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We consider the correlation of Polyakov loops It as shown that the ground-state energy recewes a umversal 
contribution - ~r/3A (A being the length of the loop) arising from long wavelength fluctuations of the string. The correlation 
function is calculated for fl = 5.5, 5 7, 5 9 and 6 0 on lattices ranging in s~ze from 63 × 12 to 123 × 24 using the source method. 
The calculation is accurate enough to identify the asymptotic exponential decay wtuch makes sure that we are extracting the 
ground state energy and hence the (asymptotic) linearly n s m g  p~ece of the potential We find the Coulomb-hke contribution 
to be remarkably consistent w~th - ~r/3A The s tnng  tension violates asymptotic scaling by --- 60%, taken over the whole range 
of fl Tlus  s tands in sharp contrast to the fl dependence of the mass gap which ~s consistent with asymptouc  scahng. 

Monte Carlo simulations of the (physically interesting) SU(3) lattice gauge theory have provided a 
powerful and successful tool for extracting non-perturbative physical quantities such as the string tension 
and hadron masses. The crucial and ambitious question now is whether we can see precise continuum 
physics at the values of bare couplings presently accessible to us. To answer this question requires 
sufficiently small statistical errors and, what ~s the real difficulty, one must correspondingly control the 
systematic errors which arise if we extract our string tension and masses at a point too early along a 
correlation function. The cure for this is to calculate accurate correlation functions far enough to see an 
(asymptotic) exponential decay over several lattice spacings. In this letter we present the first results of a 
calculation of this kind for the string tension, for the long distance fluctuations of the string, and in ref. [1] 
for the mass gap. 

To perform such a calculation with the standard method, which rests on computing averages of large 
Wilson loops, would be very expensive. The calculations in this paper use the source method which disturbs 
the vacuum and "measures" the long distance correlations of Polyakov loops with distance from the source. 

Polyakov loops and string picture. Before we turn to the method, let us consider the case without the 
source. The potential between heavy quarks is defined by the average of the product of two Polyakov loops 
of length A in the periodic direction separated by a distance B via 

~ L ( A , B ) L ( A , O ) )  = e x p [ - V , ( B ) A ] .  (1) 
A >> B 
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As the separation B becomes large the potential approaches 

V( B)  = KB + m - ~r/12B, (2) 

where K is the string tension which we are interested in, and m is the (divergent) self mass of heavy quarks. 
The Coulomb-like term -~r /12B arises from long wavelength fluctuations of the string. It is a universal 
term that one expects in any string model [2], and the quantitative verification of its presence clearly would 
give evidence of the underlying dynamics of strings. 

In this paper we are interested in the large B decay of the correlation function (1). The dominant term 
we already know [from eqs. (1), (2)]. To compute the subdominant terms we take the gaussian string action 

S= l KJod.r foBdOvx,vx,, (3) 

which, for the long wavelength modes that (as it will turn out) provide the leading correction to the string 
tension, is the universal nonrelativistic limit of a whole class of actions. By making a definite choice of 
parameters, x 4 = ~- and x 1 = 0, this can be written 

1 r A  r B  
S = KAB + 7KJ0 d r  J0 dpVx-L Vx±.  (4) 

The correlation function then becomes 

( L ( A , B ) L ( A , O ) )  e x p ( - K A B ) f l - [ d 2 x . ( , , p ) e x p (  - 1  rA rB 

with periodic boundary conditions at r = 0, A and zero boundary conditions x± = 0 at O = 0, B. The result 
of doing the path integral is formally 

( L ( A , B ) L ( A , O ) )  = exp ( - K A B ) [ d e t  ( -  ½KX7 2)] -x, (6) 

which leaves us to define and evaluate the determinant. We shall use the lattice regularisation. The 
eigenvalues of the laplacean - V 2 (with periodic and zero boundary conditions, respectively) then are 

h ~ ,  = 4 - 2 cos (2rrm/A) - 2 cos (~rn/h) ,  _ _ 1  ^ 1 ^ , 7A<m<~TA,  l ~ < n ~ < B - 1 ,  

where A = Aa, B = Ba and a is the lattice spacing, which gives 

-1  [ 1Ka 2h2 ] [ d e t ( -  ~ K v : ) I  = e x p ( -  ~ ln t7  m,. ,)" 
t~l ,  t l  

To evaluate the determinant we write 
, i /2-1.h-1 

[Xra2X2. ] d ( h - 1 ) l n ( ½ K a 2 ) + 2 =  }" ,.., In t~ m , n l  

b-1 
+ ~ {ln [2 - 2cos (~rn/B)] + In [6 - 2cos(~rn/B)] }. 

n ~ l  

Using (repeatedly) Euler's sum formula (see e.g. ref. [3]) and 

I--1 
Y'~ In [2 - 2cos(~ri /I)]  = ln I ,  

In [4 - 2 cos (2~rm/A) - 2 cos (~rn/B)] 

(7) 

(8) 

(9) 

(1o) 
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(which follows from 1.396, ref. [4]) we obtain for the first sum 

A / 2 - 1 , b - 1  

2 Y'~ In [4 - 2cos (2rrm/.d) - 2cos (Irn/B)] 
re ,n=1 

^ ^  

= AB~r 2 fo,~dx fo,~ dy In ( 4 -  2cosx - 2cos y ) - ( B  + A/2)  In (3 + V~-)- (B /A)2~rB2- In (A/2 )  + In 3v~- 

+ O ( • - 2 ) ,  (11) 

while for the second sum we find 

b - 1  
Y'. {ln[2--2cos(~rn/~b)]+ln[6--2cos(~rnfB)])=lnB+Bln(3+~/8)--ln 3~+O(B-1). (12) 

n ~ l  

Altogether this gives (B 2 = 1/6) 

[1Ka2X 2 1 In t~ m , n l  
m , n  

^ ^  

AB ,.,, 
= ' d ( B  - 1) In (½Ka2) +--~ - J0 dx f0~dyln(4 - 2 c o s x -  2cosy)-(B/A)cr/3 + In B -  1Aln(3 + fff) 

- I n  (A /2 )  + O(BA -2) + O(B-1).  (13) 

The first two terms renormalise the string tension, so that the final result is 

<L(A,B)L(A,O)) = exp { -  [ K A B -  ½~rB/A + lnB + O(BA-2) +O(A)]}. (14) 
B>> A 

The universal Coulomb-like term -~r/12B in eq. (2) is now replaced by the (universal) term -~r/3A. 
This is four times as big, which strongly favours studying the dynamics of strings through the large B 
correlation of Polyakov loops over any other method. It should also be noted that the (true) Coulomb term 
does not contribute in this limit and neither does the self mass of the lines [cf. eq. (2)], which makes the 
assignment of an eventually observed 1/14 contribution unambiguous. The logarithmic term In B is 
(basically) of kinematic origin as can easily be traced from eq. (9). (See also the following discussion.) The 
presence of a Coulomb-like term -~r/3A has been conjectured before by Rakow on the basis of duality 
type arguments [5]. 

Physically speaking the Polyakov loops communicate by the exchange of flux hne configurations which 
wind around the lattice. The energies of zero total momentum, E,, of these configurations are given by 

E ( L(A,( z2 + x~)I/2)L(A,O)) = Ec, exp(-E,z) • (15) 
X &  l 

Assuming that Lorentz symmetry is restored this can be written 

f d 2 x i  (L(A,(z2 + x~)m)L(A,0))=2~rfzdBB<L(A,B)L(A,O)), (16) 

which, by inserting (14), leads to 

~_, ( L(A,(z  2 + x2)X/2)L(A,O)) = 2~r f zdBBexp{-[KAB-~rB/A  + lnB + O(BA-2)+O(A)]} 
x &  

=27rfzdBexp{-[KA-~r/3A+O(A-2)+O(AB-1)]B}=coexp{-[KA-rr/3A]z }. (17) 

139 



Volume 160B, number 1,2,3 PHYSICS LETTERS 3 October 1985 

Thus  the g round  state energy is 

E o = KA - ~r/3A. (18) 

This expression could have also been obtained f rom eq. (14). 

Source method We work on (periodic) L~ 3 × Z t lattices. The Polyakov loops will be in the spatial 
direction, i.e. A = L s, at times t = 0 and t. The source that  we shall use (see ref. [1] and references therein) 
consists of  setting all space-like links at t = 0 to unity so that  the transfer matrix of  the undis turbed theory 
is retained. The  state at t --- 0, IX), is then the unit  eigenstate of  the field operators Un,~=l.2. 3. It  has zero 
total m o m e n t u m  and L (aLs, 0) 1 X) = IX) [i.e. L(aL~, 0) does not  fluctuate]. For  a periodic lattice we then 
expect the asymptot ic  behaviour 

= c c o s h [ ( ~ -  L t / 2 ) ( K a 2 L s - c r / 3 L s ) ] ,  (19) P(Ls ' t )==-'~- ' (OlL(aLs ' ( t2+x~)l /2) lX)  large 
X2" l 

where we have set t = fa. To verify the universal Coulomb-l ike term, which bears impor tan t  new physics 
and  has been overlooked in previous calculations [6], one has to compute  P ( L  s, t)  on  various sized lattices. 
Fo r  a further  discussion of  the source method,  including other sources, the reader is referred to ref. [1]. 

Calculanon and results. We work with the s tandard Wilson action and compute  P(Ls, t) on a 6 3 × 12 
lattice at fl = 5.5, on 63 × 16 and 83 × 16 lattices at fl = 5.7, on a 103 × 20 lattice at fl = 5.9 and on a 
123 x 24 lattice at fl = 6.0. We use about  1000 sweeps to reach equilibrium and about  20000 sweeps for 
"measu remen t s " .  As we get further f rom the source we perform in most  cases more  sweeps. For  details see 
ref. [7]. The  "measurements"  come typically in 3 sequences f rom independent  starting configurations. In  
ref. [1] we have used the same gauge field configurations to extract the 0 ++ glueball mass which allows us 
to compare  the cont inuum (?) behaviour of  bo th  the string tension and rn~ without  any bias. 

P(L~, t) is fitted by the functional form 

P(  L s, t )  = ccosh  [ ( t -  Lt /2 )Eoa  ] , (20) 

first for 1 ~< ~< L t - 1, then 2 ~< ~< L t - 2 and so on until a X 2 is achieved that is acceptable and a stable 
mean  value of  Eoa is obtained. The error on Eoa is determined by  varying Eoa until it drops below a 20% 
confidence level. The data is presented in fig. l a - d .  The results for Eoa are listed in table 1. 

The  ent ry  in the last column, ¢-Ka, is the string tension that follows if one (naively) assumes 
Eoa = Ka2Ls, i.e. ignoring the Coulomb-like term. 

Fig. 1 displays that the calculation is accurate enough to identify (for the first time) the asymptot ic  
exponent ia l  decay (20) of  the correlation function. Moreover,  it is quite impressive to see that the source 
me thod  allows to follow the decay over e.g. 12 lattice spacings at fl = 6.0 (fig. l d )  which provides a new 
standard.  The  statistical errors on Eoa are on the level of  3% for fl ~< 5.9 and 6% a t /3  = 6.0, which are hard 
to beat  by  the standard,  Wilson-loop type calculations [even in SU(2)]. 

To  verify the presence of  the universal 1 / L  s term and to properly extract (the infinite volume limit) of  
the string tension, we have performed our  calculation at fl = 5.7 on two different lattice sizes, L~ = 6 and 
8 (fig. lb) .  I f  we fit Eoa now by  the form 

Eoa = KaELs + r / L  s, 

we obta in  

r = - 1.09 +_ 0.39, 

in good  agreement  (magnitude and sign) with the expected 

r = - ~r/3 = - 1.05. 

(21) 

(22) 

(23) 
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Table 1 

fl L 3 × L t Fitted range Eoa x/Ka 

55  6 3 × 1 2  3 < t ' < 9  186 _+006 0557_+0009  
57  6 3 X 1 6  2 < ~ ' < 1 4  0 . 6 2 6 + 0 0 1 6  0 3 2 3 - + 0 0 0 4  

8 3 × 1 6  2 < ~'< 14 0.94 -+003 0 3 4 3 - + 0 0 0 6  
59  1 0 3 × 2 0  3 < ~ ' < 1 7  0 . 5 2 9 + 0 0 1 5  0 2 3 0 - + 0 0 0 3  
6 0  1 2 3 × 2 4  4_<t'_<20 0.413-+0.025 0 1 8 6 - + 0 0 0 6  

Table 2 

fl ~/K(oc)a 

5 5 0583 _+ 0013 
5 7 0 367 _+ 0 007 
5 9 0 253 _+ 0009  
6 0  0 2 0 5 + 0 0 0 8  

This result nicely supports the existence of strings, which so far was only supported by the calculation of 
the string tension. (To consolidate this result it is important now to ensure that only the asymptotic volume 
correction is relevant. That is to say, we need "measurements"  on more lattice sizes.) 

Applying this correction now to our data from table 1, i.e. writing Eoa = Ka2Ls - ~r/3L s, we obtain the 
string tension as in table 2. The corrections are of the order of 10% even for these large loops (of length 
- 1 0 ) .  

Scahng (?) and comparison. In fig. 2 we plot the/3 dependence of v/K which remains when we express ¢ ~  
in units of A L using the two-loop formula 

• --1 z 8 2 -x51/121 
a ( f l )  = A L ~3~r fl) exp( -a~r2 /3 /33) .  (24) 

Also shown are the uncorrected values (from table 1) and some recent results of other groups [6,8-11]. 
We conclude: 
(1) Taken over the whole range 5.5 ~< fl ~< 6.0 (where the mass gap adheres remarkably accurately to 

asymptot ic  scaling [1]), the string tension is off from asymptotic scaling by = 60%, and there is little sign 
that it levels off at larger/3. In particular, we find no in&cation that asymptotic scaling has been reached 
at fl = 6.0. 

(ii) There are substantial deviations between the results of the various groups and methods, in particular 
at fl = 6.0, which have to be clarified before one can draw any conclusions as to whether one sees 
asymptot ic  scaling beyond/3 = 6.0. 

We are confident that the source method will also work for/3 > 6 with the same source, and we hope to 
address this region in a future publication. 

The numerical calculations have been done on the Cray X-MP at Jiilich. We are grateful to J. Speth for 
the hospitality of the Institut fiJr Kernphysik during the course of this work and to F. Hossfeld for his 
support.  We are also indebted to E. Br~kel and J. Chiabaut for valuable computational assistance. In 
particular we are indebted to D. Lellouch and C. Roiesnel for their involvement in the vectorised program 
we have used [12]. One of us (M.T.) thanks F. Gutbrod for the hospitality of the DESY Theory Group 
during part  of this work and acknowledges financial support  from D R E T  (contract No. 8 2 / 1 2 5 2 / D R E T  
/ D S / S R ) .  Two of us (G.S. and M.T.) thank the Aspen Center of Physics for its hospitality where this work 
has been completed. 

Note added. If  the reader wishes to see how the source method compares to conventional Polyakov loop 
calculations, he is referred to ref. [13]: there the calculation of ref. [6] is repeated at the same coupling, 
/3 = 6.0, and on the same lattice, 103 x 20, but using in addition a source. Unfortunately the work of ref. 
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Fig. 2. v/K(oo) m umts of A L a s  a functaon of fl (sohd circles), together with the "raw" values vrK (open circles) whtch correspond 
to the results obtained on the 63 × 12, 83 × 16, 103 × 20 and 123 × 24 lattices at fl = 5 5, 5 7, 5 9 and 6 0 assuming Eoa = Ka2L~ (1 e 
the quoted values m table 1) Also shown are the results obtmned m refs [6,8-11] 

[13] is n o t  ( s t a t i s t i c a l l y )  a c c u r a t e  e n o u g h  to  b e  u s e d  in  c o n j u n c t i o n  w i t h  o u r  fl = 6.0 r e su l t s  o n  a 123 × 24  

l a t t i c e ,  t o  t e s t  t h e  u n i v e r s a l  C o u l o m b - l i k e  t e rm .  
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