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In the first part of the paper, we give analytic, approximate results for the Kazama-Yang 
monopole-fermion binding energies and wave functions, valid for large values of A ~ ~ Z[ egl ~, 
where K is the extra magnetic moment. In the second part, more general results are obtained for 
the same problem that are valid when either A is large or the binding is weak. Numerical results 
for the binding energy are tabulated and compared. 

1. InWoduction 

The  monopo le - f e rmion  bound  states were first invest igated by  K a z a m a  and Yang  

[1]. Later ,  add i t i ona l  results were "given [2,3]. The monopo le  is assumed to be 

inf in i te ly  heavy,  and  the hamihon i an  for the fermion of spin ½ is [1] 

H =  o t . ( p  - Ze A  ) + t i M -  r q f l o ,  r / ( 2 M r 3 ) ,  (1.1) 

where  the n o t a t i o n  is that  of  refs. [1-3]. 

W h i l e  the d i rec t  numer ica l  approach  of  pape r  I [3] leads to very accura te  results,  it 

is a lso  useful  to have approximate ,  more  explici t  formulas.  So far, the l imit ing case 

tha t  has  received most  a t ten t ion  is that  of  weak binding:  

M - E << M (1.2) 

for the  lowest  angular  m o m e n t u m  j = I ql  - ½- Results  in this case have been given 
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14 P. Osland, T. T. Wu / Monopole- and dyon-fermion bound states (111) 

in ref. [2] for the monopole and in paper II [4] generalized to the dyon. In paper II, it 
is assumed that A is neither large nor small, where 

A = ½KIql. (1.3) 

A second limiting case of interest is 

A >> 1. (1.4) 

This case is of possible relevance for a description of monopole-nucleus interactions 
at large distances. In the first part of this paper, consisting of sects. 3 and 4, this case 
(1.4) is treated by the WKB approximation for bound states of the lowest angular 
momentum. 

It is then natural to raise the question whether the two approximations, the one in 
ref. [2] for the case (1.2) and the one in sects. 3 and 4 for (1.4), can be combined. In 
other words, is it possible to find an approximation that covers both cases, i.e., is 
valid whenever e i ther  (1.2) or (1.4) holds? This turns out to be the case, and in the 

second part of this paper, consisting of sects. 5-7, such an approximation is 
presented, together with numerical results in sect. 8, for comparison with those from 
sects. 3 and 4 and refs. [1, 2]. 

2. Eigenvalue problem 

With the standard decomposition for bound states of the lowest angular momen- 
tum [1-4], the eigenvalue problem 

Hq, = E4, (2.1) 

reduces to two coupled ordinary differential equations: 

-~o = A - B - F ,  

-~0 = A + B -  G ,  (2.2) 

where t), B, F and G are defined in refs. [1-4]. Let S(#)  and T ( p )  be the sum and 
difference of F and G: 

S = F + G ,  

T = F -  G, (2.3) 
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then 

-~0 - A + = - B T ,  

d 1 
) T = BS .  (2.4) (T$0 +A - p2 I 

ThUS S ( p )  and T ( p )  each satisfy a second-order ordinary differential equation with 
irregular singularities at 0 and 00: 

_ A2 _ B 2 _  2__A.A + + S = 0,  (2.5) p2 

dp2 - p: p3 + T = 0. (2.6) 

These are the equations to be treated here. 

3. WKB approximation: wave function between turning points 

Under the assumption (1.4) of large A, (2.5) and (2.6) may be solved by the WKB 
approximation. By (2.4), it is sufficient to solve one of these two equations; we 
choose to solve (2.6). 

It is clear that the important scale for p is A -z/2. Accordingly, let 

p = ~'A -1/2 (3.1) 

In terms of the variable ~, the differential equation (2.6) is 

_ [ (  1) d 2 T +  A - 1 +  + +A z/2 T = 0  (3.2) 
dr2 ~ r2 ~4 " 

It is the presence of the last term that makes it necessary to modify slightly the 
standard WKB procedure. The function T is oscillatory in the range 

o r  

B 2 2 1 
- 1  + ~ + ,2  ,4  > 0,  (3.3) 

-lj   34, 
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where we have chosen, without loss of generality, B to be positive. (From (2.2), 
negative values of B can be covered by interchanging F and G.) In this range (3.4), 
the WKB approximation to T is 

where 

T = To(r)e 'A''*(,) + c.c., (3.5) 

B 2 2 1 )~/2 
~(r)= f d r  -1  + ~ + 7 - 7 (3.6) 

In order to determine T0(r), (3.5) is substituted into (3.2), and the sum of the 
resulting terms of order A ~/2 is equated to zero. This gives the first-order equation 
for To(r): 

~ " ( r )T 0 ( r  ) + 2~ ' ( r )To ' ( r )  - 2! T0(r ) = 0. (3.7) 
r 3 

Therefore 

-~/2 [.r dr ] 
T0(r)  = [4¢(r)] exp[t J r3~,(r ) 

=cons, I~',~l :([ (1 .1)11,2+ [ ~ _ l  1,2) 
A r 2 i 1 + A r 2 

([( . 1)],.[ . 1],J, 
= c o n s t  - 1 A r 2 1 +  ~ - -  r-- S 

+ i  [ -  (1 B r2) ] -1 /4[1  A 1  + B ~_2 ]1/4} . 1  (3.8) 

The required WKB solution then follows from (2.3), (2.4) and (3.8): 

[ 1-'"[ 
1 1/4 

xexp / iA  / d r  - 1  + + +c .c .  
L ,(l_B2/A2)-,,, ~ 7 2 ~" ' 

G = i C  - A - B -  7 A + B -  

Xexp iA1/2f  A~/2° d r  - 1  + + - -  - - -  +c .c .  (3.9) 
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Here C is a complex coefficient, and we have chosen the phase of F to be zero at the 
geometric average of the two turning points. 

The phase of this complex coefficient can be determined by the following 
symmetry [21: 

p --* ( A  2 - B z) - z /~O- '  ' 

[ A  q- n ~  1/4 
F--* + ~-~--L--~ ) G, 

[ A - B \1/4 
G -'* + ~ ~ )  F. (3.10) 

It follows from (3.9) and (3.10) that 

o r  

iC = + C * ,  

C = Ne 7:.r/4 

where N is the real normalization constant. 
The normnlization is determined by 

o °c dp ( F 2 + G 2) = M/A, 

which may bc approximated by 

f((A-B)-~/2dp ( F  2 + G2 ) = M / A .  
A + B)-I/2 

The substitution of (3.9) into (3.14) then gives 

I[/ 1)]1:[ 111:2 
2N2 f (A-B) - t /2dp  - A - B -  A + B -  

"(A+B) -~/2 ~ 

o r  

(3.11) 

(3.12) 

(3.13) 

(3.14) 

; ] : /  + - B - + B - 1 = M / A  (3.15) 

A B  [ ( A - B V W  2 ] 
N= ½ --M-J(A+s)-w2 dOp2{[I-(A-B)o2][(A + B)p2-1]}-z/2 -,/2 

(3.16) 
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AS we shall see in sect. 4, the integral can be expressed by an elliptic integral of the 
second kind. 

4. WKB approximation: Wilson-Sommerfeld quantization 

is large, the binding energy can be determined approximately by the When A 
Wilson-Sommerfeld quantization condition [5] 

A 1 / 2 { d ? [ ( a - y ) - l / 2 ] - ~ [ ( 1  + y ) - X / 2 ] } = n ~ r ,  (4.1) 

where q) is defined by (3.6) and 

y = B / A .  (4.2) 

It should be noted that the right-hand side here is n~r, not the usual (n + ½)~r. 
This shift of a half is related to the presence of the sub-asymptotic terms 2 / 0  3 in eqs. 
(2.5) and (2.6), and to the boundary conditions. We can see this by considering the 
WKB approximations to eqs. (2.5) and (2.6): 

A 1/2 [q,s(~sl) - q)s(rs2)] = (n s + ½)~r, (4.3) 

A1/214~r( , r l  ) -- q)r(~r2)] = ( n r  + ½ )~r, (4.4) 

where 

d r  + ," 

( B2 2 2 1 )  1/2 
q ) r ( r ) - - / d r  - l + - ~ + - - + r 2  r3Al/2 r"  . (4.6) 

In (4.3) and (4.4), rSl and rsz are the larger and smaller positive zeroes of the 
integrand in (4.5), while rrl and rr2 are those in (4.6). Since 2 / r3A  ~/2 is a 
higher-order term in the integrands, q) is given to leading order by 

q~(1-) = ½ [q)s(l-) + q)r(~-)]. (4.7) 

We recall that the presence of the half on the right-hand sides of (4.3) and (4.4) is 
due to the fact that [q)~(r)]2 and [q)'r(r)] 2 vanish linearly at the turning points. 

The point now is that 

n r =  n s + 1 (modulo 2), (4.8) 

as can be seen from the boundary conditions: an analysis of eq. (2.4) for small 0 
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shows that 

S ½Bp2 ' (4.9) 
T p ~ 0  

i.e., with B > 0, S and T have for small P opposite signs. A corresponding analysis 
of eq. (2.4) for large p shows that 

S I I A _ ~  ] 
T p - - . ~ B  

(4.10) 

Thus, with A and B positive, S and T will for large P have the same sign. It follows 
from these results (4.9) and (4.10) that if S has an even number of zeros, then T has 
an odd number of zeros and vice versa. This proves eq. (4.8). 

Eqs. (4.7) and (4.8) give immediately the desired result (4.1), with no half on the 
right-hand side. 

By (3.6), (4.1) is 

where 

A1/21( y ) = n~r, (4.11) 

I ( y ) =  (O-Y)-'/2dT[-(1-y-~'-2)(1 + y - z - 2 ) ]  1/2. 
"I(1 + y ) -  ~/2 

(4.12) 

The task here is to evaluate this integral. 
This integral can be expressed in terms of complete elliptic integrals of the first 

and second kinds. The answer can be obtained in a number of different ways. For 
example, one way is to recognize that the right-hand side of (4.12) is a special case of 
the hypergeometric function, and then to reduce this special case to elliptic integrals. 
Here we prefer to follow a more elementary procedure. 

The first step is to take out a factor r -2 SO that the square root is that of a 
fourth-order polynomial in ,r. Integrating f d r r  -2 by parts so that the square root 
appears in the denominator, we get 

where 

l ( y )  = 2(1 + y ) - 1 / 2 K ( k )  + l l (Y) ,  (4.13) 

= , (4.14) 

K ( k )  is the complete elliptic integral of the first kind, and 

=-(a-y2)lJ2f d,,2([(1-y)1-,21 +y)-l] }-l:. (4.15) 
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with the contour C around the branch cut from (1 +y)-1 /2  to (1 _y ) - l /2  in the 
clockwise direction. Deformation of this contour to the imaginary axis gives an 
alternative form for ll: 

I i ( y ) =  ( 1 - y 2 ) l / 2 f _  i d t  ( t 2 l ( 1 - y ) - ' +  t 2]-1/2[(1 + y ) - I  + t2 ] -1 /2_  1}, 

(4.16) 

where the last term comes from the semicircle at large distances in the complex 
plane. The change of variable 

then yields 

where 

t =  (1 +y ) - l / 2 t an0  (4.17) 

ll(y ) = -2(1  - y ) ( 1  + y)-l/2K(k ) + I2(y) ,  (4.18) 

,~,y, :,1 y , , ~ r  ~ .~,~ ~ s ~ [ t  ~ y , ~,11'~,~ ~,in~O, 1~ . ~] ,419~ 

Another integration by parts gives 

I2(y)  = - 2 y ( 1 - y ) ( a  + y)-3/2ff'/22dSsin2O(a-j_,~/k2sin2O) - 3 / 2 .  (4.20) 

This integral on the right-hand side of (4.20) is recognized as the derivative of K(k). 
Since this derivative can be expressed in terms of the complete elliptic integrals 
K(k) and E(k),  the final answer for l(y) is a linear combination of these two 
integrals: 

I(y) = 2(1 + y)-l/2[ K( k )-(1 + y)E( k )] . (4.21) 

Therefore, for large positive A, the energy E n of the n + 1 bound state is given 
approximately by the transcendental equation 

L , v ~ )  t ~ t~( ~ ~ - ~  1 V M + E  n ] ]=nf r "  (4.22) 

This result can be rewritten in a number of equivalent ways using the transformation 
properties of the complete elliptic integrals. 

It also follows from (3.16), (4.12), (4.13), (4.15) and (4.21) that the normalization 
N is given by 

N =  ~ [A1/2(1 +y)-l/2y(1 -y)- lM-1E(k)]-1/2 (4.23) 
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where y and k are given by (4.2) and (4.14). 

5. Covering approximation: wave function 

In this second part of the paper, we present an approximation that covers both the 
weak-binding case [2] and the WKB case of the first part. In the absence of an 
obvious name, we shall call it the covering approximation. However, it should be 
immediately obvious that the procedure is far from being unique, and many similar 
but distinct methods can be devised. 

Because of the inversion symmetry [2] of the differential equations (2.2), it is 
sufficient to consider the region 

O ) ( A2 -- B2) -1/4. (5.1) 

In the limit of weak binding with A not too large 

A - B  
• ,*: 1, A --- O(1), (5.2) 

(2.2) can be approximated by 

, 4 - B -  /, 

d r_  
d--~ - 2 B g .  (5.3) 

The reason for using the coefficient 2B in the second equation, instead of A + B or 
2A, is the desire to keep this coefficient the same as that for G in (2.2) at the turning 
point p = (A - B)-1/2. In the weak-binding approximation 

p -- 71, (5.4) 

F (p )  = f ( ~ ) ,  (5.5a) 

c ( o ) = g ( n ) .  (5.5b) 

The covering approximation consists of modifying (5.4) and (5.5) such that they are 
valid when either (5.2) or (1.4) holds. 

A most straightforward way of achieving this modification is to compare the 
WKB approximations to (2.2) and (5.3). For this purpose, (3.9) is not convenient. 
Instead, let ~1 and ~2 be the WKB phases (see the appendix) 

Ol(P) = fo (A -s ) -"ado'  [( - A  + B + p ' -2 ) (A  + B - 0'-2)] 1/2, (5.6) 

~2(r/) = f(A-s)-W2d~l' [ ( - A  + B + . ' - z ) (2B)]  1/z (5.7) "n 
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Let us relate p and rl by 

~ (P )  = ~:(~). (5.8) 

This is the generalization of (5.4). With (5.8), it is seen from (3.9) that the two WKB 
approximations differ only by the amplitude factors. Therefore the covering ap- 
proximation is, omitting an overall constant factor, 

r0(p) 
F(p)  fo(rl) f ( r l ) ,  

Co(O) 
G(p) = go(rl ) g ( n ) ,  (5.9) 

where 

r0(p)  = 

fo (n)  = 

A + B _ p _  2 )1/4 
--A- +- B- 

2B )1/4 

- - A + B + ~  -2  

Co(O)=iFo(O)-', 

go(n)= i /o (n )  -x (5.10) 

This approximation (5.9) reduces to (5.5) in the weak-binding limit, and to the WKB 
solution when A is large. 

For completeness we write down explicitly f(rl) and g(rl) from (5.3): 

where 

Note that 

/(,I) = z~:l%( z ), 

(A -S]':d I 
g(~)=\ 2B ] dzt zl/zK''(z)]' (5.11) 

: = [ 2 5 ( / -  B ) ] ' / : ~ ,  (5.12) 

p -- (2B  - ¼)~/:. (5.13) 

F ( p ) -  f ( r / ) ,  G(p)  = g.('q), 

at the turning point p = ~i = ( A  - B )  -1 /2 .  

(5.14) 
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6. Covering approximation: Bessel function 

In studying the energy levels in the weak-binding approximation, the series 
expansion of Kip(z) is used [2, 4]. Since the present approximation holds when either 
(5.2) or (1.4) applies, it is necessary to use an appropriate formula for K,p(z) that 
holds when 

z a~ 1, (6.1) 

and when 

p > z :~ 1. (6.2) 

In this section, we obtain this required formula since it does not seem to be available 
in the literature. 

When (6.1) holds, then [6] 

K, , (z l -  2s~--~p) [F(l_ip ) c . c . ,  

whereas when (6.2) holds, one has [6] 

K,p(z) -- 2ff~e-~P"(p2-z2)-'/4sin[pcosh-l( P ) - (p2-z2) l /2+ ~r]. 

(6.3) 

(6.4) 

For the present purpose, however, this form (6.4) is not convenient. The reason is 
that, in the WKB approximation, as seen from (5.7) or more explicitly (A.7), it is 
necessary to use 

p, = (2B)1/2 __ ( p2 + ~)1/2 (6.5) 

instead of p. Therefore, instead of (6.4), we shall use the alternative, equivalent 
asymptotic expansion 

Kip(z)-- 2¢~e- lPn(p '2-z2) - l /4s in[p 'cosh- l (~) - (p '2-z2) l /2+~,r  1. 

(6.6) 

Note the similarity between the amplitude (p,2 _ z2) - i/4 and the f0(rl) of (5.10). 
In the covering approximation, a formula is needed for the Bessel function K,p(z) 

that reduces to (6.3) when (6.1) is satisfied, and to (6.6) when (6.2) holds. This is 
accomplished by the ansatz 

Kip(z) -- ~r(p '2-  z2)-l/4sin[ P ~r(p',z) + p, (6.7) 
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~K(p',z)=p'cosh-l(P---z)-(p'2-z2) 1/2. (6.8) 

It will be seen in sect. 7 that (6.7) has precisely the required form. 
Clearly, ~x  has to satisfy 

~K -~ 2V/~- e- ~P~ for p >> 1. (6.9) 

It is uniquely determined by a comparison with eq. (6.3), the right-hand side of 
which we rewrite as 

~r 1 s i n [ - p  ln(½z) + argY(1 + ip)] .  (6.10) 
sinh~rp) [ F ( 1 -  ip)[ 

Evaluating now (6.7) for z << p, and comparing with (6.10), we find 

~x--- sinhf~rp ) (6.11) 

where we have also used 

7rp ]1/2. 

[F(1 - ip)[ = sinh-(-~rp) (6.12) 

p l n 2 P '  _ p  + ~x-  (6.13) 
g 

Comparing with (6.10), we find 

¢b x -- arg F(1 + ip ) - p In p'  + p.  (6.14) 

As p ~ oo, this approaches ~r, in agreement with (6.6). The desired approximation 
to the Bessel function is thus 

K,p(z)= sinh(~rp) - z 2 ) - l / '  

xsin[pcosh-l(P---~)-~(p'2-z2)l/2+argF(l+ip)-plnp'+p], 

(6.15) 

The expression (6.11) is seen to be consistent with (6.9). 
In order to determine the phase q~g, we expand the argument of the sine in (6.7) 

for z << p. This gives 
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valid when either (6.1) or (6.2) is satisfied. 
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7. Coveting approximation: energy levels 

The energy eigenvalues can for example be determined 

symmetry [21 

F (~ )  = ( - 1)"+ ' (  A + B ] l / ' G ( p )  
~ T z - - g :  , 

using the inversion 

(7.1) 

where p and ff are two points whose geometric mean is the symmetry point, p~: 

= p~ = (A  2 - B2) - l / z ,  (7.2) 

and with n labelling the levels. 
The way we determine the energy is to compare two expressions for F(p),  one 

obtained directly from (5.9), and one from (7.1). From eqs. (5.9)-(5.11) and (6.7), we 
have 

We note that this expression, because of the approximation used for the Bessel 
function, is not valid around the turning point, p --- (A - B)-1/2. On the other hand, 
we shall see that it is crucial for an accurate determination of the energy that the 
radial variable p (or 71) appears only in F0(p) and in the argument of the sine. This 
has been achieved through the introduction of p '  in sect. 6. 

We next turn to the evaluation of G(p)  in the matching region. From (5.9)-(5.11) 
and (6.7), we have 

G(p)  = Fo(p) ~" 

(7.4) 

The differentiation yields 

: - , : (p, : -  :)-'/'(+ + : 

2(p'2- :) p' 

× ~exp[~,¢(p', z) + ~,,] + c.c. (7.5) 
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The second term, which arises from differentiating the factor (p,2 _ z 2)-t/4, is small 
in either limit, (5.2) or (1.4). We therefore neglect it. The expression (7.5) can then be 
rewritten as 

Z_I/2(pt2 z2) I /4LI  1 p" 
p' t 2 ]p '2-z2 

i /lexp[f  'P' 
(7.6) 

Here, the factor p'/~pt2 _ _  Z 2 that appears in the curly bracket can be approximated 
by one. In the limit of weak binding, z 2 << p,2, whereas in the limit (1.4), the second 
term, - ip, dominates anyway. With* 

e_,q,~ = ½ - ip , (7.7) 
p' 

the expression (7.5) can then be written 

z- l/2( p'2 - z2 )'/'sin[ ~ ~x ( p', z ) + dPx- ~p s) , (7.8) 

and thus 

. [ A - B ~  ~/4. [ p , ~/2rl ] 1 ~ x ~ ) s t n [ - - p ~ . ~ x I P ' , [ 2 B ( A - B ) ]  ) + ~ x - ~ n  G(O)-  Fo(P ) 

(7.9) 

where 

z =  [2B(A - B)]I/2TI, ~,= [2B(A - -  B ) ] l / 2 ~ ,  (7.12) 

and with ~ related to ~ through (5.8). Comparing the right-hand sides of eqs. (7.10) 
and (7.11) we shall obtain an equation for the eigenvalue B. 

, Note that 4'n is real because of (6.5). 

By the inversion symmetry, eq. (7.1), we have 

F ( ~ ) = ( _ l ) , + l  1 - [ A + B ~ t / '  [P~  ' z ) + ~ r  ~Pz] (7.10) s'n[7  tP', - , 

whereas evaluating (7.3) at ~, we get 

[ A - B ~  ~/4. [ p ] 
F ( ~ ) - - F o ( ~ ) ~ r t ~ )  s t n [ ; . q r ( p ' , ~ , ) + ~  x ,]  (7.11) 
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Since (of. eqs. (5.10) and (7.2)) 

[ A + B~ I/4 
F ° ( p ) F ° ( P )  = ~ A ~ - ' - B I  ' 

we are left with the phase matching condition 

zl 

which we rewrite as 

+o. 1 
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(7.13) 

(7.14) 

and (7.15) can be written as 

P---- @WKB + 2q~x - Lks = n~r. (7.18) 
p' 

The matching condition is thus independent of p. This has been achieved through 
the introduction of p' in the approximation to the Bessel function in sect. 6, and 
through the approximations involved in getting from (7.5) to (7.8). 

Eq. (7.18) determines the energy in the covering approximation. All quantities on 
the left-hand side depend on B. Written out explicitly, B is determined by 

2 B -  ¼ 1/2A1/2 ( A 

+2[argF(1 + i ~ / ~ ) -  ¢~B---~ In 2¢~B + ~2B-¼1 

_ t a n - 1  (7.19) 

When A becomes large, the left-hand side approaches ~WKB, and (7.18) or (7.19) 
reduces to (4.22). Similarly, when B is close to A, we can expand the elliptic 
integrals and thus recover the weak-binding approximation of ref. [2]. 

(7.17) ~(p , ,  z) +.~(p',  e) = ~(~,)+ ~l(~)= ~wKB, 

Further, using eqs. (5.8) and (A.13), we get 

P- (7.15) p, [~K(p',z)+ ~K(p', ~)1 + 2~- ~. =.~. 

By construction, the phase function ~K(P', z) is related to ~2(~) (cf. eqs. (5.12), 
(6.8) and (A.7)): 

~x (P', z) = ~2 (rt). (7.16) 
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TABLE 1 

B i n d i n g  ene rg ie s  ( E ~ M ) / M  ver sus  A = ~ I q [ ~ 

A M e t h o d  n = 1 n -  2 n ffi 3 n = 4 n = 5 

0.5 E x a c t  4 .8697 - 10 '* 3 .4447 • 1 0 -  7 2.4337 • 1 0 - 1 0  

W B A  4 .8757 - 10 - 4  3.4447 - 10 7 2 .4336 - 1 0 -  m 1.7193 • 10 l~ 1.2147 • 10 -16  

W K B  1 . 0 9 3 9 . 1 0  -3  2 .0439 • 10 - 6  3 .8169 • 10 9 

C A  4 .8715 • 10 - 4  3 . 4 4 4 7 . 1 0  7 2 .4336 • 1 0 -  m 

1.0 E x a c t  5 . 4 8 8 2 . 1 0 - 3  4 . 7 7 5 7 . 1 0  s 4 .1337 • 10 - 7  3 .5777-  10 - 9  3 . 0 9 6 4 . 1 0  - H  

W B A  5.5186 • 10 - 3  4 .7762 • 10 s 4 .1337 • 10 - 7  3.5777 - 10 9 3 .0964-  1 0 -  H 

W K B  6.8793 • 10 3 8.1078 • 10 - 5  9 .5370 -  10 -7 1.1217 • 1 0  8 

C A  5 .4994-  1 0  3 4 . 7 7 5 9 . 1 0 - s  4 .1337 • 10 7 3.5777 • 10 - 9  

2.0 

5.0 

10.0 

20 .0  

50 .0  

100.0  

E x a c t  2 . 3 6 1 0 . 1 0  2 9 . 2 8 1 4 . 1 0  4 3 .6214 • 10 -5  1.4118 • 10 - 6  5.5038 • 10 8 

W B A  2.3831 • 10 - 2  9 .2902 • 10 - 4  3 .6216 • 1 0  5 1.4118 - 10 - 6  5.5038 • 10. ~ 

W K B  2.5239 • 1 0 -  2 1.0939 • 1 0 -  -~ 4 .7296 • 1 0 -  5 2 .0439 - 10 6 8.83 • 1 0 -  s 

C A  2 . 3 6 9 8 . 1 0  - 2  9 . 2 8 3 7 . 1 0  4 3 . 6 2 1 5 . 1 0  -5  1 . 4 1 1 8 . 1 0  6 5 . 5 0 3 8 . 1 0  -8  

E x a c t  7 .9322 • 1 0 -  2 1 .0610-  1 0  2 1.4227 - 10 - 3 1.9036 • 10 4 2.5453 • 10 5 

W B A  7 .9680-  10 - 2  1 .0652-  10 2 1.4241 • 10 -3  1.9039 - 1 0  4 2 .5454 -  1 0  s 

W K B  8 . 0 4 5 4 . 1 0 - 2  1 . 0 9 9 0 . 1 0  2 1 . 5 0 9 8 . 1 0 - 3  2.0715 • 10 4 2 .8407 - 1 0 - 5  

C A  7 .9638 -  10 - 2  1 . 0 6 1 9 . 1 0  2 1 . 4 2 3 0 . 1 0  -3  1 . 9 0 3 6 . 1 0  4 2 . 5 4 5 3 . 1 0  -5  

E x a c t  1.4522 • 1 0 -  l 3 .4786 • 1 0 - 2  8 . 4 7 7 8 . 1 0 - 3  2 .0656 • 10 3 5.0275 • 1 0 - 4  

W B A  1.4374 • 10 - l 3 .4960-  1 0 -  2 8.5026 • 10 3 2 .0679 • 10 -  3 5 .0294-  1 0 -  4 

W K B  1 . 4 5 8 9 - 1 0  1 3 . 5 1 6 9 . 1 0 - 2  8 . 6 3 8 4 - 1 0  3 2 . 1 2 2 7 . 1 0 - 3  5 . 2 1 1 9 . 1 0 - 4  

C A  1 .4569-  1 0 - t  3 .4824-  1 0 - 2  8 .4809-  1 0 - 3  2 . 0 6 5 8 . 1 0 - 3  5 . 0 2 7 7 . 1 0 - 4  

E x a c t  2 .2492 • 1 0  i 8 . 0 1 7 4 . 1 0 - 2  2 .9480 • 1 0 - 2  1.0895 • 1 0 - 2  4 .0274 • 1 0 - 3  

W B A  2 . 1 7 2 6 . 1 0  -1 8 . 0 1 9 9 - 1 0  2 2 . 9 6 0 5 . 1 0 . - 2  1 . 0 9 2 8 . 1 0  2 4 . 0 3 4 1 . 1 0 - 3  

W K B  2.2527 - 1 0 -  l 8 . 0 4 5 4 . 1 0  2 2 . 9 6 5 4 . 1 0  2 1 . 0 9 9 0 . 1 0  2 4 .0743 • 1 0  3 

C A  2.2545 • 10 i 8 .0256 • 1 0 -  2 2 .9494-  10- 2 1.0898 • 10 2 4 .0278 - 1 0  3 

E x a c t  3 .3857 • 1 0 -  l 1.7016 - 1 0 -  l 8 .9098 • 1 0  2 4 .7258 • 10 2 

W B A  3 . 1 2 9 5 . 1 0 - 1  1.6683 • 1 0 - 1  8 . 8 9 2 9 . 1 0  2 4 .7405 • 10 2 

W K B  3.3871 . 1 0 -  l 1 . 7 0 3 0 . 1 0  I 8 .9214 • 10- 2 4 .7347 - 10 2 

C A  3 . 3 9 0 5 . 1 0  1 1.7029 • 10- i 8 .9138 • 10 - 2  4.7271 • 10- 2 

E x a c t  4 . 2 2 9 9 . 1 0 - 1  2 . 5 2 4 4 . 1 0 -  1 1 . 5 7 1 8 . 1 0 - 1  9 . 9 4 8 9 . 1 0 - 2  

W B A  3.7606 • 1 0 -  l 2 . 4 1 1 0 . 1 0  - l 1 .5457 • 1 0  i 9 .9093 • 1 0 -  2 

W K B  4.2305 • 1 0 -  l 2.5251 - 1 0 -  t 1.5725 • 10 1 9 .9550 • 1 0 -  2 

C A  4 .2338 • 10- i 2 .5257 • 10- i 1 .5724 • 1 0 -  l 9 . 9 5 1 4 . 1 0 - 2  

2 .5175 • 10 - 2  

2 . 5 2 7 0 . 1 0  2 

2 .5239 10 2 

2 .5180 10 2 

6 .3440 10 2 

6 .3529 10 - 2  

6 .3490 10 - 2  

6.3451 10 2 

E x a c t :  n u m e r i c a l  

a n d  4 o f  th i s  p a p e r ;  

( S o m e  e n t r i e s  are  

r e su l t s  o f  p a p e r  I [3]; W B A :  w e a k - b i n d i n g  a p p r o x i m a t i o n  o f  ref. [2]; W K B :  sects. 3 

C A :  c o v e r i n g  a p p r o x i m a t i o n ,  sects. 5 - 7  o f  th i s  pape r .  

le f t  b l a n k  be c a us e  o f  l i m i t e d  c o m p u t e r  accuracy . )  
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8. Numerical results and discussion 

Some numerical results for the binding energy are given in table 1. For a set of 
A-values ranging from 0.5 to 100, we compare the accurate results of paper I [3] and 
those of the weak-binding approximation [2] with those of the WKB method (first 
part of this paper) and with those of the covering approximation (second part of this 
paper). Five levels are considered, n = 1 to 5. 

For large values of A, where the WKB method applies, it gives excellent results. 
They are best for the most strongly bound states. (It is amusing to note that the 
zero-energy level (n = 0) is exactly given by the WKB result.) We note that our 
analytic result for the WKB limit differs from that of ref. [1]. 

The results of the coveting approximation are generally excellent for all A. When 
the binding is weak, they are comparable with, or even better than the results of the 
weak-binding approximation. Likewise, when A is large, they are comparable with 
the results of the WKB method. 

The basic idea of the covering approximation is to obtain a result that is valid 
under two or more distinct circumstances. In spirit it is related to the uniform 
approximation of Langer [7]. It may have important applications in many branches 
of physics, and should be explored systematically. 

We would like to thank Professor Chen Ning Yang for many helpful discussions. 
One of us (T.T.W.) is grateful to Professor Fritz Gutbrod, Professor Hans Joos, 
Professor Paul S6ding and Professor Volker Soergel for their kind hospitality at 
DESY. 

Appendix 

THE PHASE INTEGRALS ~l(P) AND ~2(~) 

For an evaluation of the wave function in the covering approximation, one needs 
the explicit phase integrals ~i and ~2 defined by eqs. (5.6) and (5.7). 

Integrating by parts, we find 

~l(P) = 1 { [ _ ( A  - B ) p  2 + 1] [(A + B ) p  2 -  1]} 1/2 
F '  

+ 2A  fp(A - s)-'/2 do' 

{ [ - ( A  - B)0, 2 + 1][(A + B)0, 2 -  1]} 1/2 

_ 2(A2 _ B2 ) fp(A - a)-'/2 0 ,2 do' 
{ [ - ( A  - a ) 0 ,  2 + 1][(A + B)0, 2 -  1]} 1/2" 

(A.1) 
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The two remaining integrals can 
integrals. With 
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be expressed in terms of incomplete 

we find [8] 

2B )1/2, 

1 [ 1 - ( A - B ) o Z ]  sin20 = ~ 

elliptic 

(A.2) 

( n . 3 )  

1 ]I[(A +B)o  2 11} '/2  l(p) = - B ) p  2 + 

where F and E are incomplete elliptic integrals of the first and second kind, 
respectively. 

The integral ~2 is elementary. With a suitable change of variable, t = 
[1  - ( A - B)~'21 ~/2, we immediately get 

(2B),/2[½1 n 1 + tma x 
~2(n) [ 1 - t m ~  x 

where 

tmax= [ 1 - ( A  - B)712] 1/2. 

Alternatively, we can write (A.5) as 

tma~] , (A.5) 

(A.6) 

~2 (rl) = (2B)l/2{cosh_ 1 ( 1 _ 7r~_Z__~ ) [ 1 - (  A - B)~2] l /2  ) . (A.7) 

Expanding the elliptic integrals for small values of 0, we find 

.~l = ~ / B  ( A - B )3/ax 3/2 + O(x5/2), (A.8) 

where 
x = ( a  - B )  - ' / 2 -  p > 0. (A.9) 

Similarly, 

.~2 = ~vi-n ( A -- B )  3/4y3/2 + O(y5/2) '  (A.10) 

with 
y = ( A  B )  -1/2 - - 71 > 0 .  ( A . 1 1 )  

Near the turning point, the condition (5.8) thus reduces to (5.4), as it should. 
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Finally, we quote two useful properties of 51 that can be shown using properties 
of the elliptic integrals. 

(i) At the symmetry point, Ps = ( A2 - B2) -1/4, 

 1(pS) A1/2 [ ( ) 1/2 - -  (A.12) 

where K and E are complete elliptic integrals of the first and second kind, 
respectively. 

(ii) The sum of the phase functions ~1 at two points p and ~ related by the 
inversion symmetry (7.2) is a constant: 

~I(P) + ~1(P) = 2~l(Ps) = A x / 2 I ( B / A )  -- ~wr.a, (A.13) 

where I is defined by eq. (4.21). 
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