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In the first part of the paper, we give analytic, approximate results for dyon-fermion binding
energies and wave functions, valid for large values of 4 = } Z|eg|x, wherc « is the extra magnetic
moment. In the second part, more general results are obtained for the same problem that are valid
when either A is large or the binding is weak. Numerical results for the binding energy are
tabulated and compared. The case of very strong binding is also discussed.

1. Introduction

In an earlier paper (paper I) {1], we investigated some properties of the dyon-ferm-
ion bound system, as described by the hamiltonian [2]

_ _ _§ _xqBo-r
H=a-(p— Zed)+ M p VRN (1.1)

where the notation is that of refs. [1,2]. The numerical method given in [1] yields
highly accurate results.

Since it is also useful to have formulas that are approximate but more explicit, the
limit of weak binding

M-E<M, (1.2)

has been investigated in paper 1l [3]. The results there were derived under the
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assumption that A is neither small nor large:

’A+%—)=O(1), (1.3)

where

A = jk|q|. (14)

For the monopole problem ({ = 0), approximate, explicit results have also been
obtained in paper 111 [4] for a different limiting case, namely, that of large 4. In the
first part of the present paper (sects. 3 and 4) on the WKB approximation, we shall
generalize these results of paper III to the case of the dyon. Furthermore, in the
second part (sects. 5—7) we construct a covering approximation [4] which is valid in
both cases, i.e., when either (1.2) holds or when A is large. Indeed, the structure of
this paper is very similar to that of paper IIL

2. Eigenvalue problem

With the Kazama-Yang decomposition [5] of the bound-state wave functions for
states of minimum angular momentum j = |g| — 1, the eigenvalue problem

Hy=Ey (2.1)

leads to the following coupled differential equations for the radial functions:

dG ¢ 1

& _(4-B-2-2|F,

dp ( P pz)

dF Eo1

S _|a+B+2 -G, 2.
de ( P pz) 22)

where the notation is still that of ref. [1]. In particular, B is the eigenvalue parameter
B=AE/M. (2.3)

These are the differential equations to be treated here.
Eq. (2.2) is invariant under

FoG, B--B, {--¢. (2.4)

In this paper, unless explicitly stated otherwise, we shall assume 4 > 0, so that { = ¢{.
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3. WKB approximation: wave function between turning points

The WKB treatment of the radial equations is somewhat different for the present
dyon case as compared with the monopole case of paper III. There are two reasons
for this difference. First, we have not been able to obtain for the dyon a second-order
differential equation with only singularities at p=0 and p = c0. Thus it is more
natural to investigate directly the coupled first-order equations (2.2). Secondly, even
for the monopole, the WKB approximations for F and G, as given by (3.9) in 111, are
simpler than that of 7= F — G, as given by (3.8) in III. This is another indication
that the second-order equation is less natural.

With the variable 7 defined by

T=pAY?, (3.1)
(2.2) are
46 _ pnf,_,_§_1
dr =4 (1 Y T 2 F,
dF _ ., ¢ 1
E=A 1+y+;—; G, (3.2)
where
y=B/A, (3.3)
§=¢/Va. (34)

From (3.2), the turning points are determined by the roots of the quadratic
equations

1-y~2>-—==0, (3.5)

§ 1 _
1+y+ 7_?_0' (3.6)

Since |y| <1, each of these two quadratic equations has one positive and one
negative root. Explicitly, the roots of (3.5) are

a=2(-¢+[E+41-»)]"") >0, (37)

d=2{-§-[8+40 -]} " <o, (3.8)
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whereas those of (3.6) are
b=2{E+[8+a1+2)]7) >0, (3.9)

c=2{¢-[82 4401+ <0. (3.10)

Note that a=b if and only if y= —§, and ¢ =4 if and only if y={.
By the symmetry (2.4), it is sufficient to consider the case

y=-¢. (3.11)
When y > —¢, the ordering of the four roots is as follows:
a>b>0>c>d ify>¢, (3.12)
a>b>0>d>c if y<¢. (3.13)
In both cases, the wave functions F and G are oscillatory for
b<r<a. (3.14)

In the range (3.14), the WKB approximation to F and G is

F=Fy(1)e*Mtcc.,

G=Gy(r)er M+ cc., (3.15)
where
2482 1\
¢(7)=/d'r —1+y2+2y§+——‘r—2§——p . (3.16)

The amplitudes F,(7) and G,(7) can be determined in a similar way as in paper III:
We substitute (3.15) into (3.2) and demand that terms of order 4'/? vanish. We are
thus led to the equations

Go(7) =iv(r) Fy(7), (3.17)

V(1) 5= Fo(7)+ = [1(7) Fy(7)] =0, (3.18)

where

—1+y+f/'r+1/-r2 e

1+y+¢/r—1/72

y(r)= (3.19)
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Solving (3.18) and substituting for y(r), we find

Fy(r)=Cy(r)™"”

1/4
+y+§/1—1/7°
| Ayl . (3.20)
~“1+y+§/r+1/+2
The phase of C (up to nw) is determined by the boundary condition that

as 7 — oo. Approximation through the Airy integral then gives

—1/4 1/4
F=C[—(A—B—£—l)] (A+B+£—l)

P pZ P p2
2 1 \\2
><exp[AV2 (—1+y2+27y$€+2j—f—3) +c.c.,
1/4 -1/4
6=ic|-(a-5- L= L)["[uvse Lo 1]
p p p p

2 1/2
Xexp[iAl/zfAl/zpdT(_l +y2+ 2T~y§ + 2_4-{_ — L) ]+C.C., (322)

72 7'4
with
C=|Cle"*. (3.23)
The normalization condition is
[0 (F1P+1617) = My, (3.24)
which we approximate as
/;/z dp (|FI2+|G)2) = M/A. (3.25)

Substituting (3.22) into (3.25), we find

1,2 1,2
2 [A%a f4q4_pg_8_1 §_1
2IC] Lmhdp{[ (A B- pz)] (A+B+p "

1/2 -1/2
el -{amm- S L) [avne £ 2) )
P p P p

=M/A, (3.26)
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or

AB (47 (0*+$o/B)dp e

™M 02 {[1+§p_(A_B)p2][(A+B)p2+§P—1]}1/2

ICl=14

(3.27)
4. WKB approximation: Wilson-Sommerfeld quantization

Similar to the monopole case [4], when A is large, the binding energy can be
determined approximately by the Wilson-Sommerfeld quantization condition [6]

A2 [¢(a)—¢(b)] = n=. (4.1)

When A is positive, the right-hand side of (4.1) is n# for the reason already
discussed in paper IIL

In the general dyon-fermion case, there are two distinct possibilities. Let X,(p)
and K,(p) denote the two factors appearing on the right-hand sides of (2.2):

{ 1

Kl(P)=A—B—;—§, (4.2)
¢ 1

Kz(p)=A+B+;—-p—2. (4.3)

The two possibilities are:

(i) K, vanishes at one turning point, while X, vanishes at the other. Then the
right-hand side of the Wilson-Sommerfeld quantization condition is n#, as given by
4.1).

(ii) X, or K, vanishes at both turning points. Then the right-hand side of the
Wilson-Sommerfeld quantization condition is (n + 3)=. Since p > 0 at both turning
points, case (ii) requires

A-B<0, (4.4)
or
A+B<0. (4.5)
Therefore,
A <0 for case (ii). (4.6)

Furthermore, in this case (ii), at both turning points K,(p)=0 if { <0 (i.e., { > 0)
and K,(p)=0if {> 0 (i.e,, { <0). On the other hand, by a similar consideration,

A>0 forcase (i). (4.7)

Here the zeroes of K,(p) and K,(p) are given by (3.7)-(3.10).
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By (3.16), eq. (4.1) can be written as
A(p,§)=nm, (4.8)

l(y,f)=j:d'r[—(l—y——%—:—2)(1+y+f—:—z)]vz. (4.9)

T

where

This integral can be expressed in terms of elliptic integrals of the first and second
kinds. Note the similarity between this integral and the corresponding one for the
monopole case, (4.12) in I1I. However, the present integrand is less symmetric, and
the resulting elliptic integrals are not complete.

In order to recognize the integral in terms of elliptic integrals, we first factorize the
integrand

1(y,8)=(1 _yz)l/zf:df [—(1 - %)(1 - 2)(1 - £)(1 - g)]m. (4.10)

T T

We shall proceed to evaluate I( y, {) under the assumption that y > { so that (3.12)
holds, and subsequently show that the result is valid also for y < §.

The first step is to take out a factor 772 so that the square root is that of a
fourth-order polynomial in = (rather than in 77'). Next we integrate [{d7r ? by
parts to make the square root appear in the denominator:

1
I(y,8)=(1-y)"
a =212+ 3(a+b+c+d)r—(ab+ac+ad+ bc+bd—cd)
Xf dr .
b

[(a=7)(r=b)(r=c)(r~d)]'"?

(4.11)

This integral may now be expressed in terms of the following three basic integrals

[7:

“ dr
o 2 ~8K(k), (4.12)
'/I; [(a—'r)('r—b)(—r_c)(,r_d)] 28 (k)

N e emr ] B

=(a—b)g%[K(k)+(a2-1)H(a2,k)], (4.13)
_ | r=c)r—d) 172 ,

L= (a=n)(r=p)| ¢
= —%g(—lz_—c)M[azE(k)+(k2—a2)K(k)

a?(a’-1)
+(2a% - a® ~ k) (a%, k)], (4.14)
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where K(k), E(k), and II(a?, k) are complete elliptic integrals of the first, second,
and third kind, respectively. In these formulas,

| (a=b)(c—4d) 12

k= ———(a_c)(b_d)] , (4.15)

a=(‘;:’c’)m, (4.16)
2

(4.17)

T la-o) a7

In terms of 1, I, and I,, we have
1(3,8) =0 —-y)"*[-21,~ 4(3a+3b—c—d)1,
+14(3a*+ab - 3ac - 3ad — 2bc — 2bd + 2cd ) 1|, (4.18)
or, in terms of the complete elliptic integrals K, E and II,
1(3.8)=(1-y*)"[(a=c)(b-a)] "

X{(—ac—Zad—bc—2bd+ 2+ cd)K(k)

—2(a—c)(b—d)E(k)+(b—c)(a+b+c+d)H(Z:lC’,k)}.
(4.19)

The complete elliptic integral of the third kind can be expressed in terms of
incomplete elliptic integrals F(#, k’) and E(8, k) of the first and second kind [7]:

H("z,k)=K(k)+a[(a2—k2)(1 *az)J -1,2

x{im—[E(k)-K(k)|F(8,k’)—K(k)E(0,k")}, (4.20)

where

—cpa— 172
k'=(1—k2)‘/2={——Ei_cggb_j;] : (4.21)

and

(4.22)

1 - a? 1/2 b—d\\?
) —(a—d) '
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Using the relation (4.20), we find for the phase integral
17,9 =(1-y)" a=e)(b-a)] "
x{[-2a(c+d)+b(a+b-c—d)|K(k)~2(a—c)(b-d)E(k))
+(a+b+c+d){3n~[E(k)-K(k)|F(8,k") —K(k)E(8,k’)}).
(4.23)

This formula is discussed further in appendix A.
The normalization constant (3.27) can also be evaluated using the integrals
(4.12)-(4.14). With J,,(y,{) defined by

€1 =3[0 -y) " (5. 0] (424)

we find
In(p.8)=[(a=c)b-d))?E(k)

+la=e) b= )| B b ca K (k)
y(1-y?%)
2¢ {

T -y

Yom—[E(k)—-K(k)|F(8.k’)~K(k)E(6,k")} .

(4.25)

We close this section with a discussion of the limit { = 0. Then¢c—» —a, d > —b,
and

a—b
klico=ko= 25D (4.26)
The phase integral then reduces to
1(7,0)=2(1~y)"(a+b)[ K (k) ~ E(k,)], (4.27)

which we wish to compare with (4.21) in IIl. Since the argument used for the elliptic
integrals in paper III,

2y \'? b2\'? b
km'_‘(’—y) =(1_'—) ’ kin=;y (4.28)

a2
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is related to k, by a Gauss transformation {7]:

_ 1—kiy

- , 4.29
1+ ki (4.29)

0

it follows that (4.27) above is equal to (4.21) in IIl. Similarly, for { =0 the
normalization integral (4.25) reduces to (1 — y)~/2E(k;,) and | C| reduces to (4.23)
in IIL

5. Covering approximation: wave function

In this second part of the paper, we generalize the covering approximation of
paper III, where { =0, to the dyon case. This approximation is valid for both the
weak-binding case of paper II and the WKB case of sects. 3 and 4. We are therefore
forced to impose the restriction (8.21) in II on ¢{:

1$1/4% < 1. (5.1)

The underlying reason for this restriction is that, even for the special case 4 = B,
(2.2) cannot be solved explicitly in terms of known functions.

With { # 0, the inversion symmetry [8] is lost, and thus it is necessary to consider
separately the regions of small and large values of p. The interior and the exterior
regions are defined respectively by (egs. (8.3) and (8.6) in II)

p < min[|$] "%, (4 - B) "/, (5.2)
p> A2 (5.3)
In the limit of weak binding with A4 not too large:

A—;—B<1, A4=0Q1), (5.4)
(2.2) can, in the interior region, be approximated as

E___w_.lf"
diy  A+Bgp’’

Sl&
ha ™

1.
A+B—3)g, (55)

because of (5.1). The coefficient 2B/(A + B) in the first equation is determined
from the requirement that, in the limit (5.1), it be the same as that of F in (2.2) at
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the turning point p = A'/2p, In the weak-binding approximation
p=1,
F(p)=f(%),
G(p)=2(n). (5.6)

We shall modify (5.5) and (5.6) such that they are valid whenever (5.1) is satisfied,
even if

A>1. (5.7)

Eq. (5.5) makes no reference to {. In fact, applying the inversion symmetry to (5.3)
in III, we obtain (5.5) of the present paper. Thus, for the dyon case the covering
approximation for the interior region is the same as for the monopole case. Omitting
an overall constant, we have in the interior region

Fy(p)
Fo) = 2BV (a),
G(p)= Z((;’)) #(n). (5.8)

where

_|4+B)+sp—1 ]
FO(p)_[1+§p—(A—B)pz]

A+ B

A ={252 s ma-1) 59)

Golp) = iFy(p) ™",

Here 7 is related to p by

$.(p)=%(7), (5.10)
where 9, and §, are “complementary” to the 9, and §, of paper III in the sense that
we integrate from the lower turning point:

Sie)= [

i dp’[(—A + B+t +p’_2)(A +B+¢p! —p"z)]l/z,

1/2

= 2B =2 =2
Sw= i | 2w (ar-wn)| (5.11)
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Furthermore, the solution to (5.5) is given by

f(?r)-(A—;B—B)m%[zl/zx,,(z)], (5.12)
with
. _( 2B \'?
z=(A+B) L
p=(2B-1%)"" (5.13)
We note that
Fp)=f(3). G(p)=2(n), (5.14)

at the lower turning point and that the approximation (5.8) reduces to (5.6) in the
weak-binding limit, and to the WKB solution when A is large (but |{| restricted by

(5.1).
We next consider the exterior region. In the limit (5.4), eq. (2.2) can then be
approximated as

=L 2By, (5.15)

In this exterior region we write the solution in the covering approximation as

_ Fy(p)
F(o) = 28 1),
G(p) = %((%g(,,), (5.16)

with Fy(p) and Gy(p) given by (5.9), and

2By 174
1+¢n—(4-B)n*

fo(ﬂ) =

>

go(m)=ifp(m) ™. (5.17)
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The relation between p and 7 is now determined by

$(p)=%(n), (5.18)

where

S}1(9) = fAmadp' [(—A +B+¢pt+ p;—z)(A +B+p - p’_z)]l/Z,
o

G(0)= [“7  dy [(~a+ B+ iy +w2)(28)] (5.19)
7’

Finally, the solution to (5.15) is given by (compare paper I, sect. 3)
f(n) = W)\,ip(z) s

g(n)= (AZ—_BQ)W% Wi.i(2), (5.20)

with W, . (z) a Whittaker function,
z=2[2B(4 - B)]"*q,

A= %(A—Z_B—B)l/zg, (5.21)

and p given by (5.13).

6. Covering approximation: Whittaker function

In paper III (sect. 6) we obtained an approximation for K, ,(z) that holds when

zx1, (6.1)
and when

p>z>1. (6.2)

That formula will here be used for the interior region. For the exterior region we
need a corresponding formula for the Whittaker function. Such a formula will be
obtained in this section.

When (6.1) holds, then [9]

r(-2ip)z'»
1% z) =V —~—"1" 4 cec.|, 6.3
A.tp( ) I‘(%-—A—ip) ( )
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whereas when (6.2) holds, the WKB approximation to the Whittaker equation
(compare (5.15)) gives

2\ 174
W,‘_,p(z)zconst(— l+§+£—)

4 2z ;2
' 1 A p2\V?
XSln[—/(—4+;+zz) dz|, (6.4)
with
p=02B)=(pr+1)" (6.5)

Evaluating the integral we find [10]

1 A p’2 —-1/4
WJ\.:‘p(Z)zconst(—Z+;+_z7
. 2p7 + Az +2p(pP+ Az~ 422)?
Xsin| p’'Iln =
2(p?+N)
—-iz+A
_(p/2+Az_i_22)1/2+Asin_l 22 17A+%” ,
(p’2+)\2)1/2
(6.6)

where the constant of integration has been determined by demanding that in the
Airy approximation W, ,, has the correct behaviour outside the turning point. We
rewrite the logarithm in terms of an arccosh, and define

2p? + Az

Doy~ enm )
P z

9, (p’,z)=prcosh™!

—-iz+A
+)\Sin_lzzzz—2)l/2+ jmA. (6.7)
pr+AX

Expression (6.6) can then be written as

2

1 A p?\
Wk‘ip(z)zconst(— at;t pE; ) sin[$,,(p’,z) +in]. (6.8)

We note the similarity between the amplitude (— L +A/z + p'2/22)"1* and f,(n)
of eq. (5.17). The expression (6.8) for W, ,, corresponds to the expression (6.6) of
paper III for X, .
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In the covering approximation, a formula is needed for the Whittaker function
Wi..»(2) that reduces to (6.3) when (6.1) is satisfied, and to (6.8) when (6.2) is
satisfied. This is accomplished by the ansatz

1 A p/Z -1/4
W)\.ip(z)=@w(_ 275t 2 ) Sin[(p/p’)ifw(p’.z)+<1>w]. (6.9)

We determine the amplitude &,, and the phase ®,, by expanding (6.9) for z < p,
and comparing with (6.3). Thus, we find

2 T(1+2i
W= 4 1( ’P.) ’ (6.10)
p |I(i-X+ip)
@, =arg'(1+2ip)—arg'({ —A+ip)
4 ”
—pln—”l/E +p—£>\[tan-11+gw . (6.11)
(p?+N) P’ 1%
If we use the Legendre duplication formula, and let A — 0, we find that
diwx—> @, of paper III, (6.12)
-0
as one should expect. Moreover,
12
@wxjo ( P;) [sinh(7p)] "2, (6.13)
$,(p’z2) 2 Ix(p’,4z) of paperIII. (6.14)
-0
Thus, the relation [9]
21172
Wor(2)=(2) " K, (42), (6.15)

is satisfied by the appropriate limit of (6.9) of the present paper and (6.7) of
paper III.
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From (6.7)—(6.11), the desired approximation to the Whittaker function is

. 2y —1/4
I'(1+2ip) (_l+§+£_)
r$-x+ip)[\ 4 =z ;?

"ny2

p

Wy, (z)=2

z

L’z“‘z__z(

1,2
2 4 32)172 ’ )
(p?+A)7""z P

Xsin[pcosh'1 pr+Az— 1z

1
. —iz4A
+ALsint 2

————— +argI'(1 + 2ip)
p/ (p’2+A2)1/2

2 (p2+)"7?
+p— )\—sm l_—lT/z , (6.16)
p (p?+N)

which is valid when either (6.1) or (6.2) is satisfied.

7. Covering approximation: energy levels

We determine the energy eigenvalues by matching the interior solution (5.8) with
the exterior solution (5.16). Let us match F(p):

c. L) f(n)
Ho(R) fo(n)’

=G (7.1)

where C, and C, are constants. The left-hand side is given by (5.9) and (5.12):

4 4+ B2 4

[(4+B)# —1]} (2—3-) ’ Sk, ()], (2)

+
Cl{A B

with X, (Z) given in the covering approximation by (6.15) in III. In particular, the
above derivative is given by (7.5)-(7.8) in III as

212 = 22 sin( p/p) S (0 2) + By — 1) (7.3)

We now invoke (5.13), and write the left-hand side of (7.1) as

C,Q ( ZBB)I/“Sin[(p/p’)g,((p’,2)+(I’K—4/B]. (7.4)
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Substituting for Z in terms of # (eq. (5.13)), and comparing (6.8) in III with (B.3) of
appendix B, we obtain

gK(P’,5)=§2('h)- (7.5)
Using further (5.10) and (B.1), we can write (7.4) as
A+ B\'/* .
CIQK(T;—) sin{(p/p' WA [6(VA p) - 6(b)] + P —vp).  (7.6)

The right-hand side of (7.1) is given by (5.17), (5.20) and (6.9):

C@ 2B’n2 —1/4(_l+§+p_,2)-1/4
TP+ —(4-B)n? 4z 2

xsin[(p/p' )%, (P 2) +@,,]. (7.7)

Because of (5.21), we can rewrite this as

_ pl/4
\/sz@w(Az—B—) sin[(p/p')gw(p’,z)+d>u,], (7.8)

i.e., the amplitude factor is again independent of the radial variable. The matching
will thus be a matching of phase.
We next relate 9,,(p’, z) to 9,(%), using (6.7) and (B.5):

4, (p". ) =%(n). (7.9)
with (cf. (5.18) and (B.4))

9 (n)=9%(p)= VA [¢(a) - (VA p)|. (7.10)

Thus, the right-hand side of (7.1) can be written

_ﬁcz@w(A—z—BE)wsin{f\/Z[—Ma) +¢(V4p)| - QW} . (711)

The p-dependence is here the same as for the interior region (expression (7.6)), so the
two regions can be matched provided the phases are the same:

—§¢Z¢(b>+¢x—¢,,=——1{’—,¢Z¢(a>—¢w+nm (7.12)

or, with @y p = ¢(a)— ¢(b),

L VA Py + @y + O —bg=nm. (7.13)
p

This is the equation for the energy eigenvalue, as determined in the covering
approximation.
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TABLE 1
Binding energies (E — M)/M versus A = }|g|« for { = —a and a (fine-structure constant)
{=-a {=a
A Method n=1 n=2 n=3 n=4 n=5 n=1 n=2 n=3 n=4 n=5
0.5 Units 104 107 10°° 10° 100¢ 10°°
Exact  1.239 0933 3040 7311 3161 1.751
WBA 1238 0.933 3.040 7311 3.161 1.751
WKB  5.863 1655 4289 8766 3.563 1.913
CA 1.240 0934 3040 7311 3.161 1.751
1.0  Units 10 3 1007 107* 107 107 10°°
Exact  4.604 6403 1464 1740 5523 2.628
WBA  4.583 6.376 1464 1740 5523 2628
WKB 5948 7837 1964 2092 6188 2846
CA 4.613 6417 1464 1740 5523 2628
20  Units 1002 10°¢ 1072 107 104 100° 10°°
Exact 2236 6.809 2487 1190 0931 1659 5616
WBA 2187 6.802 2434 1189 0931 1659 5616
WKB 2398 8329 2651 1368 1.091 1868 6.092
CA 2244 6811 2497 1190 0931 1659 5616
50  Units 10°' 1002 1007* 100* 100°* 1072 10°?% 10°* 10°* 10°°
Exact  7.794 1008 1230 1216 2394 8071 1114 1621 2646 5419
WBA 7253 0996 1228 1216 2394 7515 1101 1.618 2.645 5418
WKB 7907 1046 1314 1361 4054 8184 1152 1.711 2835 5.820
CA 7.825 1.009 1230 1216 2394 8103 1.115 1621 2646 5419
10.0  Units 107 10?% 10 1007 10 10!' 10?2 107 10 10°°
Exact 1439 3412 8146 1902 4224 1465 3.545 8812 2232 5858
WBA 1271 3291 8063 1.896 4221 1294 3419 8722 2226 5854
WKB 1446 3451 8305 1957 4398 1472 3583 8974 2291 6.052
CA 1.444 3416 8149 1902 4224 1470 3.549 8816 2233 5.858
200  Units 10! 10072 102 102 1000° 107" 107? 107 107 107?
Exact 2238 7948 2905 1.063 3866 2260 8087 2991 1116 4.191
WBA 1.863 7368 2814 1.049 3.845 1883 7498 2898 1.102 4.168
WKB 2242 7976 2922 1072 3912 2264 8115 3.009 1.126 4238
CA 2244 7956 2906 1063 3866 2265 8095 2993 1116 4.191
500  Units 10°' 107! 10°? 107 1072 10!' 10!' 100' 107 10°?
Exact 3378 1696 8864 4692 2492 3394 1708 8956 4760 2.543
WBA 2595 1460 8152 4469 2423 2609 1477 8238 4535 2473
WKB 3379 1697 8876 4701 2499 3395 1709 8967 4769 2.549
CA 3382 1.697 8868 4693 2493 3398 1709 8960 4.761 2.543
100.0 Units 6! 10! 100" 100? 10?2 100" 100" 107' 1072 1072
Exact 4224 2519 1568 9915 6316 4236 2529 1576 9983 6372
WBA 4530 2054 1368 9.041 5932 4542 2063 1376 9105 5.985
WKB 4224 2520 1568 9921 6321 4237 2530 1577 9989 6.377
CA 4228 2521 1.568 9917 6317 4240 2531 1577 9985 6.373

Exact: numerical results of paper I [1}; WBA: weak-binding approximation of paper II [3]; WKB:
sects. 3 and 4 of this paper; CA: covering approximation, sects. 5-7 of this paper.

Where no value is quoted, the state does not exist.
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8. Numerical results

Numerical results for the binding energy e = (4 — B)/A = (M — E)/M are given
in table 1 for { = —a and +gq, in table 2 for { =0.1 and 0.5, and in table 3 for
¢=1.0 and 5.0. For a set of A-values ranging from 0.5 to 100, we compare the
accurate results of paper I [1] and those of the weak-binding approximation of paper
I1 [3] with those of the WKB method (sects. 3 and 4 of this paper) and with those of
the covering approximation (sects. 5-7 of this paper). Five levels are considered,
n=1to 5. (We do not include the n = 0 state for which the binding is very strong.)

For large values of A, where the WKB method applies, it gives excellent results.
The results of the covering approximation are excellent for practically all A and ¢.
When the binding is weak, they are comparable with, or even better than the results
of the weak-binding approximation. When A is large, they are comparable with the
results of the WKB method. Even when (5.1) is violated, the covering approximation
in many cases remains excellent. The only case where we have found it to break
down is the almost trivial one, where p becomes imaginary (cf. (5.13)), i.e., for

B=A(1-¢)<}. (8.1)

Likewise, the WKB approximation has some validity beyond the range of parame-
ters for which it was derived. With 4 = O(1), it is still good, provided the binding 1s
strong (compare table 3).

We close with some remarks on the spectrum. For a fixed value of {, and for 4 (or
«) sufficiently large, the binding energy increases with increasing A4 (or ). However,
as is seen from table 3, for sufficiently small values of A (or k), the binding energy
increases with decreasing A (or k). This is further illustrated in fig. 1, where we have
plotted E/M versus log 4, for { =1.0, n=0,1,2,3, and A ranging from 10 3 to
100.

The maxima observed in fig. 1 can be roughly understood as follows. At large r
the magnetic-moment interaction is just like the angular-momentum interaction for
hydrogen-like atoms, with —«|q|(M + E)/2M corresponding to /({ + 1). Thus, at
large r, a positive k amounts to an attraction. On the other hand, at short distances
the wave functions behave like exp[—(1/rX|xq|/2M)); in this sense the magnetic-
moment interaction is repulsive at short distances. If now the wave function is
concentrated at large r, where the magnetic-moment interaction is attractive, increas-
ing « will increase the binding. If, however, the wave function is concentrated at
small r, where the magnetic-moment interaction is effectively repulsive, decreasing «
will increase the binding. It follows that there is some intermediate « (which depends
on ¢ and n) for which the energy has an extremum with respect to variations in «.

For k < 0, these extrema appear to be absent. As follows from the argument of the
last paragraph, the magnetic-moment interaction is then repulsive for small and
large values of r. In fig. 2 we have plotted E/M versus log(—A4) for {=1.0,
n=1,2,3, and A4 ranging from —10 3 to —100. It is seen to change monotonicaily
with A.
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TABLE 2
Binding energies (E — M)/M versus A = }|q|x for { = 0.1 and 0.5
¢=01 ¢{=05
A Method n=1 n=2 n=3 n=4 n=5 n=1 n=2 n=3 n=4 n=95§
0.5 Units 102 107 10* 10* 10*% 10" 10 10°% 10° 10°
Exact 1.072 1.874 7264 3815 2344 1.055 3.005 1.369 7.761 4984
WBA 1.070 1872 7255 3811 2342 0988 2863 1319 7531 4.860
WKB 1.215 2013 7608 3946 2407 1072 3.045 1382 7820 5.014
CA 1.080 1.880 7277 3.820 2346 1079 3.043 1380 7.810 5.009
1.0 Units 10-2 107 10°* 107* 10°* 10' 10?% 10° 100° 107
Exact 2029 2819 9496 4640 2733 1151 3.258 1456 8.148 5.186
WBA 2013 2811 9479 4634 2730 1086 3.127 1411 7943 5077
WKB 2201 3008 9912 4785 2799 1167 3300 1470 8210 5218
CA 2039 2823 9505 4643 2734 1168 3283 1464 8180 5202
2.0 Units 1072 103 107 10°¢* 10°* 1072 10°* 10°° 107 10
Exact 4202 5507 1519 6535 3.563 1357 3.861 1667 9077 5667
WBA 4105 5485 1516 6526 3.559 1281 3731 1624 8889 5568
WKB 4367 5794 1580 6.725 3.642 1370 3906 1.683 9.145 5702
CA 4223 5513 1520 6.537 3564 1370 3879 1672 9097 5676
5.0 Units 10°2 1072 10°% 107 10°% 10°' 102 107 1072 10°
Exact 9873 1834 4554 1569 7.100 1843 5732 2379 1223 7270
WBA 9208 1.809 4.537 1566 7.092 1700 S.546 2330 1203 7.174
WKB 9981 1875 4677 1608 7.244 1851 5775 2398 1231 7312
CA 9915 1836 4556 1.569 7.101 1853 5745 2383 1224 7275
100  Units 107 1072 107* 100 107 107" 1072 107 102? 10?2
Exact 1629 4409 1328 4565 1.842 2373 8558 3.663 1827 1.036
WBA 1.444 4253 1313 4547 1.839 2107 8175 3.579 1799 1.024
WKB 1.635 4448 1345 4636 1.871 2378 8594 3682 1837 1.042
CA 1634 4415 1329 4566 1.843 2382 8572 3.666 1828 1.037
200  Units 10°' 1072 10% 102 107 100" 100 10°? 102 1072
Exact 2398 8975 3.551 1466 6373 3011 1301 6.181 3186 1.782
WBA 2005 8331 3440 1446 6335 2540 1.206 5954 3121 1.758
WKB 2402 9.003 3568 1476 6.426 3013 1304 6198 3197 1.788
CA 2404 8985 3553 1466 6374 3018 1303 6185 3.188 1.782
50.0  Units 10! 107" 1002 1072 10% 107" 10°' 1©0!' 10?2 1072
Exact 3496 1785 9.542 5198 23868 3940 2128 1215 7.174 4361
WBA 2697 1.547 8785 4954 2789 3077 1853 1120 6.829 4230
WKB 3497 1787 9553 5207 2875 3941 2129 1216 7.183 4367
CA 3500 1.787 9.546 5200 2869 3.946 2130 1216 7177 4.362
100.0 Units 10-* 10°* 107! 107! 1w0? 10' 107" 100" 10! 1072
Exact 4314 2594 1629 1042 6726 4651 2875 1.862 1.233 829
WBA 4618 2119 1424 0951 6320 4945 3420 1633 1128 7.798
WKB 4314 2595 1630 1042 6731 4651 2875 1.862 1234 8300
CA 4318 2595 1630 1042 6727 4.655 2876 1.862 1233 8297

Exact: numerical results of paper I [1]; WBA: weak-binding approximation of paper II [3]); WKB:
sects. 3 and 4 of this paper; CA: covering approximation, sects. 5-7 of this paper.
(For A =2.0, { = 0.5 and n = 3, the two entries in the table in paper II are inadvertently interchanged.)
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TaBLE 3
Binding energies (E — M)/M versus 4 = }|q|x for { = 1.0 and 5.0

(=10 §{=50
A Method n=1 n=2 n=3 n=4 n=5 n=1 n=2 n=3 n=4 n=35

0.5 Units 10!' 10" 1072 10?* 102

Exact 3329 1106 5268 3.041 1969 1.188
WBA
WKB 3330 1110 5289 3051 1975 1.186
CA 3331 1110 5284 3048 1973
1.0 Units 10" 100! 1072 1072 1072 10 !
Exact  3.018 1055 5115 2976 1937 >1.87 1196 8.040
WBA 2573 0.927 4609 2730 1.800
WKB 3024 1059 5135 298 1.942 1.195  8.030
CA 3.058 1.063 5144 2989 1943 6.48
2.0  Units 107 107 1072 10?2 102 10! 107!
Exact 2922 1068 5218 3035 1971 1.243 8320 5.808
WBA 2580 0970 4.823 2841 1.863
WKB 2929 1072 5238 3045 1977 1.242 8312 5.804
CA 2954 1074 5240 3045 1.976 7.452 5532
5.0 Units 100 100! 107 10 ?% 10°? 10 ! 10! 10!
Exact  3.077 1215 5979 3435 2198 1222 8194 5734 4165
WBA 2750 1.132 5659 3281 2113
WKB 3083 1219 5999 3446 2204 1221 8189 5731 4.164
CA 3.098 1219 5992 3441 2201 7.948 5679 4.143
10.0 Units 10 10 1w0?% 1077 10° 107 10! 10t 10!

Exact 3.381 1461 7375 4208 2646 1436 9425 6512 4.682 3482
WBA 2967 1365 7038 4.056 2.565
WKB 3384 1464 7394 4220 2652 1436 9422 6.511 4681 3481

CA 3395 1464 7384 4212 2648 9152 6496 4678 3.480
20.0 Units 10! 100" 1002 10?* 1072 100 107! 10! 10!
Exact 3811 1.849 9917 5764 3600 1155 7.807 5.548  4.085 3.097
WBA 3220 1.697 9421 5564 3.503 6010 4356 3254
WKB 3813 1851 9933 5775 3607 1155 7.806 5.548  4.085 3.098
CA 3822 1852 9926 5768 3.601 7.806 5.551  4.087 3.099
50.0 Units 107 10' 107" 10 102 107" 10t 100! 10! 10!
Exact 4508 2572 1.559 9.831 6.414 9506 6709 4955 3766 2.929
WBA 3.554 2243 1433 9304 6178 5472 4165 3.226
WKB 4508 2573 1560 9.839 6420 9505 6709 4955 3767 2.929
CA 4515 2574 1560 9.834 6416 9.504 6716 4.959  3.768 2930
100.0 Units 107 10! 1wt!' 10! 100" 100! 10-' 107! 1wt 10!
Exact  5.077 3233 2160 1481 1.035 8689 6364 485 3794 3.0i8
WBA 5353 2674 1.899 1.354 0971 518 4118 3302
WKB 5078 3233 2161 1482 1036 8689 6364 4856 3794 3.018
CA 5.082 3235 2161 1482 1035 8703 6369 4858 3795 3018

Exact: numerical results of paper I [1]; WBA: weak-binding approximation of paper II (3} WKB:
sects. 3 and 4 of this paper. CA: covering approximation, sects. S-7 of this paper.

When all four entries are missing, the state does not exist. When the entry is missing for WBA or CA,
the approximation fails. For { = 5 and 4 < 5, the one-particle deseription used here presumably makes no
sensc {11].
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Fig. 1. E/M versus A = }x|q| > 0 for dyon-fermion states of minimal angular momentum, j = |g| — }
and { = 1.0. The four lowest levels are shown, n =0, 1,2 and 3.
9. Maximal binding

As is clear from figs. 1 and 2, there are sets of parameters 4 and { for which the
binding becomes maximal:

Eg=M-E=2M or B=—A. (9.1)

For a given {, we shall refer to a value of A for which this occurs as A4_;,. Beyond
this point, which is similar to the case of Z =137 for hydrogen-like atoms [11], the
one-particle description presumably makes no sense. This critical value can be
determined as the eigenvalue A4 of eq. (2.2) for B= —A4:

% fea-f- L)

dp P p2

dfF (¢ 1

—=({2-=]|G, 9.2
dp (P pz) ©2)

by the method of paper I. Solutions are shown in fig. 3 for values of { up to 10.



54 P. Osland, T.T. Wu / Monapole- and dvon-fermion bound states (IV)

10—

05

—

=Z|m

0.0

-05F I 4

P
L
L
-1.0 l 1 J 1 I
-10°3 -1072 ~10™ A -10 -100 -10

0

Fig. 2. E/M versus A <0 for dyon-fermion states of minimal angular momentum and { =1.0. The
three lowest levels are shown, n =1, 2 and 3. (The quantum number n counts the maximum number of
nodes of For G, which is at least 1 for 4 < 0.)

As { = 0, the eigenvalue of (9.2), A_,,, can be determined analytically by the
method of paper II (a derivation of which is given in appendix C). For 4 > 0, we
find

1 (n + {)w
Acrit 4&- exp[ g- 3Y ’ §<< 1, (93)
for n=0,1,2,..., and with y =0.577... as Euler’s constant. Similarly, when 4 <0,
we have
(n—%)=
Acn’t~ 4§exp[ g- 3Y s §<<1~ (94)
for n=1,2,3,.... Comparing now with (9.3), and considering the ground state, we

can give the allowed regions of A4 for small { as

A< T exp[ 4—§ -~ 37] (9.5a)
or

4ICXP[ T —3y]. (9.5b)
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Fig. 3. Critical values A_;, for which the binding becomes maximal, E = M — E =2 M, as a function

of { (a) Acril > 0’ (b) Acnl <0.
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When ¢{>1 and 4 >0, A, can be determined from the following equation,
derived in appendix D:

=§2(n+f)[n+§—(n2+2n§_')l/2]

[n+ f+(n2+2n§)1/2]2

. {>1, (9.6)

crit

with
E=¢(1+84,,/¢)"" (9.7)

For n =0, this is explicit, 4, =2 At § =10, (9.6) is good to 3% and 9% for n =0
and 1, respectively. We note that

A - 2, A>0. (9.8)

cnt
{—o0

When { > 1 and A4 <0, the critical value of A4 is determined in appendix D as

Ag= -1 -1+204 (143 ° g1 (9.9)

crit
In contrast to (9.8), we note that

A > -2 A<o0. (9.10)

crit
{—

In summary, we have given analytic results for dyon-fermion binding energies and
wave functions approximately for two cases. The WKB approximation in sects. 3
and 4 applies when 4 = $Z|eg|x > 1, and the covering approximation of sects. 5-7
applies more generally when either A is large or the binding is weak. The formulas
for the binding energies are given in the WKB approximation by (4.8) and (4.23),
and in the covering approximation by (7.13). All the results apply only to the case of
lowest angular momentum j = Z|eg| — 3. Generalization to higher angular momen-
tum states will be considered in paper VI.

We would like to thank Professor Chen Ning Yang for many helpful discussions.
Also, we are grateful to Professor Fritz Gutbrod, Professor Hans Joos, Professor
Paul Soding and Professor Volker Soergel for their kind hospitality at DESY, where
part of this work was done.
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Appendix A

SYMMETRIC FORMS OF THE ELLIPTIC INTEGRALS

In evaluating the phase integral I(y, {) (eq. (4.23)), we assumed ¢ <y in order to
secure ¢ > d. We shall here show that the result is invariant under the interchange
¢ o d. Let us recall

[lepemape - [emae-a)
‘ [(a—C)(b—d) ok (a—c)b—d)| ° (A1)
Smo:(i:;)m' (A2)

The complete elliptic integrals K(k) and E (k) can be transformed into symmetric
forms by a Gauss transformation [7). Let

K, = 1-k’
1+k’
ez o= ~la=d)b-) " (A3)
[(a=c)b-d)]"*+[(a—d)(b~c)]"
which is odd under ¢ < d. Then [7]
K(k)) =11 +k)K(k), (A.4)
1 ’
E(k,))= m—'[E(k)+kK(k)]. (A.5)

These are invariant under c «>d since they only depend on the square of the
modulus, k2. Solving for K(k) and E(k), we find

K(k)= %,(,K(k,)

=2[(a-c)b-d)]"*{[(a=c)(b—d)]'?

+[(a-d)(b-)]"?) 'K(k)), (AS6)
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E(k)= (1 +K)E(k) =~ 5K (k)

=[(a=c)b=ad)] " {[(a=c)b~d)]'* +[(a—d)(b-c)]"*)E(K,)
—2[(a—d)(b-¢)]"?
x{[(a=c)(b—a)N"*+[(a~d)(b-c)]"?) 'K(k,). (A.7)

In order to write the incomplete elliptic integrals F(8, k’) and E(#, k') in terms
of symmetric ones, we shall perform an imaginary argument transformation fol-
lowed by a Landen transformation [7]. By the imaginary argument transformation

(7,
F(¥,k)=iF(8, k"), (A8)
E(y,k)=i{F(8,k’)—E(8,k’) +1tan8[1 — k’%sin’0]'/*}, (A.9)
with

b- d)m. (A.10)

sinf = —itan\p=(a—_—d

We next apply a Landen transformation [7], with k£, given by eq. (A.3) and

_ (1+ k’)siny cosy
[1- k2sin?y]"?

sin¢

= aib {[ta=elb=)'*+[(a—-d)(b-0)]'?},  (A1D)

i.e,, the new argument ¢ is invariant under ¢ < d. Then F(y, k) and E(y, k)
transform as

F(¢, k)= +Kk")F(y,k), (A12)

1-k sing, (A.13)

2 —
E(¢, k)= 1+—k,[E(¢,k)+k'F(¢,k)] T o
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and combining this with (A.8) and (A.9), we find

i

F(8.8) = = ——F(6.k,). (A.14)
E(6,k") = (3:f)‘”2+ i{=F(o, k) + 1+ k) E(6,ky) + (1 - k')sing ) .

(A15)

Collecting then everything, i.e., using (A.4), (A.5), (A.14) and (A.15), we find that
the WKB phase of eq. (4.23) can be written as

1(y,8)=(1-y*)"

y [-3(a+b)+c+d](c+d)+a[(a—c)b—d)(a—d)(b-c)]"?
[(a=c)(b-a)]'*+[(a=d)(b- )]

x K(k;)~2{[(a=c)(6-a)]'"*+[(a—d)(b—c)]'"*}E(k,)

+in(a+b+c+d)

+i(a+b+c+d)[E(k)F(¢, k) —K(k))E($,k)]], (A.16)

which is seen to be symmetric under the interchange ¢ & d.

Appendix B

PHASE INTEGRALS

In this appendix we present a brief discussion of the phase integrals that appear in
sect. 5.
First, we note that §l(p) of (5.11) can be written in terms of ¢(7) of (3.9):

§,(p)=VA [6(VAp) - 8(b)]. (B.1)

where ¢ can be expressed by elliptic integrals.
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Second, §2(ﬁ) is related to the 9, defined in paper IIl. With x = 1/7, we have

L(n)=2B)" [“*® dx [x2 = (4 + )] (B-2)

This integral is related to that of (5.7) in III by the substitutions 5§ — @},
A—B—(A+B)n:

§,(n) = (28)‘/2{cosh-1(¢A +B7q) - [1 - —1—}1/2} . (B.3)

(A +B)7?

For the phase integrals of the exterior region we proceed in a similar way. First,
9,(p) can be expressed in terms of ¢ (cf. (3.9) and (5.19)):

$(p) = VA [¢(a) - 9(Vd p)]; (B.4)
and
8(n) = 28)" [" T [+t (4 - B)we]
_ 12 -1 2+ _ (4 RY2]172
U e vy AR
1 ¢ _AA-B)n-¢ }
2(a-5)” [eeaa-p)]7) 5
where
=2 —t+[2+a(4-B))2) (B.6)

Appendix C
CRITICAL VALUE OF 4 FOR { « 1
When { <« 1, we can find approximate, analytic expressions for the value 4 = 4,
that corresponds to maximal binding, Eg=2M or B= —A4. This is achieved by

solving (9.2) using the method of paper II. A4 can be either positive or negative.
Let us assume

4| < §? (C1)

(this will subsequently be justified) and take

X =

1
5 (C2)
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Then eq. (9.2) can be written

Consider now

. 2
region I: x> —

(i.e., “small” p). Eq. (C.3) is then approximated by

G _ (144,
dx X

e

dF(
x

dx
This equation can be solved exactly. Let
S=F+G,
T=F-G,

the equations for which become

d’s 1ds 1 ¢?
ds
T= E(d_x—_s)
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(C.3)

(C4)

(C5)

(C.6)

(C.7)

(C38)

The equation for S can be solved in terms of a Whittaker function (subject to the

boundary condition S =0, T— 0 as x = ©):
S(x)=Nx*W_, , .(2x),
with N, a constant. Using (C.8), (C.2) and expanding for

p>1,

we find

o) = | 281 4)(2) " e

(C.9)

(C.10)

(C.11)
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Consider next

region I1: p>¢ L, (C.12)
where (9.2) simplifies to
8 (4= L)
dp o
df ¢
- = =G. C13
i " o (C.13)
With
z? z?
- , C.14
7 8af  8lALE (€14

we find that F must satisfy

d*F 1dF 452
d22+—z—$—(1-7 F=0. (C.lS)
The solution that satisfies the boundary condition F -0 as z — oc is a modified

Bessel function:

F(p)=N,Ky, (V814130 ). (C.16)
For
1
p X Zm, (C.17)
we can expand
_ e @iige)
F(p)—Nz[ (- 20) c.c.], (C.18)

with N, another constant.

It follows from (C.2), (C.4) and (C.12) that the two regions overlap when (C.1) is
satisfied. In this region of overlap, the power expansions (C.11) and (C.18) also
overlap because { <« 1.

The matching of (C.11) and (C.18) is then straightforward. For 4 >0 the
condition is

F(1—21§) 211(1+I§) o 2kim
ra+28)| ra-)  ° =

(4A{)2'§e'"/2[ (C.19)

with k an integer. For { < 1 the above I'-functions can be expanded as [12]

FQ+ i) =1—lity =e™ 87, (C.20)
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where y =0.577... is Euler’s constant. Eq. (C.19) can then be explicitly solved for
A= Acril:

A= zlfexp[— (n+_{z)'rr_ - 37], (C.21)

where k has been identified as —n.
For A < 0, the matching condition similarly gives

L(1=28) PO+ ) _ i (C.22)

28 i
@A) ™| Fas2) | Ta=) ~ ¢

with m an integer. With the approximation (C.20) we now get

— g
Acm’—'—%{ew[———(" g“) —3v], (C.23)

where m has been identified as —n. We note that (C.21) and (C.23) satisfy (C.1) for

< 1.

Appendix D

CRITICAL VALUE OF 4 FOR {>» 1

The asymptotic behaviour of A4, for { > 1 can be determined analytically. With

x=4{p, (D.1)
eq. (9.2) takes the form

X ¢ Al x X2
dF A4 1 1
dx (m;— ;)G (D.2)
We rewrite this as
d 1 1 ,
a——{(; -y (—;—y )F, (D.3a)
ar

= —g(i - i)lc, (D.3b)
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:;'.x

+(1+ sA‘)‘”].

:.i:;

=i
=i

(1+8A—)‘/2],

A

L3

(D .4)

(D.5)

Consider first 4 > 0. Then the right-hand sides of eqs. (D.3a) and (D.3b) vanish

for x=y"!

and x = 1, respectively. Linearizing in x~

1 we get

g—f = —I(% -y)(y—y’)F,

4ot

(D.6)

We shall solve this equation exactly. The boundary conditions that F and G vanish

at the origin and at infinity yield an implicit equation relating 4 to .

The first step is to symmetrize eq. (D.6) by the rescaling

which yields

with

x;=3(1+y)x,

F=(1+84) "*F, G=(1+84)"G,

dG (1 -
—-dXI——{(—XI—1+e)F,
dF o1 -
—dxl_ f(—x - s)G,

§=¢(1+84)"",

e=(1-y)/(1+y).

In terms of the sum and difference,

S=F+aG,

NI
i
ol
|
Q

(D.7)

(D.8)

(D.9)

(D.10)
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eq. (D.8) takes the form

dTTl=_§[_(xll_1)f-e§]. (D1)

With 4 >0, F and G have the same number of nodes, so that, for large {, S tends
to be small compared with T [1]. Elimination of § gives a Whittaker equation for T:

= W,(z), (D.12)

with
k=§(1-e)""",  p={-1, (D.13)
=281 - 2)"x,. (D.14)

This solution satisfies the boundary condition of 7 — 0 at the origin provided

1 —k+p isanon-positive integer, (D.15)

f1-(1-¢)7" = —n, (D.16)

where the right-hand side has been identified in terms of the quantum number n.

The asymptotic behaviour A4, = 4, ({, n) is given by this condition. Using (D.9)

and (D.4), we can write the above condition as

(n+ f)[n +§—(n?+ an)l/z]
[n +{+(n2+ 2n§)‘/2]

A=A =1 , (D.17)

with (cf. eq. (D.9))
E=t(1+84,,/¢%)"". (D.18)

For A <0 the right-hand side of (D.3a) vanishes for x =y ! and for x =y’ !,

whereas the right-hand side of (D.3b) has no zero for x ! > 0. We therefore replace

x~! in the second equation by i(y + y’):

dGé 1 1
ax - (—2A+;—-X—Z)F,
dF

ax - - 3G, (D.19)
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with
A=|A41/82. (D.20)

We now get a Whittaker equation for F:

d2F | 1
el 3p2| _ - —
PR ( 24+ xZ)F 0, (D.21)
with the solution
F=W,(z), (D.22)

1{ 3\
=almar) o were

z=2(3141)"x. (D.23)

Requiring an acceptable behaviour at the origin, we are again led to condition
(D.15), now in terms of x’ and p’,

L1 3 1/2§z+1(1+3§z)1/2= —(n—1) (D.24)
2 4\2]4) : ) )
Since n > 1 for A <0, we have identified the non-positive integer as —(»n — 1). This
equation can be solved explicitly for 4_;, = — |A[:
A= -3¢ -1+ 20+ (14 362)] 2. (D.25)
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