods and Neville tables still do 
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Fig. 5. The poles of all the Pad6 approximants to G(u). Symbols as defined for fig. 4. 

not admit  an estimate of the location of the dominant singularity and Shanks 
extrapolation makes only a very crude judgement which is, however, in agreement 
with the result f rom the xa analysis. 

The results from the Pad6 analysis are shown in figs. 5 and 6. The majority of the 
poles can now be found to lie on the real u-axis. Moreover, we recognize three points 
of accumulation of poles which in fig. 6 are not as pronounced as in fig. 5 and which 
correspond to the physical and the two unphysical singularities. If  we simply average 
over all the members  of the appropriate accumulation, we find that the correspond- 

ing predictions from the A' 2 and A'~ analysis do not agree within the standard 
deviation in the mean. We take this as an indication that this naive error determina- 
tion might be misleading. Taking all estimates from the Pad6 analysis into account 
simultaneously, we compute weighted averages for u 1, u 2 and u c. We weigh 
according to the number of values the different single estimates rely on and obtain 
the predictions u 1 = -0.1368(74), u 2 = -0.296(11) and u c = 0.411(12). The errors 
quoted in parentheses (as always in this article) are the standard deviations in the 
mean. 
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Fig. 6. The poles of the Pad6 analysis of A' 1. Symbols as defined for fig. 4. 
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In  add i t ion ,  we tr ied to ob ta in  an improved  es t imate  for u c by  m a p p i n g  away  the 

unphys i ca l  s ingular i t ies  loca ted  on  the real negat ive u-axis. We  pe r fo rmed  a con for-  

real transformation: 

Z 

u =  1 - ~ t z  ' 

u ~ ~ R (16) z = 1 +/x-------- ~ , + ,  

where  we choose  ~t = l / h  with ~ = lul,21 or some value f rom a ne ighborhood  of  u 1 

a n d  u 2. N o w  we can  make  prof i t  by  ra t io  me thods  and  Nevi l le  tables.  The  qual i ty  of 

the  es t imates  d e p e n d  s t rongly on the choice of/~ and bes t  es t imates  are  ob ta ined ,  if 

we choose  / ~ - 1 =  luxl with u 1 as de te rmined  b y  the Pad6 analysis  of  A'  2 and  A'~ 

respect ively .  
Qua l i t a t ive ly ,  we f ind that  the di f ferent  methods  when appl ied  to the t r ans fo rmed  

series of  A'~ resul t  in be t te r  convergent  es t imates  than  when app l ied  to the t rans-  

f o r m e d  series of  A '  2. 
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Finally we comment  on the Pad6 analysis. The obtained values for z c are now 
stable under the variation of #. However, the computed estimates for uc are 
systematically shifted to lower values and the statistical errors of u~ are not 
substantially smaller than in the original analysis of A' 2 and A'~ in the variable u. 
Because we believe that these estimates contain large systematical errors, they are 

omitted in the final estimate. Instead we combine the results from the ratio methods 
and Neville tables as applied to the transformed series with those from the Pad6 
analysis of A' 2 and A' 1 in the variable u and compute a weighted average with the 
weighting procedure already described above. The final estimate for u c is u~ = 
0.4079(58). 

We now turn to the determination of the critical exponent v'. Concerning the ratio 
methods, we only get an estimate for v' at u c from the analysis of the transformed 
series of A' 2 with / , - 1 =  lUll" We observe reasonable convergence for the last five 
members  of the sequence g,(0) [9] and predict 2v'= 1.225(12). The recent Monte 
Carlo renormalization group analysis of Pawley et al. [1] yields 2v( = 2v') = 1.258(8). 

Applying the method of Pad6 approximants, we first have to make an assumption 
on the critical behaviour of ~. The simplest assumption is that ~ has a pure power 
law singularity at the corresponding value u = u* and that the amplitude function 
A(u)  is analytic at u = u*. This implies for example for A'2: 

A'z(U ) = (u* - u ) - Z / A ( u )  2. (17) 

Taking the logarithmic derivative and multiplying by (u* - u) we obtain 

[(u* - u) (d/du) log A'2] (u)  = 2v'[1 + O( u* - u ) ] .  (18) 

Then evaluating Pad6 approximants at u = u* to the function on the left-hand side 
give estimates for 2v' at u c, Ul, u2, if we choose u* = u c, u x, u 2 respectively. 

This works of course quite analogously for A'v However, it turns out that in this 
case most of the Pad6 approximants have nearby zeros a n d / o r  poles at the 
singularity under consideration and are therefore unreliable. Hence we restrict to the 
Pad6 analysis of A' 2. 

TABLE 2 
The  table  of Pad~ approx iman t s  to the funct ion [( u c - u ) ( d / d  u) log A' 2 ]( u ) eva lua ted  at  u = uc 

M 

L 1 2 3 4 

1 1.291 1.457 1.071 1.063 
2 1.428 1.331 1.063 1.072 
3 1.137 0.604 1.378 2.221 
4 0.937 1.161 1.703 1.319 
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TABLE 3 
The table of  Pad6 approximants to the function [( u 1 - u ) (d /d  u )log A' 2 ](u) evaluated at u = u 1 

M 

L 1 2 3 4 5 6 7 

1 0.2274 0.1631 0.1297 0.1073 0.0918 0.0803 0.0713 
2 0.0541 0.0150 0.0040 b 0.0080 0.0083 0.0057 b 
3 0.0417 0.0010 u 0.0070 0.0080 0.0080 
4 0.0110 0.0093 0.0079 0.0071 
5 0.0089 0.0384 a'b 0.0096 
6 0.0018 b 0.0092 
7 0.0104 

'a '  indicates a spurious pole whereas 'b '  indicates a nearby zero of the numerator  polynomial. 

TABLE 4 
The table of Pad6 approximants to the function [( u 2 - u ) ( d / d  u)log A' 2 ](u) evaluated at u = u 2 

M 

L 1 2 3 4 5 6 7 

1 0.9246 0.8121 0.7965 0.8214 1.0980 19.483 a - 8.8108 a 
2 0.7661 0.7936 0.8060 0.7931 0.7207 - 6.5528 a 
3 0.8019 0.6920 0.7870 0.8283 0.8114 
4 0.8451 0.7942 0.7613 0.8102 
5 0.5118 - 0.2662 0.8452 
6 0.0355 b 0.5389 
7 2.0563 

The symbols  'a'  and 'b '  are defined as for table 3. 

Q u a l i t a t i v e l y ,  t h e  P a d 6  a p p r o x i m a n t s  a t  u = u 1 a n d  u = u 2 a r e  b e t t e r  c o n v e r g e n t  

t h a n  a t  u = u c a s  e x p e c t e d .  T h e  c o r r e s p o n d i n g  P a d 6  t a b l e s  a r e  p r e s e n t e d  i n  t a b l e s  

2 - 4 .  

W e  f i r s t  c o m e  t o  t h e  d e t e r m i n a t i o n  o f  2 #  a t  u = u c. A s  c a n  b e  l e a r n e d  f r o m  t a b l e  

2, t h e  c o n v e r g e n c e  is  v e r y  p o o r  b u t  a p o s s i b l e  s t a b i l i z a t i o n  o f  t h e  e s t i m a t e s  i n  t h e  

s e r i e s  a n a l y s i s  o f  a n  e x t e n d e d  s e r i e s  e x p a n s i o n  a l o n g  t h e  d i a g o n a l  o f  t h e  P a d 6  t a b l e  

m i g h t  b e  c o n c l u d e d .  S i m p l e  a v e r a g i n g  g i v e s  2 ~ '  = 1 . 2 6 5 ( 8 9 ) .  T a k i n g  a l s o  i n t o  a c c o u n t  

t h e  e s t i m a t e  f r o m  t h e  r a t i o  m e t h o d  a n a l y s i s  a b o v e ,  t h e  w e i g h t e d  a v e r a g e  is  2 # =  

1 . 2 5 5 ( 1 7 ) .  

F o r  t h e  d e t e r m i n a t i o n  o f  2 / a t  u = u 1, w h e r e  w e  c h o o s e  u I a s  d e t e r m i n e d  i n  t h e  

P a d 6  a n a l y s i s  o f  A'  2, w e  n o t e  t h a t  t h e r e  i s  n o  c o n v e r g e n c e  f o r  [ l / M ]  P a d 6  

a p p r o x i m a n t s  a n d  [ L / M ]  a p p r o x i m a n t s  w i t h  L + M <  6. A v e r a g i n g  o v e r  t h e  r e -  
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maining set of approximants which have no spurious poles or zeros yields 2 / =  

0.008(1). As already discussed previously, the true error might be larger, but this can 
only be judged from a more detailed analysis of a longer series expansion. 

Finally we discuss the critical exponent at u = u 2. For u 2 we take the best value 
f rom the literature [11] to be compatible with the analysis of Itzykson et al. [14] who 
predict ~,' = 0.4 +_ 0.1 from the analysis of the O(u 5) series. Our estimate from the 
diagonal and near-diagonal Pad6 approximants is 2 / =  0.80(2). As all estimates lie 
in the interval 0.69 ~< 2u'~< 0.93, a more conservative guess for 2u' would be 
2u' = n Rfi  +0.13 

~ ' ~ - 0 . 1 1 "  

5. Summary and conclusion 

We gave a description of the main features of a fast computer algorithm which 
allows an arbitrary high-order low-temperature expansion of the inverse correlation 

length in the Ising model or strong coupling expansion of the mass gap in the Z 2 
euclidean lattice gauge theory in 3 dimensions respectively. This algorithm can be 
generalized without any principal difficulties to be applicable to the interesting case 
of 4-dimensional lattice gauge theory with non-abelian gauge groups. 

As an application of our method, we presented an O(u 8) low-temperature series 
expansion for the spin-spin Ising model. A preliminary series analysis resulted in 
rough estimates for the location of the physical singularity uc and two unphysical 
singularities u 1 and u 2 lying on the real negative axis in the complex u-plane. The 
critical exponent u' at u~, u~ and u 2 has also been investigated. 

The new observation is the singularity u~, whose existence implies a violation of 
the empirical relation 

n = -~(q - 4),  (19) 

which relates the number of poles in the disk lul ~ lucl to the lattice coordination 

number  q. In [15], this equation was found to hold for various 3-dimensional lattices. 

In am indebted very much to Gernot Mianster who taught me all the subtleties of 
the strong coupling expansion technique. He always gave me strong support during 
the final but  important stages of my work. I thank the people of the DESY 
computing centre, in particular Klaus Tietgen who at any time was ready to answer 
all my questions about computing. 
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