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Correlations in the W-boson and Higgs boson channels and the static energy of an external
SU(2) doublet charge pair are investigated by Monte Carlo calculations in the SU(2) lattice gauge
theory with a scalar Higgs doublet field. The mass ratio my/my and the shape of the static
potential are used to obtain information on the renormalization group trajectories in the
three-dimensional coupling constant space. As a function of an appropriately chosen variable, the
measured quantities are, within errors, independent from the scalar self-coupling (A) in a wide
range 0.1 <A < 00. In the Higgs phase, a lower bound my/my > (1.0 + 0.3) is obtained for the
ratio of the Higgs boson mass to the W-boson mass.

1. Introduction

In the standard SU(3) ® SU(2) ® U(1) model the two non-abelian gauge symmetry
factors play rather different rbles. The local gauge symmetry corresponding to
SU(3)-colour is unbroken, the SU(3)-colour charges are confined and the colour
interaction is strong. The local SU(2) gauge symmetry, on the other hand, is broken
by the expectation value of the Higgs-doublet field, the SU(2) charges are screened
and the corresponding interaction is weak. Since the values of the coupling constants
are changing (“running” or “sliding”) according to the renormalization group, the
meaning of strong and weak coupling has to be explained in more detail. (For a
review and an extensive list of references on the renormalization group see [1].) The
renormalization group invariant meaning of “strong interaction” is that the SU(3)-
colour coupling is of order 1 at the scale of hadron masses:

aSU(3)(Mhadron) =o(1). (11)

In contrast to eq. (1.1), for the SU(2) coupling at the W-boson mass (my)
experiments imply

aguay(Mmy) =0.04. (1.2)
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In principle, the non-abelian SU(2) interaction, too, can become strong at some very
low energy scale, but this has no practical consequences because of the short range
of the interaction due to the massive SU(2) gauge boson exchange. The theoretical
consequence of eq. (1.2) is that the SU(2) ® U(1) electroweak interaction can be
treated by perturbation theory. The impressive success of the perturbative approach
culminated not very long ago in the discovery of W- and Z-bosons at precisely the
predicted mass [2].

The only remaining source of uneasiness in the standard model is buried in the
Higgs sector incorporating the inherently non-perturbative phenomenon of sponta-
neous symmetry breaking. The main interest of the non-perturbative investigation of
the electroweak theory lies, in fact, in the deeper understanding of the Higgs
mechanism [3], which renders the W- and Z-bosons, the leptons and quarks and the,
up to now elusive, Higgs boson a mass.

STRONG WEAK-INTERACTIONS

In the present paper the Higgs sector of the standard SU(2) ® U(1) electroweak
theory is investigated by the non-perturbative numerical Monte Carlo method (for
references and a collection of papers see [4]). The calculation is performed in a
coupling constant range, where eq. (1.2) is not fulfilled. On the contrary, similarly to
eg. (1.1), we shall typically consider the case

sy = o(1) (1.3)

i.e. the values of the coupling constants will correspond to a situation where the
SU(2) weak interaction is strong. The electromagnetic interaction will be neglected
altogether (no U(1)-factor) and no fermions (leptons and quarks) will be considered.
For a possibility of how to include these in the lattice action, see ref. [5].

The study of the standard SU(2) Higgs sector in the situation corresponding to eq.
(1.3) is interesting from several points of view:

(i) It can reveal the existence of non-perturbative constraints in the electroweak
theory. For instance, the number of independent renormalized couplings can be
smaller than the number of bare couplings. A large body of evidence [6] has been
collected to support the occurence of such a “parameter reduction” in the single-
component ¢* theory, where the renormalized coupling is probably always zero.

(ii) It is interesting to compare and confront the behaviour of the totally broken
SU(2) gauge interaction with unbroken SU(N) colour, studied up to now in most
Monte Carlo investigations.

(iii) The gauge-Higgs system is theoretically interesting for its own sake, as a
representative of a class of quantum field theories.

(iv) Finally, there has been some speculations that weak interactions could
become strong in the hundred GeV energy range [7]. This possibility seems to be
improbable at present, but direct experimental evidence is still scarce at such high
energies.
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Fig. 1. The phase transition lines in the (g2, x) plane for constant A according to fig 3 mn ref. [9).

Previous Monte Carlo simulations of the SU(2)-Higgs system with scalar field in
the fundamental representation [8-11] concentrated mainly on the singularity struc-
ture in the coupling constant space. These studies showed that there is a phase
transition surface separating the Higgs phase from the confining phase. These
“phases” are, however, not qualitatively different from each other [12], they are
continuously connected beyond the edge of the critical surface. This structure is
illustrated by fig. 1, which is a reproduction of fig. 3 of the paper by Kihnelt, Lang
and Vones [9].

An interesting question is the order of the phase transition separating the
Higgs-like and confinement-like regions. If there is a critical surface corresponding
to a second-order phase transition, then the correlation length becomes infinite and
some continuum theory can be defined in a limit going to this surface. (The
continuum theory may be trivial, i.e. noninteracting, except perhaps for some
peculiar “fixed points” on this surface.) Information on the critical behaviour can be
obtained, e.g. from “finite size scaling” [10] or from a direct study of the correlations
11}

In my previous paper (11] the correlations were numerically calculated in the limit
of infinite self-coupling (A — oo; fixed-length Higgs field on the lattice). This limit
of the standard electroweak theory was considered extensively in the literature [13]
as an interesting limiting case, when the tree-level mass of the physical Higgs boson
tends to infinity. (The physical mass can, however, stay finite {14].) The results in ref.
[11] showed, that in the vicinity of the phase transition line the correlation lengths in
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both the isovector 1~~ (W-boson) and isoscalar 0** (Higgs boson) channels have a
tendency to grow. This can be interpreted as a sign for a second-order phase
transition, but a weakly first-order transition with some small specific heat is equally
possible. The present paper is an extension of ref. [11]: in the case of the fixed-length
Higgs field (A = c0) more statistics are collected closer to the critical line and the
variable-length case is considered, too, for several values of the self-coupling A. The
precise position of the phase transition is determined at several points directly from
the correlations. Another important limit, namely 8 = co (no gauge coupling) [15] is
also considered. Special emphasis is given to the information which can be obtained
from the mass ratios and from the static potential concerning the renormalization
group properties of the model.

In the next section, after summarizing the lattice formulation of the SU(2)
fundamental Higgs model, the results for the correlations will be presented and
discussed. In sect. 3 the static energy of an external SU(2) doublet charge pair is
considered and consequences for the renormalization group trajectories (“lines of
constant physics™) in the three-dimensional coupling constant space will be dis-
cussed. The last section contains the conclusions.

2. Correlations

21. THE LATTICE ACTION

The continuum euclidean action S, of an SU(2) gauge field interacting with a
complex scalar doublet ¢(x) can be written like

Se= [ d* (I Tr(F(x)wF(x)w) + D#'(x) Dg(x) + A (#7(x)(x) —v?)’}..
(21)

Here F(x),, denotes, as usual, the field-strength matrix of the gauge field, D, is the
gauge-covariant derivative, A _ is the self-coupling of the Higgs field and v is the
tree-level vacuum expectation value related to the opposite-sign mass term
~pl(x)é(x) by

w2
U= .
Ae
The gauge field is described on the lattice by the link variables U(x, p) € SU(2) and

the Wilson gauge lattice action is a sum ¥, over positive orientation plaquettes P.
For the lattice description of the Higgs field it is convenient to introduce the lattice

22)
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site variable ¢, and the lattice bare couplings «, A by the replacements
a¢(ax) = vk ¢,
A A2,

8—(ap)’ - (1-2)\)/x. (2.3)

Here a denotes, as usual, the lattice spacing. In these variables the euclidean lattice
action is

S= Z{A(¢I¢x— 1)" + ¢l — kLol Ulx, u)%} +BY{1-4Trlp}. (24)
x " P

The lattice is assumed to be periodic in all four directions. ¥, means a summation
over all lattice sites, L, is a sum over positive and negative directions (p=
+1, +2, +3, +4), x + p is the neighbouring point of x in the direction p and B is
related to the bare gauge coupling g by 8 =4/g2.

The peculiarity of the SU(2) doublet field ¢, is that it can also be represented by
its length p,>0 and by an SU(2) matrix «,. The correspondence is given by

(a=1,2):

¢: = anx,az 4
&;: = aaﬂ‘pl = pxax,al . (2'5)

Here ¢ is the opposite hypercharge doublet field in SU(2) ® U(1) (¢ is the antisym-
metric unit tensor). Using the new variables, the lattice action can be written as

$=BE(1-1TeU) + E{ = 3togp, +A(1-1)’
P x

& £ oo Tl Uk w)a) ) (26)

p>0

The integration measure was originally p?dp, d’a,d*U(x, p) (if d’g denotes the
invariant Haar-measure in SU(2)), but in eq. (2.6) the factor g} is included in the
exponent, therefore the measure is simply dp,d’x, d*U(x,p). Let us introduce,
instead of the SU(2) link- and site-variables U(x, p) and «,, the gauge invariant link
variable

V(xn) = ol Ux, b 2.7)

Due to local gauge invariance, this can be used for the description of the gauge field
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also in the pure gauge part, therefore the lattice action can be written as

S=B8Y(1-1TrVp) +Z{p§— 3logp, +A(p2=1) -k T px+“prrV(x,p,)}.
P x p>0

(2.8)

This does not depend on a,, therefore the integration d’, gives only an inessential
constant factor, and can be omitted. The integration measure for eq. (2.8) is
dp, d*V (x, p). The disappearence of the angular part a, of the Higgs field is usually
expressed by saying that it is “eaten” by the gauge field. Since both p, and V(x, p)
are gauge invariant, both of them describe physical degrees of freedom: V(x, u)
corresponds to the (gauge-) W-boson and p,_ to the physical (Higgs) H-boson.

The SU(2) Higgs model with Higgs field in the fundamental representation has a
global SU(2) “weak-isospin” symmetry. In the full SU(2) ® U(1) electroweak theory
this symmetry corresponds to the transformations £— v, (£=¢,p,7),ue d,cos,
t & b; therefore it is broken by electromagnetism and by fermion mass differences
within doublets. In the action (2.8) the exact global weak-isospin symmetry transfor-
mation is

Vi(x,p)=UW(x,p)U,
p;c= px' (2'9)

For comparison, the local gauge transformation is
U'(x, 1) = UZLU(x, 1)U

' — 771
a, = Ux Ay s

o =all,,
Vi(x,p)=V(x,p). (2.10)

With respect to weak isospin the W-boson is isovector, the Higgs boson is isoscalar.

There are interesting limits of the model, which can be studied separately. In the
case of infinitely strong self-coupling A — oo the length of the Higgs field is frozen
to p, =1, and the action is

Shw=,3§(l-%Ter)—x Y Trv(x,p). (2.11)

x,p>0

The correlations in this limit were investigated in ref. [11]. This is the limit of a very
strongly interacting Higgs field, where p and A in eq. (2.2) go to infinity in such a
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way that the tree-level vacuum expectation value v = a~ 'k remains constant. The
tree-level mass py2 of the physical Higgs boson goes also to infinity. Nevertheless,
as it was shown in ref. [11] and as we shall see below in more detail, the lowest mass
in the isoscalar 0** channel remains finite.

Another important limit of the actions in egs. (2.6), (2.8) is 8 — oo (zero gauge
coupling). In this case the link variable U(x, p) is a pure gauge, therefore it is
necessary to restore the angular Higgs variable a, and return to eq. (2.6), which
gives

2
Spoco =2 {pi —3logp +A(p2~1)"—« ZOPH,,prr(aL,ﬂx)} . (212
X >
This is the lattice version [15] of the Gell-Mann-Lévy linear o-model [16]. It has a
global SU(2) ® SU(2) symmetry corresponding to the transformation (U, € SU(2)):

o, =UZla,U,. (2.13)

SUQ2) ® SU(2) is equivalent to O(4) and the SU(2) group elements can also be
represented by a unit-length four-vector (a,, a,):

a,=aq ,+ina,, (7,=Paulimatrix). (2.14)

In the limit A — oo the model in eq. (2.12) becomes the non-linear o-model in four
dimensions:

Sﬁ=oo,)\=oo = -2k Z Oap,x+pap,x . (215)
X, p>

In the continuum limit the action S, is expected to describe 3 massless Goldstone
bosons and 1 massive scalar particle, which are presumably non-interacting [17].

2.2. MONTE CARLO CALCULATION OF THE CORRELATIONS

The Monte Carlo simulation in the SU(2) fundamental Higgs model can be done
by using the lattice action in eq. (2.8). For the fixed-length case (A= o0) the
corresponding action is (2.11). In order to see whether the use of gauge invariant
variables makes some difference, I did parallel test runs with the actions in eqs. (2.6)
and (2.8) at the points A = 1.0; 8 =2.3; « = 0.30 and 0.31. No appreciable difference
could be observed either in the results or in the time-correlations during the
updating. Since these are typical parameter values for the present work, this means
that the. simpler gauge invariant action can be safely used in our range. For very
large B8 > 1 values, however, the original action (2.6) is expected to be better for the
Monte Carlo updating, because the “hidden” angular Higgs degrees of freedom are
crucial. At B8 = oo the gauge degrees of freedom are absent, therefore one has to use
the action (2.12).

In the present paper the correlations were computed on an 8* lattice. The SU(2)
link variables were replaced in most cases by the elements of the 120-dimensional
icosahedral subgroup. The updating was done by the Metropolis method with 6 hits
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per link for the gauge field V(x, n) and 6 hits per site for the length variable p . The
links and sites were updated in a random order, but always full sweeps were
performed alternating over links and sites.

Diagonal correlations (and sometimes a few off-diagonal ones) were measured in
different channels. In all cases the three-momentum was projected out both to p =0
and p==/4a (1 in lattice units) in all three space-like directions. The time slices
were chosen in all four possible time orientations. The measurement of the correla-
tions was performed only after every 5th or 10th full sweeps, in order to reach more
independent configurations. The results given below were collected typically from
8000-10000 sweeps per point in the coupling constant space. The configuration was
started in most cases from a previously equilibrated one in some neighbouring point.
At least 1000 equilibrating sweeps were performed before starting to collect data for
the correlations. The computer time used for the calculation of the correlations
amounted to about 400 CPU hours on the Siemens 7.882 at the University of
Hamburg.

To obtain the correlation lengths in the W-boson channel an appropriate operator
is

o =Tr{rV(x,m)} (m,r=1,2,3). (2.16)

As it was discussed in ref. [11}, this has weak-isospin Iy, =1 and spin-parity
JP€=1"". For the I, =0 Higgs boson channel there are several possibilities:

Og = Z Tt Ve, ny >

(m,n)
OH = px H
0,=Y TrV(x,m). (217)

The first is the symmetric combination of the three space-like orientation single
plaquette operators, which is often used in QCD glueball spectrum calculations for
the 0** channel. The second is the genuine Iy, =0, JP¢=0*" Higgs variable (the
length of the Higgs field). The third operator appears in the A = oo action (2.11).
Assuming that the 0** state is the lowest isoscalar state, the symmetrization in Og
and O, can also be omitted, provided that the correlation is determined at large
enough distances and therefore the higher mass contributions from other spin-parity
channels can be neglected. Similarly, the lowest mass can also be inferred from
off-diagonal correlations, like e.g. between Tr V(x, m) and Tr V(x, n) (m # n), if the
distance is large enough.

The results obtained for the correlations in the W- and H-boson channels are
shown in figs. 2a—2c and in table 1. Always the inverse correlation lengths are given,
i.e. the estimates of the lowest mass in lattice units in the given channel. Table 1 also
contains some global average quantities like the average link L, average plaquette P,
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Fig. 2a. The inverse correlation lengths in the W-boson (amy;) and Higgs-boson (amy) channel in
lattice units for A = co, 8=2.3.

average length p, length dispersion o, and average action per site s. These are
defined, respectively, like

L=(4Te¥(x, 1)),
P=(1-1TrVp),

P={P:)>

s=68(1—4Tr¥p)+(pl~3logp, +A(p} - 1))

+86(1 - 4p,p,., Tr V(x,p)). (2.18)
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In the average action per site the constant term 8k is added with respect to eq. (2.8),
in analogy to the constant 68 in the average plaquette term. In the W-boson
channel, for amy, < 1, the correlation can be determined, with relatively small error,
up to the maximum distance d=4 on the 8* lattice. The correlations in some
sample points were shown in ref. [11]. The qualitative behaviour is here rather
similar. The ease of measurement of correlations at larger distances recalls the
general behaviour in 2-dimensional o-models (see e.g. [18]) and not the pure SU(2)
gauge theory, where it is rather difficult to obtain large-distance correlations (see
e.g. [19]). For amy > 1.5 the correlation drops fast at small distances. In such points
the mass estimate is obtained from distance 4 = 1 (or at most from d = 2), therefore
these points have larger systematic errors. The errors shown include some subjective
estimate of the systematic errors, too.

In the case of the Higgs boson channel the situation is more involved. The
one-plaquette operator Og in eq. (2.17) behaves rather similarly, or even still
somewhat worse, than in pure SU(2) gauge theory, i.e. the correlation usually cannot
be determined beyond d = 1. The best points for O are below the phase transition
line (x < k,, see below), where the behaviour, and also the value of the correlation
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Fig 2c The same as fig. 2a, for A=0.1, =23,

length, is rather similar to pure SU(2) gauge theory at the same B-value [19]. The
other two operators Oy and O, behave oppositely: for k <k, they are worse, for
K > k.., however, much better than Og. For « >k, the diagonal correlation of Oy
and O, can be determined, within the given statistics, up to d=2 or d=3. O,
behaves for A > 0.1 still somewhat better than Oy, but the mass estimates from O,
and Oy are always compatible. In the figures and in table 1 always the best estimate
for amy is given, sometimes also including information from the off-diagonal
correlation between Tr V(x, m) and Tr V(x, n) (m # n).

The energies E; obtained from the p =1 correlations give in most cases, within
errors, the same masses m = |E? —p? as the p=0 time slices. This shows that
Lorentz invariance is approximately restored in the measured points. There seem to
exist, however, some systematic deviations in the points with largest correlation
lengths (£ ~ 2), where the p = 1 mass is usually 10-20% higher. This may be due to
finite size effects, since finite cut-off effects are expected to become smaller for
large £.
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TABLE 1
The value of the W-boson mass (amy ) and Higgs-boson mass (amy;) 1n lattice umts

>
=

amy; amy L P N '] [}

035 250 151(15)  02011(3)  03954(4)  8.693(5)

038  24(4) 1.27¢9)  023184)  03931(6)  8.760(6)

04  0798)  05912) 02948(26) 03820(13)  8.528(15)

042 0657  108(12) 03437(11) 03757(3)  8.390(4)

045  0.62(11) 14(2) 039933)  03696(5)  8.263(6)

05*  060(7) 15Q2) 0.4669(4)  03623(3)  8132(4)

06* 06711 1.703) 055742)  035123)  7971(3)

08% 0899  21(3) 06596(2)  03348(3)  77994)

10 02 4005 112(16) 01181(3)  0.3973(2)  8300(6) 1060  0.260
10 03 1.8(3) 1098)  02316(2)  03924(2)  85473) 1115 0258
10 031 07312) 09810) 03216@4)  03772(3)  8080(7) 1152  0250(2)
10 032 0566) 116(12) 03786(6)  037092) 78219 1178 02522
10 035 067(7)  15516) 04919(4)  035832)  7256(6) 1241  0.243
1.0 04 0837  17218) O06101(5)  034252) 64329 1331 0228
05 025 2705 125(14)  0.1957(6)  03951(3)  8318(6) 1164 0306
05 03 0687 13418 050093)  035692)  6821(8) 1358 0292
01 019 255) 1.26(11)  020642)  039392)  7775(11) 1353 0420
01 0195 04509)  050(12) 031593)  03771(2)  722032) 1450 0429
01 02 0537 098(12) 042388)  03650(4)  6673(15) 1558 0433
01 0205 0536) 121(14) 048795)  03577(2) 63019 1636 0432

88888888

01 021 07X7)  146(19) 05428(3) 03510 59393) 1712 0427
01 022 0857  14819) 061996)  033992)  529810) 1845 0410

01 03 147(7) 2403 0.8415(2) 02728 0.187 2628 0327

The global average quantities L, P, p, g, and s are defined 1n eq (2 18). The errors mn the last
numerals are .given 1n paranthesis If no error 1s given, the error estimate 1s <1 1n the last digit The
B-value 1s always 8 =2 3. The lines with an asterisk were obtamed with full SU(2) group, the rest with
the 1cosahedral subgroup

23 BEHAVIOUR NEAR THE PHASE TRANSITION

The qualitative behaviour of amy, and amy for B =23, A = oo (fig. 2a), $=2.3,
A =1.0 (fig. 2b) and B = 2.3, A = 0.1 (fig. 2¢) is quite similar. The main difference is
in the widths of the k-range, where similar changes occur: the region in the phase
transition is squeezed for small A. The reason for this behaviour is quite clear: at
A =0 the model defined by the action (2.8) has a kinematical singularity. In the
Higgs phase, where the link expectation value is substantial (L — 1 for k = o), for
large enough “hopping parameter” «, the hopping term proportional to k wins over
the stabilizing p? term and the action is unbounded from below if p, — 0. For very
small A the A(p2 — 1)? term can stabilize the theory only for very large p,, therefore
the change above k_ is squeezed into a small x-region, which is asymptotically
proportional to VA

Apart from the squeezing, there is a remarkable universal behaviour for different
A. This can already be seen in the global averages given in table 1. For instance, the
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Fig. 3 The hnk expectation value L=(}TrV,) as a function of the plaquette expectation value
P=(1-1TrV,) for different A-values at B=23.

link expectation value is a universal function of the plaquette expectation value (see
fig. 3). This shows, that « is not the correct variable to use. Plotting the W-boson
mass as a function of the link expectation value, one obtians the remarkable
universal curve shown in fig. 4a. The same for the Higgs boson mass, in fig. 4b,
shows a universal behaviour, too, although the errors are larger and maybe there is
some mild tendency for the A = 0.1 points to fall somewhat below the rest. Fig. 4b
has to be contrasted, however, with the tree-level prediction my = v‘/k_c‘ , according
to which my should go to infinity for A — co.

The approximate universality of the physical quantities in such a considerable
A-range may appear rather surprising at first sight. (Besides the masses, the static
energy of an external SU(2) charge pair, considered in the next section, shows the
same universality t0o.) We know, however, that in the continuum limit the pure ¢*
theory also becomes independent from the bare coupling A, namely, the renormal-
ized coupling is always zero. It is a very interesting possibility, that the A-indepen-
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dence of the continuum limit remains true after switching on the gauge coupling.
This seems plausible in view of the asymptotic freedom of the gauge coupling, in
particular if the continuum limit in the gauge-Higgs system is also at 8= o0.

The behaviour of the correlation lengths (or masses) near the phase transition is
crucial also for the question of the order of the transition. The order of the phase
transition is a statement concerning the behaviour of the system in the infinite
volume limit, therefore the numerical investigation of the order has to include,
obviously, a study of the lattice size dependence too. Some hints can, however, be
obtained also on a fixed size lattice. Having this in mind, one can interpret the
marked jump of the masses near L = L_ =~ 0.26 as a sign of the first-order nature of
the confinement-Higgs phase transition for every positive A. As it can be seen in
figs. 4a and 4b, amy, jumps from values around amy, ~ 0.5 to amy, > 2.0. At the
same time amy jumps from amy~ 0.5 to amy~ 1.2, a value consistent with the
0** glueball mass at the same B in SU(2) [19]. Another observation at the phase
transition is that the average action per point s has a maximum near « = «, (see fig.
5). This is what one can say on the basis of the present numerical data about the
order of the phase transition. The important question of the order has to be
investigated in detail in the future.

The position of the phase transition obtained from the correlations is substantially
lower than the lines given in ref. [9] and shown also in fig. 1. The present best
estimates for «, are (always for 8 =2.3):

A=o00: k.= 0.386 + 0.005,
Ak =0.3;
A=1.0: k.. =0.303 +0.002,

Ak =0.09;

A=01:  x,=0.192+0.001,

Ak =0.02. (2.19)

The Ax values give the approximate widths of the typical structure above k =k,
(for A > 0 A« is expected to vanish like yX).

Below the phase transition (k < k) everything looks very much like in pure SU(2)
gauge theory (further arguments in this direction will be given in the next section).
In the Higgs phase (k> «_.), far away from the phase transition, my is roughly
twice as large as my,. Near the critical line, however, my and my become nearly
equal. Due to the somewhat large errors it is impossible at present to say whether
there is a region for k > k_, also with my < m. For the moment, the numbers in the
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average action per point s as defined 1n eq (2 18), for A = o0, 8=2.3 The lines are drawn just to guide
the eye.

Higgs phase are consistent with my > my, (with error: my > (1.0 £ 0.3my,), but
further Monte Carlo studies on larger lattices and with higher statistics can decide
whether my <my, is possible in the Higgs phase or not. The lower bound
my > (1.0 £ 0.3)my, is probably also relevant (up to electromagnetic and fermionic
corrections) to the real world with small gauge coupling, since my/my increases
for decreasing gauge coupling strength (see the next section in connection with the
discussion of the renormalization group trajectories).

Let us note that concerning the occurence of my = my, the present conclusions
differ from those of ref. [11]. The reason is the better statistics closer to the phase
transition, which allows a more precise localization of the transition. Points with
my = my, were found in ref. [11] only near the endpoint of the phase transition line
(near 8 = 1.5). Here we see that such points occur also at 8 = 2.3 (and probably also
for every larger B), if one is going close enough (from above) to k = k.
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2.4 CORRELATIONS AT 8=

The B — oo limit of the correlations can be numerically studied by a separate
Monte Carlo simulation based on the action in eq. (2.12). This is equivalent to an
0O(4) o-model in 4 dimensions, therefore the O(4) variables defined in (2.14) can also
be used. For technical reasons, however, I took the SU(2) ® SU(2) action (2.12) and
used for the SU(2) site variables (a,) the elements of the icosahedral subgroup.

Let us denote the inverse correlation length at 8 = co measured by the Higgs field
length variable p, by am . For the inverse correlation length of the angular variables
a, let us introduce the notation am,. In the continuum limit of the 8 = co model m,,
is the mass of the massive Higgs boson, whereas m, is the mass of the 3 Goldstone
bosons. We expect, namely, at some critical value k =k, (which is a function of A:
ko = K. (A)) spontaneous symmetry breaking. On the lattice this is manifested for
k> k,(A) by a spontaneous alignment of the SU(2) variables in some arbitrary
direction. The consequence of the spontaneous symmetry breaking SU(2) ® SU(2)
— SU(2) (or equivalently O(4) — O(3)) is the appearance of 3 massless Goldstone
bosons (am, = 0).

The Monte Carlo simulation at 8= oo was carried out, similarly to the 8 < o0
case, on an 8* lattice. In the Metropolis updating procedure the site variables a, and
p, were updated simultaneously, with 6 hits per site (in a randomly chosen order of
sites). Concerning the number of sweeps and the amount of statistics the same
applies as for the finite 8 simulation (see above). The results obtained for am, and
am, are shown in figs. 6a and 6b and in table 2. In the table the average link L, the
average length p, the length dispersion ¢, and average action per site s are also
included. These are defined, similarly to (2.18), as

L=<§Tr(0fr o )> ,

o+ Ol
p={p)>
s=(p2—3logp, +A(p?- 1)2>

+ 8x< 1- %pxpx“Tr(aiﬂax)) . (2.20)

As a function of the average link L, there is a similar approximate universality as for
finite B8 (see fig. 7).

As it is shown by fig. 7, at the critical link expectation value L=L_ =02,
spontaneous symmetry breaking takes place. Above this critical point the Goldstone
boson mass (in lattice units) am, is consistent with zero. At L= L, on our 84
lattice, the Higgs mass am, has a minimum value of amy, = 0.4 + 0.1. The critical «
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TABLE 2
The values of am, and am,, for 8= co

A K am, amy, L s p a,
10 022 0.78(6) 1.91(11) 0.1436(6) 2 876(7) 1070 0258
10 024 033(4) 114(9) 01717(3) 2933(5) 1.081 0259
10 0.25 004(2) 0.44(7) 02198(12) 2.856(6) 1092 025s
10 026 0.03(2) 071(%9) 0.2954(14) 2.705(2) 1124 0.256
10 027 002(2) 099(8) 0 3620(6) 2 551(8) 1 1490(4) 0256
10 028 004(2) 1.31(14) 04180(9) 24214) 1173 0249
10 03 003(2) 1.52(15) 0.5070(6) 2169(5) 1216 0245
10 0.32 0 02(6) 1.85(16) 0.6361(4) 1.928(3) 1256 0241
01 0.155 0.51(5) 142(14) 0.1512(3) 2.262(2) 1 2901(8) 0410
01 016 022(4) 0.92(11) 01664(4) 2251(8) 13022(6) 0413
01 0163 0.08(3) 046(7) 01896(2) 2207(3) 13191(2) 0.415
01 0165 0.04(2) 037(8) 02269(5) 2116(6) 1346 0417
01 0167 0.02(2) 0 48(6) 0.2733(15) 2014(9) 13793(7) 0.421
01 017 004(3) 0.81(8) 03401(12) 1 829(5) 1430 0426
01 0.175 0.03(2) 094(12) 04344(5) 1570(3) 1514 0427
01 018 0.02(2) 1.21(11) 0.5079(14) 1339(2) 1 5891(6) 0427

The average quanuties L, p, ¢, and s are defined in eq. (220) The errors in the last numerals are
given 1n paranthesis If no error is given, the error estimate is <1 1n the last digit

at the two A-values is, respectively:

A=10:  k,=0.247+0.003,
A=01:  K,=0.1640.001. (2.21)

The inverse correlation lengths around the critical point behave continuously (there
is no jump like in figs. 4a—4b). This is consistent with the expected second-order
phase transition. Above the critical point there are very long range correlations in
the angular variables, extending practically over the whole lattice. In fact, the value
of the angular correlation is typically only 5-10% smaller between the most distant
(d = 4) time slices than for d = 1. In the limit « — . the asymptotic behaviour of
the correlations in the angular variables is expected to be power-like (it goes to zero
like the inverse of the euclidean distance to the power (2 + 7), where 7 is some
critical exponent [6]).

3. Static energies

3.1 WILSON LOOPS

The static energy E(R) of an external SU(2) doublet charge pair is a characteristic
property of the SU(2) gauge field system: in the case of confinement it increases
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Fig. 7. The inverse correlation lengths 1n the o-model at B = oo plotted as a function of the average link
L={}TrV,) defined m eq (2.20).

linearly for large distances, whereas in a screening phase (like the Higgs phase) it
goes asymptotically to a constant. As is well known, E(R) can be determined from
the expectation value of Wilson loops Wy = Tr Uy  with time elongation T and
euclidean distance R between the endpoints for fixed time:

1
aE(R) - Tli}»noo ?1

ogWx 1. (3.1)
Some Monte Carlo measurements of the static energy E(R) were performed on 8*
lattice in ref. [11], where it was shown that rotation invariance of E(R) is well
satisfied if the largest correlation length is at least 1.

In this paper a more detailed study of the static energies will be presented. It was
carried out on 12* lattice using the icosahedral subgroup for the SU(2) variables,
The lattice actions (2.8) and (2.11) were used, and the Wilson loops were calculated
from the gauge invariant links ¥(x, p). This is equivalent, because of gauge invari-
ance, to the use of the original link variables which appear in the definition of Wy r.
The values of planar Wilson loops with 1 £ R, T < 5 were determined (after 1000
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TABLE 3a
The expectation values of Wilson loops Wy 7 1n umits of 10~3
A B K Wi Wi, W13 Wis Wis
00 20 0.55 57142(12) 35651(20) 22770(20) 14640(18) 09435(17)
) 21 0.5 58983(9) 37855(14) 24833(15) 16384(14) 10827(12)
0 2.1 0.6 60832(7) 40634(10) 27774(11) 19094(10) 13145(10)
00 21 0.8 63142(7) 44145(10) 31524(11) 22647(11) 16287(11)
o0 23 03 60349(12) 38768(18) 25247(21) 16496(18) 10789(16)
S 23 04 61805(10) 41123(16) 27848(19) 18946(18) 12906(17)
0o 23 045 63022(9) 43099(13) 30055(15) 21066(15) 14787(14)
00 23 0.5 63759(6) 44257(9) 31339(10) 22306(10) 15900(10)
00 23 0.6 64885(6) 46021(10) 33314(11) 24233(12) 17644(12)
o0 23 0.8 66529(6) 48599(8) 36215(9) 27106(10) 20316(10)
o0 24 04 64259(8) 44586(13) 31500(14) 22354(14) 15883(13)
0 24 05 65631(6) 46819(10) 34052(11) 24883(11) 18206(11)
0 24 06 66547(5) 48282(8) 35711(11) 26536(12) 19742(13)
0 25 04 66155(8) 47246(12) 34341(14) 25073(16) 18328(16)
o 25 045 66784(10) 48275(14) 35530(17) 26267(18) 19442(18)
10 23 0.32 62896(9) 42880(15) 29806(17) 20829(17) 14582(16)
10 23 035 64153(10) 44866(16) 32021(21) 22970(23) 16502(21)
1.0 23 04 65753(6) 47378(8) 34835(9) 25736(9) 19038(9)
01 23 0.195  62428(11) 42129(18) 28970(20) 20021(20) 13861(17)
01 23 0205  64233(9) 44999(14) 32166(16) 23116(15) 16634(13)
01 23 0.22 66004(8) 4777(12) 35280(14) 26179(15) 19447(15)
TaBLE 3b
The expectation values of Wilson loops Wy 7 in units of 103
A B K Wi Was W Was Wss
00 20 0.55 16925(22) 08881(20) 04833(18) 02661(8) 00274(8)
0 21 Q.5 18783(18) 10212(15) 05722(12) 03238(10) 00385(7)
00 21 0.6 22101(13) 13111(12) 07982(11) 04890(9) 00850(7)
0 21 0.8 26323(12) 16984(12) 11168(12) 07382(10) 01794(8)
00 23 0.3 18187(23) 09030(22) 04555(15) 02303(11) 00071(5)
0 23 0.4 21263(23) 11814(23) 06715(18) 03858(15) 00351(7)
o0 23 045 23873(18) 14268(16) 08731(14) 05386(12) 00835(8)
00 23 0.5 25380(13) 15696(13) 09928(11) 06324(11) 01189(10)
00 23 0.6 27666(13) 17895(12) 11806(12) 07828(11) 01799(9)
© 23 0.8 31013(11) 21161(11) 14677(10) 10225(9) 02958(9)
0 24 04 25113(19) 15163(19) 09352(16) 05812(13) 00859(10)
o0 24 0.5 28145(13) 18149(14) 11934(13) 07901(12) 01722(9)
00 24 0.6 30101(12) 20072(13) 13627(12) 09300(11) 02379(10)
o 25 04 28083(17) 17822(18) 11532(18) 07522(16) 01388(11)
0 25 045 29512(20) 19260(20) 12810(18) 08570(16) 01885(11)
1.0 23 032 23575(21) 13988(20) 08500(17) 05208(14) 00785(10)
1.0 23 0.35 26154(20) 16441(21) 10552(19) 06820(15) 01373(13)
10 23 0.4 29430(9) 19603(9) 13295(9) 09063(8) 02371(8)
01 23 0.195 22586(23) 13041(23) 07712(17) 04595(13) 00575(10)
0.1 23 0205 26327(19) 16604(20) 10698(16) 06939(14) 01420(10)
0.1 23 0.22 29939(16) 20100(16) 13737(14) 09431(12) 02565(11)
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TABLE 3¢
The expectation values of Wilson loops Wy r in umts of 10~ 5

A B K Wi Wi Wis Wiy Was

o0 20 055 04247(21) 02171(13) 01130(7) 01101(8) 00553(7)
00 21 05 05059(14) 02658(9) 01430(7) 01356(9) 00720(6)
%] 21 06 07316(13) 04284(10) 02554(7) 02470(9) 01447(6)
o0 21 0.8 10561(12) 06790(10) 04401(8) 04333(10) 02795(8)
] 23 03 03617(18) 01510(12) 00626(8) 00511(6) 00179(5)
00 2.3 0.4 05798(18) 02999(14) 01579(10) 01459(11) 00731(8)
%) 23 045 07869(16) 04558(12) 02684(9) 02562(11) 01479(8)
00 23 0.5 09092(13) 05503(10) 03379(%9) 03255(10) 01981(8)
00 23 0.6 11023(13) 07051(11) 04552(8) 04453(11) 02851(8)
00 23 08 13960(12) 09478(11) 06479(9) 06376(10) 04342(8)
0 24 04 08374(18) 04833(14) 02835(12) 02681(11) 01531(9)
%) 24 05 11045(12) 06989(14) 04472(9) 04339(10) 02739(8)
) 24 0.6 12784(13) 08423(11) 05607(10) 05471(11) 03617(10)
oo 25 04 10492(18) 06434(16) 04008(12) 03822(14) 02331(10)
00 25 0.45 11832(20) 07549(16) 04875(15) 04721(17) 03002(13)

10 23 032 0761518)  04352(14)  02539(11)  02415(13)  01386(9)
10 23 035  09749%19)  06022(16)  03767(13)  03651(19)  02248(14)
10 23 04 12541(11)  08286(10)  05529(8) 05425(10)  03580(9)
01 23 0195  06814(22)  03752(16)  02113(11)  01981(15)  01079(10)
01 23 0205  09870(18)  O06116(15)  03844(11)  03721(15)  02306(11)
01 23 022 12991(15)  08670(14)  05830(12)  05726(14)  03839(11)

equilibrating sweeps) in 20003000 sweeps for some selected points in the 3-dimen-
sional parameter space (A, B8, k). The results are collected in tables 3a-3c. This
calculation took about 600 CPU hours on the Siemens 7.882 computer at the
University of Hamburg,.

Because of the limitation in the time elongation T, the best way to extract the
static energy E(R) is to fit the 5 points (1 < 7'< 5) by the sum of two exponentials:

Wr 1= c128xp(—&,3T ) + ¢, xexp(—&,5T ). (32)

The industrious reader is invited to repeat the calculation on the basis of table 3.
Here only the final results will shortly be summarized: the fit is good and the value
of the smaller energy e, is always stable with small error. Therefore, one can
identify aE(R) with ¢, . The second energy &, is also reasonably well determined,
and its value is typically 3-6 times larger than ¢, (typical values of ¢, are in the
range 1.6-2.3). This means that the field configuration around the external charge
pair is sufficiently rigid and the static energy can be considered, to a good
approximation, as a potential energy.
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TABLE 4
Parameters of the potential in a Yukawa- (Y), Hulthén- (H) and string-like (S) fit defined by eq. (3 3)

A B K fut a ¢ am a’s

o0 20 0.55 S 0.305(15) 0.75(2) 0.003(3)
o 21 0.5 Y. H 0.312(14) 0.66(2) 041(12)

o0 21 0.6 Y,H 0.258(9) 0.538(4) 0.64(18)

o0 21 0.8 Y, H 0214(9) 0.441(2) 091(21)

) 23 03 S 0192(22) 0.46(3) 0.160(10)
00 23 0.4 S 0274(8) 063(1) 0.032(3)
o0 23 0.45 S 0.250(5) 0.60(1) 0.002(2)
o0 23 05 Y,H 0.234(6) 0.52(1) 0.42(16)

o0 23 0.6 Y,H 0207(6) 0453(2) 0.61(18)

o0 23 08 Y.H 0.178(5) 0.387Q1) 0.82(22)

© 24 04 S 0241(5) 0571(6) 0.0118(17)
o0 24 0.5 Y.H 0.206(5) 0.477(6) 0.33(1%)

© 24 0.6 Y,H 0.191(5) 0421(2) 0.60(19)

o 2.5 0.4 S 0.213(4) 0519(5) 00067(14)
00 25 0.45 Y,H 0.201(3) 048(1) 0.18(9)
1.0 23 0.32 Y.H 0.264(3) 0.61(1) 0147
10 23 0.35 Y.H 0.218(T) 050(1) 0.38(15)
10 23 04 Y.H 0.187(5) 0.417(2) 0.69(21)
01 23 0.195 S 0.277(5) 0.64(1) 0.0089(21)
01 23 0.205 Y,H 0.218(6) 049(1) 0.44(19)
01 2.3 0.22 Y, H 0.190(6) 0404(1) 0.81(25)

The errors in paranthesis are the sums of statistical errors and estimated systematic errors.

The R-dependence of the potential for 1 < R < 5 was compared to 3 simple forms:

a
(Y): —-Eexp(—amR)+c,
H aam +

(H): exp(amR) -1 ©

(s): -%+azoR+c. (3.3)

Y stands for “Yukawa”, H for “Hulthén” and S for a “string-like” potential. The
best fit parameters are given in table 4, in those cases, when an acceptable fit could
be obtained by the given form. The systematic errors of the fitting procedure were
roughly estimated from the deviations in such cases, when different fits were
possible.

As can be seen from table 4, the Yukawa- or Hulthén-form gives a good fit in the
Higgs phase far enough from the phase transition surface. Therefore, the potential in
these points is given, to a good approximation, by the massive W-boson exchange.
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Fig 8. Typical examples of the static potential aE in such points, where the Yukawa form gives a
good fit.

For typical examples see fig. 8. The fitted mass values am in table 4 are, within
errors, consistent with the W-boson mass amy, determined from the correlations
(see table 1). There is, however, some systematic difference between the Yukawa
and Hulthén form: the former gives always smaller masses than the latter. Ap-
proaching the phase transition surface from above, the potential develops a quasi-
linear, confinement-like behaviour for intermediate distances. The change between
the pure Yukawa-like and more and more explicit string-like behaviour is continu-
ous (for illustration see fig. 9). Near the phase transition the Yukawa fit gets
gradually worse (see e.g. figs. 10a—b). It is expected, that in the Higgs phase at very
large distances the potential finally tends always to a constant, but the turn-over
might set in rather late. Eventually, it would be very interesting to know the exact
behaviour at very large R. For instance, if the R — oo form is given by const



194 I. Montvay / Standard Higgs model

at
a7k B=23
Azoo 3
a =04
o N=045
e =05 &
061~
. ]
[
0
05 ' L]
° .
[ ]
04—
a
o
®
03
] ] 1 | 1
1 2 3 [A 5 rla

Fig. 9. The gradual change of the potential shape near the phase transition surface on the border of the
Higgs-like region. The transition for A = 00, 8 =23 is at k., = 0.386 £+ 0 005

—(w/R)exp(—amyR), then the value of w could be quite different (e.g. much
smaller) than the short-distance coupling a. Further Monte Carlo studies may give
some hints in this direction, but this is presumably a rather difficult question for a
numerical study. Below the phase transition surface the potential becomes rather
similar to the pure gauge theory confinement potential. For instance, at (A = oo,
B =23, k=0.3) there is almost no difference compared to 8 =2.3 in pure SU(2)
gauge theory (see tables 3-4 and fig. 11).

Concerning the A-dependence of the potential, if the average link L is used as a
variable (like e.g. in figs 4a-b), then the same universal behaviour is observed as in
the correlation lengths. For fixed A the pattern of the short-distance behaviour of
the potential can be characterized by the “renormalized gauge coupling” a obtained
in the fits (3.3). This definition of the renormalized coupling is, of course, not very
precise, because strictly speaking a is a function of R. But for a first qualitative
understanding it is sufficient to consider the average defined by the fits. Taking the
A = oo values of a from table 4, a simple linear interpolation gives the curves of
constant renormalized gauge coupling shown in fig. 12a.
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Fig. 11. The static potential in a point (A= 00, 8=2.3,k=0.3) below the phase transition surface
(K < xer).

3.2 “CHIRAL” LOOPS

The potential energy deduced from Wilson loops refer to a pair of infinitely heavy
particles, which are transforming as a vector-like (i.e. non-chiral) doublet under
SU(2). In the SU(2) ® U(1) electroweak theory the fermions (leptons and quarks) are
in a chiral representation: left-handed fermions form doublets, but the right-handed
ones are scalar. The chiral transformation property can influence the forces acting
on a heavy particle. In order to have a feeling on this effect, let us consider heavy,
chiral, naive fermions on the lattice. The fermion matrix in the bilinear fermion
action can be written, in this case, like

1—75 1+75
Q=1-KY { ——vV(x,p)+ V- (34)
(=5 )
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Fig. 12a. The curves of constant renormalized gauge couphng (a) for A = oo in the (8, x) plane. The
lines were obtained from the potential fits given in table 4 by a linear interpolation. The point P gives the
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Fig. 12b. The RGT's in the studied region of the A = oo plane given by the requirement of the rescaling
of the force according to eq. (3.5). The vertical lines indicate the estimated errors.
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Here V(x, ) is the gauge invariant link variable introduced in the previous section
and K is the hopping parameter inversely proportional to the mass. In the hopping
parameter expansion, for very heavy fermions, only the shortest paths contribute.
(For a review of the hopping parameter expansion see [20].) This gives the straight
time-like sides of the Wilson loops for non-chiral fermions. In the case of (3.4) the
dominant contribution for K — 0 is again the straight line, but instead of a product
of all link variables along the time-like sides, we have the product of every second
(gauge-invariant) V(x, u). For the space-like sides, representing the field between
external charges, it is possible to take both a full product of all links or every second
link (or even more complicated products of links). For the simplicity of comparison,
let us take full products. In fig. 13 the potential extracted from such “chiral” loops is
compared to the potential obtained in the same way from Wilson loops at
(A =00,B8=2.3,k=0.5).As can be seen from the figure, the potential energy is
reduced somewhat at larger distances by the chiral transformation property, but the
overall qualitative behaviour remains the same.
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Fig 13 Comparison of the static potential extracted from the expectation values of Wilson loops and
“chiral” loops. All the points shown were obtained from the ratio of loops with time elongation T =3
and 5.
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33 DIFERMION “Z00”

The interesting consequence of the potential acting on a heavy fermion doublet
pair is the possibility of bound states in the difermion channels due to the exchange
of W-bosons. (Note that the SU(2) representations are real, therefore both fermions
and anti-fermions feel the same potential) Even a pure Yukawa potential of
—aexp(—mr)/r has bound states, if the coupling « is large enough and if the
constituents are heavy enough. A short numerical investigation shows that the
existence of at least one bound state in the non-relativistic Schrédinger equation is
guaranteed for aM/m > 1 (M is the reduced mass). The largest a-value in fig. 12 is
around a =%, therefore M/my >3 is enough. Of course, the quasi-confining
potential shape near the phase transition line is even more favourable for bound
states than the Yukawa-like potential.

34 RENORMALIZATION GROUP TRAJECTORIES

An important question in the lattice regularized SU(2) fundamental Higgs model
is whether there exists a continuum limit defining a non-trivial (i.e. interacting)
quantum field theory. The first complication compared to the pure gauge theory
(where the existence of a non-trivial continuum limit is generally assumed, but up to
now is not mathematically proven) is the presence of several independent couplings.
The notion of renormalization group trajectories (RGT’s) in such a case was
discussed to the necessary degree of generality in the field theory and statistical
physics literature (see, for instance, ref. [21]).

In order to see how these notions work in a specific (well-known) case with more
than one coupling, let us consider QCD with a single (dynamical) quark mass. In
this case there are two couplings: the gauge coupling g (or 8=6g"2) and the
dimensionless quark mass variable p, (for Wilson fermions one can define p,=
2K q)’1, where K is the hopping parameter). The renormalization group trajecto-
ries are conventionally parametrized by the renormalization group invariant quark
mass M (more precisely, by the ratio M_/A, where A is the usual RG A-parameter
for the SU(3) gauge coupling). The expected shape of the scaling region and the
RGT’s py=py(B, M,) in the (B, p,) plane are shown in fig. 14. (For a more
detailed discussion of QCD with dynamical quarks see ref. [20].) The curve g (B) is
the line with zero quark mass M, =0 (p.(B)''°® is its 1-loop perturbative ap-
proximation). The scaling region is, for M, > 0, below the line (SQ). The critical
point, where all the RGT’s with constant M, meet, is at (B= oo, pq=4). If only

‘pure gluonic quantities (like glueball mass, string tension etc.) are considered, the
scaling region is larger: it is for M_ > 0 the whole region to the right of the line (SG).
For this reduced set of physical quantities there is only one relevant coupling (for
instance 8), and there exists an infinity of (“reduced”) critical points along the line
B=oc0,4<p, < 0.

In the SU(2) fundamental Higgs model the study of correlations and static
energies gives valuable information on the RGT’s. Along the RGT’s the mass ratio
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1
Hq*2Kq

Fig. 14. The expected shape of the scaling region in the (B, u,) plane for QCD with Ny=3 degenerate

quark flavours. 8 is the SU(3) gauge coupling and p is the quark mass parameter for Wilson fermions.

The shape of the RGT’s for small and large RG invariant quark mass M, 1s shown. The meaning of the

other curves is explained in the text. A spectrum calculation with dynamical quarks was performed in ref.

[24] for (B =154, u, =3.0675) and (8 =153, p, =29762). These points are denoted, respectively, by A
and B. The RGT'’s with constant M, and the critical line . (8) tend for 8 — o to p, = 4.

my/my has to be constant, and the force a*dE(r/a)/dr = F(R) acting on the
external doublet pair at physical distance r = aR, can be scaled between two points
with scale ratio §,, =a,/a, as

F(R) =s;;a(§). (35)

If the static energy is determined for N different distances, the force represents
(N —1) different physical quantities. Since the static energy can be obtained with
good precision, eq. (3.5) gives an accurate constraint on the RGT’s. In fact, the
scaling properties of the potential can be used in pure SU(2) gauge theory for the
precise determination of the scale ratio £,, [22]. In the Higgs phase the shape of
the potential changes gradually from Yukawa-type to a quasi-confinement form
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near the phase transition surface in the (A, B, k) space. Therefore, the RGT’s can be
pinned down by the requirements of a constant shape.

Starting from the Wilson loop values measured in discrete points of the parameter
space, first one has to interpolate them in some region. Because of the universality in
A, I considered only the A = oo plane and took, for simplicity, a linear interpolation
between the measured points. (The points are shown, for instance, in fig. 12a.) The
force F(R) can be defined in an arbitrary point by fitting the potential with one of
the forms in eq. (3.3), and then by the requirement of rescaling according to eq. (3.5)
it is possible to decide whether a point pair is on the same RGT or not. Choosing
different combinations of point pairs and comparing the scale factors, it is also
possible to check the systematic errors of this procedure. A source of systematic
errors is the interpolation of the Wilson loop expectation values. This can, in
principle, be easily decreased by using a higher order interpolation and/or by
measuring on a denser set of points. Another, potentially more dangerous, source of
errors is the use of the fits (3.3) for the definition of the force. I checked this by
defining the force also from a quadratic interpolation between neighbouring poten-
tial points. The results turned out to be consistent with the results of the fitting
procedure. In the vicinity of the phase transition the interpolation procedure was
even more stable. The resulting shape of RGT’s is shown in fig. 12b. Although the
errors on the curves are not small, some qualitative consequences can immediately
be drawn. For instance, the picture is completely inconsistent with a critical point at
the end of the phase transition line near 8 =1.5 (see fig. 1). All the numerical
information (including the masses amy and amy,) is consistent with a critical point
at the B8 = oo end of the phase transition line, which coincides with the critical point
of the o-model for the given, fixed A-value.

As it was discussed in detail previously, the masses and static energies are
approximately universal functions of the link expectation value L (see figs. 4a—4b
and 7). This means that there exists a mapping between any two planes A =\, and
A =X, such that the physical quantities do not change. Assuming that the small
deviations from universality either are due to lattice artifacts (i.e. disappear in the
continuum limit) or can be transformed away by optimizing the mapping, it follows
that the continuum limit is independent from A. In other words, the number of
independent parameters in the continuum theory is smaller than in the regularized
theory: the same parameter reduction occurs in the gauge-Higgs system as in the
pure ¢* theory.

Below the phase transition line in the (8, k) plane there might also be RGT’s
corresponding to a confining theory with scalar matter fields and zero vacuum
expectation values (as advocated in ref. [7]). In the present data we see no evidence
for this, because everything measured below the phase transition line looks very
similar to pure gauge theory. Nevertheless, in future Monte Carlo studies one should
go very close to the phase transition line from below, perhaps also at larger 8-values,
in order to have better constraints. Of course, a direct Monte Carlo renormalization
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Fig. 15. The schematic behaviour of the renormalization group trajectories in the (B, x) plane for any

A = const > 0 The phase transition hne is dashed-dotted. The full lines are the RGT’s in the Higgs-like

phase The dashed lines could be RGT’s in the confinement-like phase, which tend to the critical point
from below the phase transition line.

group [23] study of the RGT’s, both in the Higgs- and confinement-like phases,
would be desirable. The expected picture of the RGT’s in the A = const, planes is
schematically shown in fig. 15.

4. Conclusion

The numerical Monte Carlo study of correlations and static energies in the SU(2)
gauge theory with a Higgs-scalar doublet is rather useful for the understanding of
continuum physics behind the lattice-regularized theory. In this paper numerical
evidence was found for the (at least approximate) irrelevance of the Higgs self-cou-
pling A. The renormalization group properties in the two relevant couplings (8, )
are qualitatively similar to the situation in QCD with a single (dynamical) quark
mass. It is expected, that for any fixed positive A there is a single critical point at
B =00, k=k.,(\) (where k_(A) is the critical point in the o-model at 8= co).

The marked jump found in both the W-boson and Higgs boson mass at the
confinement-Higgs phase transition can be a hint for the first-order nature of the
transition for any A, but for a decision between second order and weakly first order
further detailed studies are necessary. Below the phase tramsition surface, there
might be RGT’s which define a confining continuum theory with scalar matter
fields. The present data give no evidence for this, because every measured quantity
looks, below the transition surface, very similar to pure SU(2) gauge theory.



I. Montvay / Standard Higgs model 203

In the Higgs phase there is a lower bound for the ratio of the Higgs mass to
W-mass:

m
—H510+03. (4.1)
My

This relation was obtained in the region with strong gauge coupling, but presumably
it holds also for weak gauge coupling (up to electromagnetic and fermionic correc-
tions), because my/my, increases with decreasing (renormalized) gauge coupling. If
there are, indeed, only two relevant couplings, then the physical value of my/my, is
uniquely determined by the renormalized gauge coupling. The direct Monte Carlo
evaluation of my/my,; for the phenomenologically interesting weak gauge coupling
seems difficult. A possible way is to go into the o-model at 8= co, and calculate
my, from the mass parameter f, characterizing the spontaneous symmetry breaking
SU(2) @ SU(2) = SU(2). (In the context of QCD f, is usually denoted by f,.) A
possible way to extract f, by a Monte Carlo simulation in the o-model was
proposed recently by Dashen and Neuberger [15]. The numerical calculation seems
not very easy, but it is certainly worth a try.

It is a pleasure to acknowledge discussions with Peter Hasenfratz, Martin Liischer
and Roberto Peccei. Their remarks contributed in an essential way to the final form
of this paper. I am indebted to Christian Lang for a correspondence about his
Monte Carlo data. I wish to thank the Computer Centre of the University of
Hamburg for the generous support of the computations in this paper.

References

[1] A. Peterman, Phys. Reports 53C (1979) 157
[2] UAL1 Collaboration, Phys. Lett 122B (1983) 103; 126B (1983) 398;
UA2 Collaboration, Phys Lett. 122B (1983) 476; 129B (1983) 130
[3] PW. Higgs, Phys Lett. 12 (1964) 132; Phys. Rev. Lett 13 (1964) 508; Phys. Rev 145 (1966) 1156;
F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321;
G.S. Guralnik, C R. Hagen and T.W. Kibble, Phys. Rev. Lett 13 (1964) 585;
T W B. Kibble, Phys Rev 155 (1967) 1554
[4] Lattice gauge theories and Monte Carlo simulations, ed. C Rebb1 (World Scientific, 1983)
{5] P.V.D. Swift, Phys. Lett 145B (1984) 256
[6] K.G Wilson, Phys. Rev. B4 (1971) 3184;
K G. Wilson and J. Kogut, Phys. Reports 12C (1974) 75;
R. Schrader, Phys. Rev. B14 (1976) 172;
B. Freedman, P. Smolensky and D. Weingarten, Phys. Lett. 113B (1982) 481;
M. Aizenmann, Phys Rev Lett. 47 (1981) 1; Commun, Math, Phys. 86 (1982) 1;
J. Frohlich, Nucl. Phys B200 [FS4] (1982) 281;
C. Aragio de Carvalho, C S. Caracciolo and J. Frohlich, Nucl. Phys B215 [FS7] (1983) 209;
J Frohlich, in Progress in gauge field theory, Cargese lecture 1983, ed. G. ’t Hooft et al. (Plenum,
1984)
[7] L.F. Abbott and E. Fahn, Phys Lett. 101B (1981) 69
[8] C.B. Lang, C. Rebbi and M. Virasoro, Phys. Lett 104B (1981) 294;
M. Creutz, L. Jacobs and C. Rebbi, Phys. Reports 95C (1983) 201



204 I. Montvay / Standard Higgs model

[9] H. Kiihnelt, C.B. Lang and G. Vones, Nucl. Phys. B230 [FS10] (1984) 31
[10] M Tomiya and T. Hattori, Phys. Lett. 140B (1984) 370
[11} I. Montvay, Phys. Lett. 150B (1985) 441
[12] E. Fradkin and S. Shenker, Phys. Rev. D19 (1979) 3682;
G. 't Hooft, Cargese Summer Institute lecture, 1979;
T. Banks and E. Rabinovici, Nucl. Phys. B160 (1979) 349;
S. Dimopoulos, S. Raby and L. Susskind, Nucl. Phys B173 (1980) 208
[13] M. Veltman, Acta. Phys. Pol B8 (1977) 475;
B W. Lee, C. Quigg and H.B. Thacker, Phys. Rev. D16 (1977) 1519;
T. Appelquist and C. Bernard, Phys. Rev. D22 (1980) 200;
A. Longhitano, Phys. Rev. D22 (1980) 1166
[14] M.B. Einhorn, Nucl. Phys. B246 (1984) 75
[15] R. Dashen and H. Neuberger, Phys. Rev. Lett. 50 (1983) 1897
[16] M. Gell-Mann and M. Lévy, Nuovo Cim. 16 (1960) 705
[17] W.A. Bardeen and M. Moshe, Phys. Rev. D28 (1983) 1372
{18] B. Berg, S. Meyer and I. Montvay, Nucl. Phys B235 [FS11] (1984) 149
[19] H. Meyer-Ortmanns and I. Montvay, Phys. Lett. 145B (1984) 231
[20] 1. Montvay, DESY preprint 85-072 (1985)
[21) K.G. Wilson and J Kogut, Phys. Reports 12C (1974) 75;
E. Brézin, J.C. Le Guillou and J. Zinn-Justin, 2 Phase transitions and critical phenomena, ed.
C. Domb, M.§S Green (Academic Press, London, 1976) vol. 6, p. 125
[22] F Gutbrod and 1. Montvay, Phys. Lett. 136B (1984) 411
[23] SK Ma, Phys. Rev. Lett. 37 (1976) 461;
R.H. Swendsen, Phys. Rev. Lett. 42 (1979) 859;
K.G. Wilson, in Recent developments of gauge theories, ed. G. 't Hooft et al. (Plenum, 1980);
A. Hasenfratz, P. Hasenfratz, U. Heller and F. Karsch, Phys. Lett. 140B (1984) 76
[24] W. Langguth and 1. Montvay, Phys. Lett. 145B (1984) 261



