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Correlattons in the W-boson and Higgs bosun channels and the static energy of an external 
SU(2) doublet charge pair are investigated by Monte Carlo calculations in the SU(2) lattice gauge 
theory with a scalar Higgs doublet field. The mass ratio mw/m H and the shape of the static 
potential are used to obtain information on the renormalization group trajectories in the 
three-dimensional coupfing constant space. As a function of an appropriately chosen variable, the 
measured quantities are, within errors, independent from the scalar self-coupling (),) in a wide 
range 0.1 ~< A ~< 0o. In the Higgs phase, a lower bound mn/m w >! (1.0 + 0.3) is obtamed for the 
ratio of the Higgs boson mass to the W-boson mass. 

1. Introduction 

In the s tandard SU(3) @ SU(2) @ U(1) model the two non-ahelian gauge symmetry 
factors play rather different r61es. The local gauge symmetry corresponding to 
SU(3)-colour is unbroken, the SU(3)-colour charges are confined and the colour 
interaction is strong. The local SU(2) gauge symmetry, on the other hand, is broken 
by  the expectation value of the Higgs-doublet field, the SU(2) charges are screened 
and the corresponding interaction is weak. Since the values of the coupling constants 
are changing ("running" or "sliding") according to the renormalization group, the 

meaning of strong and weak coupling has to be explained in more detail. (For a 
review and an extensive list of references on the renormalization group see [1].) The 
renormalizat ion group invariant meaning of "s t rong interaction" is that the SU(3)- 
colou'r coupling is of order 1 at the scale of hadron masses: 

asu(3) ( M ~ o ~ )  = o(1) .  (1.1) 

In contrast  to eq. (1.1), for the SU(2) coupling at 
experiments  imply 

aso(2 ) (m  w ) -- 0.04. 
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the W-boson mass ( m w )  

(1.2) 
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In principle, the non-abelian SU(2) interaction, too, can become strong at some very 
low energy scale, but this has no practical consequences because of the short range 
of the interaction due to the massive SU(2) gauge boson exchange. The theoretical 
consequence of eq. (1.2) is that the SU(2)® U(1) electroweak interaction can be 
treated by perturbation theory. The impressive success of the perturbative approach 
culminated not very long ago in the discovery of W- and Z-bosons at precisely the 
predicted mass [2]. 

The only remaining source of uneasiness in the standard model is buried in the 
Higgs sector incorporating the inherently non-perturbative phenomenon of sponta- 
neous symmetry breaking. The main interest of the non-perturbative investigation of 
the electroweak theory lies, in fact, in the deeper understanding of the Higgs 
mechanism [3], which renders the W- and Z-bosons, the leptons and quarks and the, 
up to now elusive, Higgs boson a mass. 

STRONG WEAK-INTERACTIONS 

In the present paper the Higgs sector of the standard SU(2) ® U(1) electroweak 
theory is investigated by the non-perturbative numerical Monte Carlo method (for 
references and a collection of papers see [4]). The calculation is performed in a 
coupling constant range, where eq. (1.2) is not fulfilled. On the contrary, similarly to 
eq. (1.1), we shall typically consider the case 

aso(2 ) = o(1) (1.3) 

i.e. the values of the coupling constants will correspond to a situation where the 
SU(2) weak interaction is strong. The electromagnetic interaction will be neglected 
altogether (no U(1)-factor) and no fermions (leptons and quarks) will be considered. 
For a possibility of how to include these in the lattice action, see ref. [5]. 

The study of the standard SU(2) Higgs sector in the situation corresponding to eq. 
(1.3) is interesting from several points of view: 

(i) It can reveal the existence of non-perturbative constraints in the electroweak 
theory. For instance, the number of independent renormalized couplings can be 
smaller than the number of bare couplings. A large body of evidence [6] has been 
collected to support the occurence of such a "parameter reduction" in the single- 
component 0 4 theory, where the renormalized coupling is probably always zero. 

(ii) It is interesting to compare and confront the behaviour of the totally broken 
SU(2) gauge interaction with unbroken SU(N) colour, studied up to now in most 
Monte Carlo investigations. 

(iii) The gauge-Higgs system is theoretically interesting for its own sake, as a 
representative of a class of quantum field theories. 

(iv) Finally, there has been some speculations that weak interactions could 
become strong in the hundred GeV energy range [7]. This possibility seems to be 
improbable at present, but direct experimental evidence is still scarce at such high 
energies. 
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Fig. 1. The phase transition hnes in the (g-2, x) plane for constant A according to fig 3 m ref. [9]. 

Previous Monte Carlo simulations of the SU(2)-Higgs system with scalar field in 
the fundamental representation [8-11] concentrated mainly on the singularity struc- 
ture in the coupling constant space. These studies showed that there is a phase 
transition surface separating the Higgs phase from the confining phase. These 
"phases" are, however, not qualitatively different from each other [12], they are 
continuously connected beyond the edge of the critical surface. This structure is 
illustrated by fig. 1, which is a reproduction of fig. 3 of the paper by Ki~hnelt, Lang 
and Vones [9]. 

An interesting question is the order of the phase transition separating the 
Higgs-like and confinement-like regions. If there is a critical surface corresponding 
to a second-order phase transition, then the correlation length becomes infinite and 
some continuum theory can be defined in a limit going to this surface. (The 
continuum theory may be trivial, i.e. noninteracting, except perhaps for some 
peculiar "fixed points" on this surface.) Information on the critical behaviour can be 
obtained, e.g. from "finite size scaling" [10] or from a direct study of the correlations 
[111. 

In my previous paper [11] the correlations were numerically calculated in the limit 
of infinite self-coupling (k ~ oo; fixed-length Higgs field on the lattice). This limit 
of the standard electroweak theory was considered extensively in the literature [13] 
as an interesting limiting case, when the tree-level mass of the physical Higgs boson 
tends to infinity. (The physical mass can, however, stay finite [14].) The results in ref. 
[11] showed, that in the vicinity of the phase transition line the correlation lengths in 
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both the isovector 1 - -  (W-boson) and isoscalar 0 ++ (Higgs boson) channels have a 
tendency to grow. This can be interpreted as a sign for a second-order phase 
transition, but a weakly first-order transition with some small specific heat is equally 
possible. The present paper is an extension of ref. [11]: in the case of the fixed-length 
Higgs field (X = oo) more statistics are collected closer to the critical line and the 
variable-length case is considered, too, for several values of the self-coupling X. The 
precise position of the phase transition is determined at several points directly from 
the correlations. Another important limit, namely 13 = oo (no gauge coupling) [15] is 
also considered. Special emphasis is given to the information which can be obtained 
from the mass ratios and from the static potential concerning the renormalization 
group properties of the model. 

In the next section, after summarizing the lattice formulation of the SU(2) 
fundamental Higgs model, the results for the correlations will be presented and 
discussed. In sect. 3 the static energy of an external SU(2) doublet charge pair is 
considered and consequences for the renormalization group trajectories ("lines of 
constant physics") in the three-dimensional coupling constant space will be dis- 
cussed. The last section contains the conclusions. 

2. Correlations 

2 1. THE LATTICE ACTION 

The continuum euclidean action S c of an SU(2) gauge field interacting with a 
complex scalar doublet ~(x) can be written like 

sc=f d'x T r ( F ( x ) ~ , F ( x ) ~ , ) +  D~,qJt(x)D~qJ(x)+ Xe(~*(x)~(x ) - o2)2}. 

(2.1) 

Here F ( x ) ~  denotes, as usual, the field-strength matrix of the gauge field, D~, is the 
gauge-covariant derivative, X c is the self-coupling of the Higgs field and o is the 
tree-level vacuum expectation value related to the opposite-sign mass term 
- ~ % * ( x ) , ~ ( x )  by 

o = " ( 2 . 2 )  

The gauge field is described on the lattice by the link variables U(x, I~) ~ SU(2) and 
the Wilson gauge lattice action is a sum El, over positive orientation plaquettes P. 
For the lattice description of the Higgs field it is convenient to introduce the lattice 
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site variable q~x and the lattice bare couplings r, h by the replacements 

a~(ax) ~ v l - ~ ,  

~k c ~ ~kl¢ - 2  , 

8 - ( a F ) 2 ~ ( 1 - 2 X ) / K .  (2.3) 

Here a denotes, as usual, the lattice spacing. In these variables the euclidean lattice 
action is 

S=~x {~(qj~qJ~-l)2+ep~qJ,,-K]~qJt~+~,U(x,g)qJ~} + f l ~ { 1 - ½ T r U p } .  (2.4) 
g P 

The lattice is assumed to be periodic in all four directions. Ex means a summation 
over all lattice sites, V.t, is a sum over positive and negative directions (g = 
+ 1, + 2, + 3, + 4), x + g is the neighbouring point of x in the direction g and fl is 
related to the bare gauge coupling g by fl = 4 /g  2. 

The peculiarity of the SU(2) doublet field q~x is that it can also be represented by 
its length Px >/0 and by an SU(2) matrix ax. The correspondence is given by 
( a  = 1 , 2 ) :  

dp~ = Pxax, ,,2 , 

dP~ = eaBdP ~ = Pxax, al . (2.5) 

Here ~ is the opposite hypercharge doublet field in SU(2) ® U(1) (e is the antisym- 
metric unit tensor). Using the new variables, the lattice action can be written as 

S = f l Z ( 1  ½TrUp)+~x{0X2 31ogp~+X( 2 _ _ # ; , -  1) 2 

P 

g > O  

(2.6) 

The integration measure was originally paxdpxd3axd3U(x, tt) (if d3g denotes the 
invariant Haar-measure in SU(2)), but in eq. (2.6) the factor p3 x is included in the 
exponent, therefore the measure is simply dpxd3axd3U(x, #). Let us introduce, 
instead of the SU(2) link- and site-variables U(x, #) and ax, the gauge invariant link 
variable 

V( x, g) =- a]+~,U( x, g )a x . (2.7) 

Due to local gauge invariance, this can be used for the description of the gauge field 
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also in the pure gauge part, therefore the lattice action can be written as 

175 

S=fl~-'~(1-½TrVp)+ ~.j(p2 x - 310gpx + X(p2-  1 )2 -  K Y'. p~+~,pxTrV(x,#)}. 
P #>0 

(2.8) 

This does not depend on ax, therefore the integration d3otx gives only an inessential 
constant factor, and can be omitted. The integration measure for eq. (2.8) is 
dp~ d3V(x, g). The disappearence of the angular part a x of the Higgs field is usually 
expressed by saying that it is "eaten" by the gauge field. Since both p~ and V(x, #) 
are gauge invariant, both of them describe physical degrees of freedom: V(x, #) 
corresponds to the (gauge-) W-boson and Px to the physical (Higgs) H-boson. 

The SU(2) Higgs model with Higgs field in the fundamental representation has a 
global SU(2) "weak-isospin" symmetry. In the full SU(2) ® U(1) electroweak theory 
this symmetry corresponds to the transformations £---, v2 (£=  e, #, T), u o d, c o s, 
t ~ b; therefore it is broken by electromagnetism and by fermion mass differences 
within doublets. In the action (2.8) the exact global weak-isospin symmetry transfor- 
mation is 

v'(x,  ~) = v- lv (x ,  ~)v,  

p" = px. (2.9) 

For comparison, the local gauge transformation is 

V,(x, #) = v;l~v(x, #)vx, 

,-uzlax, fltx~ 

a,; = ~*xVx, 

V ' (x ,  t,) = V(x ,  t , ) .  (2.10) 

With respect to weak isospin'the W-boson is isovector, the Higgs boson is isoscalar. 
There are interesting limits of the model, which can be studied separately. In the 

case of infinitely strong self-couphng X ~ oo the length of the Higgs field is frozen 
to Px = 1, and the action is 

Sx_~=#E(1--{TrVp)--K • TrY(x,#). (2.11) 
P x,.u>0 

The correlations in this limit were investigated in ref. [11]. This is the limit of a very 
strongly interacting Higgs field, where/~ and X c in eq. (2.2) go to infinity in such a 
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way that the tree-level vacuum expectation value v = a-1¢%- remains constant. The 
tree-level mass/~v~- of the physical Higgs boson goes also to infinity. Nevertheless, 
as it was shown in ref. [11] and as we shall see below in more detail, the lowest mass 
in the isoscalar 0 + + channel remains finite. 

Another important limit of the actions in eqs. (2.6), (2.8) is fl ---, oo (zero gauge 
coupling). In this case the link variable U ( x ,  t~) is a pure gauge, therefore it is 
necessary to restore the angular Higgs variable a x and return to eq. (2.6), which 
gives 

SO=°° = ~x { 0~2- 3logox + A ( O ~ - 1 ) 2 - x  2~ Ox+~#~Tr(atx+, ,ax)} .  (2.12) 
/x>0 

This is the lattice version [15] of the Gell-Mann-L6vy linear o-model [16]. It has a 
global SU(2) ® SU(2) symmetry corresponding to the transformation (U± ~ SU(2)): 

a'  x = us_laxU+. (2.13) 

SU(2) ® SU(2) is equivalent to 0(4) and the SU(2) group elements can also be 
represented by a unit-length four-vector (a0, a,): 

ax = ao, x + i*rar, x ( *r = Pauli matrix). (2.14) 

In the limit ~, ~ oo the model in eq. (2.12) becomes the non-linear o-model in four 
dimensions: 

S0=~o,x=oo = -2K 2~ ao,~+,ao,  ~ . (2.15) 
x,/*>0 

In the continuum limit the action S 0= oo is expected to describe 3 massless Goldstone 
bosons and 1 massive scalar particle, which are presumably non-interacting [17]. 

2.2. MONTE CARLO CALCULATION OF THE CORRELATIONS 

The Monte Carlo simulation in the SU(2) fundamental Higgs model can be done 
by using the lattice action in eq. (2.8). For the fixed-length case (A--oo) the 
corresponding action is (2.11). In order to see whether the use of gauge invariant 
variables makes some difference, I did parallel test runs with the actions in eqs. (2.6) 
and (2.8) at the points A = 1.0; fl = 2.3; K = 0.30 and 0.31. No appreciable difference 
could be observed either in the results or in the time-correlations during the 
updating. Since these are typical parameter values for the present work, this means 
that the. simpler gauge invariant action can be safely used in our range. For very 
large fl >> 1 values, however, the original action (2.6) is expected to be better for the 
Monte Carlo updating, because the "hidden" angular Higgs degrees of freedom are 
crucial. At fl = oo the gauge degrees of freedom are absent, therefore one has to use 
the action (2.12). 

In the present paper the correlations were computed on an 84 lattice. The SU(2) 
link variables were replaced in most cases by the elements of the 120-dimensional 
icosahedral subgroup. The updating was done by the Metropolis method with 6 hits 
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per li~k for the gauge field V(x, #) and 6 hits per site for the length variable Px. The 
links and sites were updated in a random order, but always full sweeps were 
performed alternating over links and sites. 

Diagonal correlations (and sometimes a few off-diagonal ones) were measured in 
different channels. In all cases the three-momentum was projected out both to p = 0 
and p = rr/4a (1 in lattice units) in all three space-like directions. The time slices 
were chosen in all four possible time orientations. The measurement of the correla- 
tions was performed only after every 5th or 10th full sweeps, in order to reach more 
independent configurations. The results given below were collected typically from 
8000-10 000 sweeps per point in the coupling constant space. The configuration was 
started in most cases from a previously equilibrated one in some neighbouring point. 
At least 1000 equilibrating sweeps were performed before starting to collect data for 
the correlations. The computer time used for the calculation of the correlations 
amounted to about 400 CPU hours on the Siemens 7.882 at the University of 
Hamburg. 

To obtain the correlation lengths in the W-boson channel an appropriate operator 
is 

o~m)=Tr{%V(x,m)} (m, r = 1,2,3) (2.16) W r  

As it was discussed in ref. [11], this has weak-isospin I w = 1 and spin-parity 
jpc = 1 -- .  For the I w = 0 Higgs boson channel there are several possibilities: 

Oo= E TrVpo,,,), 
(m,n) 

O H = ~  x , 

O A = • Tr V(x, m). (2.17) 
m 

The first is the symmetric combination of the three space-like orientation single 
plaquette operators, which is often used in QCD glueball spectrum calculations for 
the 0 ++ channel. The second is the genuine I w = 0, jec = 0++ Higgs variable (the 
length of the Higgs field). The third operator appears in the ~t = oo action (2.11). 
Assuming that the 0 ++ state is the lowest isoscalar state, the symmetrization in O o 
and O^ can also be omitted, provided that the correlation is determined at large 
enough distances and therefore the higher mass contributions from other spin-parity 
channels can be neglected. Similarly, the lowest mass can also be inferred from 
off-diagonal correlations, like e.g. between Tr V(x, m) and Tr V(x, n) (m :/: n), if the 
distance is large enough. 

The results obtained for the correlations in the W- and H-boson channels are 
shown in figs. 2a-2c and in table 1. Always the inverse correlation lengths are given, 
i.e. the estimates of the lowest mass in lattice units in the given channel. Table 1 also 
contains some global average quantities like the average link L, average plaquette P, 
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Fig. 2a. The inverse correlation lengths in the W-boson (amw) and t-hggs-boson (amH) channel in 
lattice units for h = co, j8 = 2.3. 

average length p, length dispersion % 
defined, respectively, like 

L=(½TrV(x,g)), 
P = ( 1  - {TrVp) ,  

p = <p~>, 

o~ = ¢(p2> _ <p~>~, 

s = 6~<1 - { Tr Vp> + < p2_ 3 log p~ + ?t (p: - 1)2> 

+ 8~0  - {p~px.Tr v ( ~ , . ) ) .  

and average action per site s. These are 

(2as) 
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In the average action per site the constant term 8s is added with respect to eq. (2.8), 
in analogy to the constant 613 in the average plaquette term. In the W-boson 
channel, for a m  w ~< 1, the correlation can be determined, with relatively small error, 
up to the maximum distance d =  4 on the 8 4 lattice. The correlations in some 
sample points were shown in ref. [11]. The qualitative behaviour is here rather 
similar. The ease of measurement of correlations at larger distances recalls the 
general behaviour in 2-dimensional o-models (see e.g. [18]) and not the pure SU(2) 
gauge theory, where it is rather difficult to obtain large-distance correlations (see 
e.g. [19]). For a m  w >i 1.5 the correlation drops fast at small distances. In such points 
the mass estimate is obtained from distance d = 1 (or at most from d = 2), therefore 
these points have larger systematic errors. The errors shown include some subjective 
estimate of the systematic errors, too. 

In the case of the I-Iiggs boson channel the situation is more involved. The 
one-plaquette operator O o in eq. (2.17) behaves rather similarly, or even still 
somewhat worse, than in pure SU(2) gauge theory, i.e. the correlation usually cannot 
be determined beyond d = 1. The best points for (9o are below the phase transition 
line (K < rcr, see below), where the behaviour, and also the value of the correlation 
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Fig 2c T he  same  as fig. 2a, for  ~, = 0.1, fl = 2.3. 

length, is rather similar to pure SU(2) gauge theory at the same fl-value [19]. The 
other two operators OH and O A behave oppositely: for K < rcr they are worse, for 

> rcr, however, much better than O c. For K > ~¢r the diagonal correlation of Ori 
and O A can be determined, within the given statistics, up to d = 2 or d = 3. O^ 
behaves for X > 0.1 still somewhat better than OH, but the mass estimates from O A 
and O H are always compatible. In the figures and in table I always the best estimate 
for am n is given, sometimes also including information from the off-diagonal 
correlation between Tr  V(x, m) and Tr  V(x, n) (m ~ n). 

The energies E x obtained from r _ _ ~  - = 1 correlations give in most cases, within 
errors, the same masses m = ~/E 2 _ p 2  as the p = 0 time slices. This shows that 
Lorentz invariance is approximately restored in the measured points. There seem to 
exist, however, some systematic deviations in the points with largest correlation 
lengths (4 - 2), where the p = 1 mass is usually 10-20% higher. This may be due to 
finite size effects, since finite cut-off effects are expected to become smaller for 
large 4. 
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TABLE 1 
The value of the W-boson mass ( a m w )  and Hlggs-boson mass (amH) m lattice umts 

181 

h r am w am H L P s p o o 

oo 0 35 2 5(5) 1 51(15) 0 2011(3) 0 3954(4) 8.693(5) 
oo 0 38 2 4(4) 1.27(9) 0 2318(4) 0 3931(6) 8.760(6) 
oo 0 4 0 79(8) 0 59(12) 0 2948(26) 0 3820(13) 8.528(15) 
oo 0 42 0.65(7) 1 08(12) 0 3437(11) 0.3757(3) 8.390(4) 
co 0 45 0.62(11) 1 4(2) 0.3993(3) 0.3696(5) 8.263(6) 
oo 0 5* 0.60(7) 1 5(2) 0.4669(4) 0 3623(3) 8 132(4) 
oo 0 6* 0 67(11) 1.7(3) 0 5574(2) 0 3512(3) 7 971(3) 
oo 0 8* 0 89(9) 2.1(3) 0 6596(2) 0 3348(3) 7 799(4) 
1 0 0 2 4 0(5) 1 12(16) 0 1181(3) 0.3973(2) 8.300(6) 
1 0 0 3 1.8(3) 1 09(8) 0.2316(2) 0.3924(2) 8 547(3) 
1 0 0 31 0 73(12) 0 98(10) 0 3216(4) 0 3772(3) 8 080(7) 
1 0 0 32 0 56(6) 1 16(12) 0.3786(6) 0 3709(2) 7 821(9) 
1 0 0 35 0.67(7) 1.55(16) 0 4919(4) 0.3583(2) 7 256(6) 
1.0 0 4 0 83(7) 1 72(18) 0 6101(5) 0 3425(2) 6 432(9) 
0.5 0 25 2 7(5) 1.25(14) 0.1957(6) 0 3951(3) 8 318(6) 
0 5 0.3 0 68(7) 1 34(18) 0 5009(3) 0 3569(2) 6 821(8) 
0 1 0.19 2 5(5) 1.26(11) 0.2064(2) 0.3939(2) 7 775(11) 
0 1 0 195 0 45(9) 0 50(12) 0 3159(3) 0.3771(2) 7 220(32) 
0 1 0 2 0 53(7) 0 98(12) 0.4238(8) 0.3650(4) 6 673(15) 
0 1 0 205 0 53(6) 1.21(14) 0 4879(5) 0 3577(2) 6 301(9) 
0 1 0 21 0 72(7) 1 46(19) 0 5428(3) 0.3510 5 939(3) 
0 1 0 22 0 85(7) 1 48(19) 0.6199(6) 0.3399(2) 5.298(10) 
0 1 0 3 1 47(7) 2.4(3) 0.8415(2) 0 2728 0.187 

1 060 0.260 
1 115 0 258 
1 152 0 250(2) 
1.178 0 252(2) 
1.241 0.243 
1 331 0.228 
1 164 0 306 
1 358 0 292 
1 353 0 420 
1 450 0 429 
1 558 0.433 
1.636 0 432 
1 712 0 427 
1 845 0 410 
2 628 0.327 

The global average quantaties L, P, p, ap and s are defined in eq (2 18). The errors m the last 
numerals are .given m paranthesls If no error as gwen, the error estamate ~s ~< 1 m the last dag~t The 
fl-value is always fl = 2 3. The hnes wath an asterisk were obtained with full SU(2) group, the rest with 
the ~cosahedral subgroup 

2 3 BEHAVIOUR NEAR THE PHASE TRANSITION 

The qualitative behaviour of a m  w a n d  a m r i  for 13 - 2.3, k -- ~ (fig. 2a), fl = 2.3, 
k = 1.0 (fig. 2b) and fl = 2.3, k = 0.1 (fig. 2c) is quite similar. The main difference is 
in the widths of the K-range, where similar changes occur: the region in the phase 
transition is squeezed for small X. The reason for this behaviour is quite clear: at 
)t = 0 the model defined by the action (2.8) has a kinematical singularity. In the 
Higgs phase, where the link expectation value is substantial (L ~ 1 for K ~ o¢), for 
large enough "hopping parameter" r, the hopping term proportional to t~ wins over 
the stabilizing p2 term and the action is unbounded from below if Px ~ oo.  For very 
small ~ the ~(px 2 - 1) 2 term can stabilize the theory only for very large Px, therefore 
the change above Kcr is squeezed into a small r-region, which is asymptotically 
proportional to v/-k -. 

Apart from the squeezing, there is a remarkable universal behavjour for different 
k. This can already be seen in the global averages given in table 1. For instance, the 
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link expectation value is a universal function of the plaquette expectation value (see 
fig. 3). This shows, that ~ is not the correct variable to use. Plotting the W-boson 
mass as a function of the link expectation value, one obtians the remarkable 
universal curve shown in fig. 4a. The same for the Higgs boson mass, in fig. 4b, 
shows a universal behaviour, too, although the errors are larger and maybe there is 
some mild tendency for the h --- 0.1 points to fall somewhat below the rest. Fig. 4b 
has to be contrasted, however, with the tree-level prediction mn ffi o K ,  according 
to which m H should go to infinity for h ~ co. 

The approximate universality of the physical quantities in such a considerable 
h-range may appear rather surprising at first sight. (Besides the masses, the static 
energy of an external SU(2) charge pair, considered in the next section, shows the 
same universality too.) We know, however, that in the continuum limit the pure ¢4 
theory also becomes independent from the bare coupling h, namely, the renormal- 
ized coupling is always zero. It is a very interesting possibility, that the h-indepen- 
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dence of the continuum limit remains true after switching on the gauge coupling. 
This seems plausible in view of the asymptotic freedom of the gauge coupling, in 
particular if the continuum limit in the gauge-Higgs system is also at fl = ~ .  

The behaviour of the correlation lengths (or masses) near the phase transition is 
crucial also for the question of the order of the transition. The order of the phase 
transition is a statement concerning the behaviour of the system in the infinite 
volume bruit, therefore the numerical investigation of the order has to include, 
obviously, a study of the lattice size dependence too. Some hints can, however, be 
obtained also on a fixed size lattice. Having this in mind, one can interpret the 
marked jump of the masses near L = L¢~ = 0.26 as a sign of the first-order nature of 
the confinement-Higgs phase transition for every positive )~. As it can be seen in 
figs. 4a and 4b, a m  w jumps from values around a m  w - 0.5 to a m  w >1 2.0. At the 
same time a m  H jumps from a m  H - 0.5 to a m  n - 1.2, a value consistent with the 
0 ++ gluebaU mass at the same fl in SU(2) [19]. Another observation at the phase 
transition is that the average action per point s has a maximum near r = x¢~ (see fig. 
5). This is what one can say on the basis of the present numerical data about the 
order of the phase transition. The important question of the order has to be 
investigated in detail in the future. 

The position of the phase transition obtained from the correlations is substantially 
lower than the lines given in ref. [9] and shown also in fig. 1. The present best 
estimates for x~r are (always for/3 = 2.3): 

= oo : rcr = 0.386 ___ 0.005, 

AK=0 .3 ;  

h = 1.0 : K~r = 0.303 + 0.002, 

za~ -- 0.09; 

= 0.1: t¢¢,= 0.192 ± 0.001, 

z~ ~ = 0.02. (2.19) 

The Ar values give the approximate widths of the typical structure above t: = Kcr 
(for h ~ 0 A~ is expected to vanish like v/X). 

Below the phase transition (K < rcr ) everything looks very much like in pure SU(2) 
gauge theory (further arguments in this direction will be given in the next section). 
In the Higgs phase (~ > rcr ), far away from the phase transition, m n is roughly 
twice as large as mw. Near the critical line, however, m n and m w become nearly 
equal. Due to the somewhat large errors it is impossible at present to say whether 
there is a region for K > rcr also with m n < mw. For the moment, the numbers in the 
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the eye. 

Higgs phase are consistent with m n >~ m w (with error: m H >1 (1.0 + 0.3mw), but 
further Monte  Carlo studies on larger lattices and with higher statistics can decide 
whether rn H < m w  is possible in the Higgs phase or not. The lower bound 
rn H >~ (1.0 + 0.3)m w is probably also relevant (up to electromagnetic and fermionic 
corrections) to the real world with small gauge coupling, since m H./mw increases 
for decreasing gauge coupling strength (see the next section in connection with the 
discussion of the renormalization group trajectories). 

Let us note that concerning the occurence of mR = m w  the present conclusions 
differ from those of ref. [11]. The reason is the better statistics closer to the phase 
transition, which allows a more precise localization of the transition. Points with 
m n =  mw were found in ref. [11] only near the endpoint of the phase transition line 
(near/3 = 1.5). Here we see that such points occur also at /3 = 2.3 (and probably also 
for every larger/3), if one is going close enough (from above) to K = Kcr. 
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2.4 C O R R E L A T I O N S  A T  fl = oo 

The fl --* oo limit of the correlations can be numerically studied by a separate 
Monte Carlo simulation based on the action in eq. (2.12). This is equivalent to an 
0(4) a-model in 4 dimensions, therefore the 0(4) variables defined in (2.14) can also 
be used. For technical reasons, however, I took the SU(2) ® SU(2) action (2.12) and 
used for the SU(2) site variables (ax) the elements of the icosahedral subgroup. 

Let us denote the inverse correlation length at fl = oo measured by the Higgs field 
length variable Px by am h- For the inverse correlation length of the angular variables 
ax let us introduce the notation amg. In the continuum limit of the fl = oo model m h 
is the mass of the massive Higgs boson, whereas m z is the mass of the 3 Goldstone 
bosons. We expect, namely, at some critical value ~ = xcr (which is a function of h: 
rc~ = K~(~)) spontaneous symmetry breaking. On the lattice this is manifested for 
r >1 r ~ ( h )  by a spontaneous alignment of the SU(2) variables in some arbitrary 
direction. The consequence of the spontaneous symmetry breaking SU(2) ® SU(2) 
--* SU(2) (or equivalently 0(4) ~ 0(3)) is the appearance of 3 massless Goldstone 
bosons (am z = 0). 

The Monte Carlo simulation at fl = oo was carried out, similarly to the fl < oo 
case, on an 8 4 lattice. In the Metropolis updating procedure the site variables ax and 
Px were updated simultaneously, with 6 hits per site (in a randomly chosen order of 
sites). Concerning the number of sweeps and the amount of statistics the same 
applies as for the finite fl simulation (see above). The results obtained for amg and 
am h are shown in figs. 6a and 6b and in table 2. In the table the average link L, the 
average length p, the length dispersion % and average action per site s are also 
included. These are defined, similarly to (2.18), as 

p = (px>, 

i(px > - < p x >  2 , 

S~--- ( g -  31Ogpx + X ( O 2 - 1 )  2) 

1 t (2.20) 

As a function of the average link L, there is a similar approximate universality as for 
finite fl (see fig. 7). 

As it is shown by fig. 7, at the critical link expectation value L = L c r -  0.2, 
spontaneous symmetry breaking takes place. Above this critical point the Goldstone 
boson mass (in lattice units) amg is consistent with zero. At L = Lcr, on our 8 4 
lattice, the Higgs mass am h has a minimum value of am h = 0.4 + 0.1. The critical 
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TABLE 2 
The values of amg and am h for fl = oo 

~ amg am h L s p % 

1 0 0 22 0.78(6) 1 .91(11)  0.1436(6) 
1 0 0 24 0 33(4) 1 14(9) 0 1717(3) 
1 0 0.25 0 04(2) 0.44(7) 0 2198(12) 
1 0 0 26 0.03(2) 0 71(9 )  0.2954(14) 
1 0 0 27 0 02(2) 0 99(8) 0 3620(6 
1 0 0 28 0 04(2) 1.31(14) 0 4180(9 
1 0 0 3 0 03(2) 1 .52(15)  0.5070(6 
1 0 0.32 0 02(6) 1 .85(16)  0.6361(4 
0 1 0.155 0.51(5) 1 42(14) 0.1512(3 
0 1 0 16 0 22(4) 0.92(11) 0 1664(4 
0 1 0 163 0.08(3) 0 46(7) 0 1896(2 
0 1 0 165 0.04(2) 0 37(8) 0 2269(5 
0 1 0 167 0.02(2) 0 48(6 )  0.2733(15 
0 1 0 17 0 04(3) 0.81(8) 0 3401(12 
0 1 0.175 0.03(2) 0 94(12) 0 4344(5) 
0 1 0 18 0.02(2) 1 .21(11)  0.5079(14 

2 876(7) 1 070 0 258 
2 933(5) 1.081 0 259 
2.856(6) 1 092 0 255 
2.705(2) 1 124 0.256 
2 551(8) 1 1490(4) 0 256 
2 421(4) 1 173 0 249 
2 169(5) 1 216 0 245 
1.928(3) 1 256 0 241 
2.262(2) 1 2901(8) 0 410 
2 251(8) 1 3022(6) 0 413 
2 207(3) 1 3191(2) 0.415 
2 116(6) 1 346 0 417 
2 014(9) 1 3793(7) 0.421 
1 829(5) 1 430 0 426 
1 570(3) 1 514 0 427 
1 339(2) 1 5891(6) 0 427 

The average quantmes L, 0, op and s are defined m eq. (2 20) The errors m the last numerals are 
gwen an paranthesls If no error is given, the error estimate is < 1 m the last digit 

a t  the  two h-values  is, respect ively:  

= 1.0: Xcr = 0.247 + 0.003,  

= 0.1:  Kcr = 0.164 ± 0.001.  (2.21) 

T h e  inverse  cor re la t ion  lengths a r o u n d  the cr i t ical  po in t  behave  con t inuous ly  ( there 

is n o  j u m p  l ike  in figs. 4 a - 4 b ) .  This  is consis tent  wi th  the expected second-order  

p h a s e  t rans i t ion .  A b o v e  the cri t ical  po in t  there  are very long range  corre la t ions  in 

the  angu la r  var iables ,  ex tending  prac t ica l ly  over  the whole  lattice.  In  fact, the  value  

of  the  angu l a r  cor re la t ion  is typ ica l ly  on ly  5-10% smal ler  be tween  the mos t  d i s t an t  

( d  = 4) t ime  slices than  for  d = 1. In  the l imi t  K ---, Kcr the a sympto t i c  behav lour  of  

the  co r re l a t ions  in the angular  var iables  is expected  to  be  power- l ike  (it goes to zero 

l ike  the  inverse  of  the  eucl idean  d is tance  to the power  (2 + 71), where  *1 is some 

cr i t i ca l  e x p o n e n t  [6]). 

3. S ta t ic  energies 

3.1 WILSON LOOPS 

T h e  s ta t ic  energy  E ( R )  of an externa l  SU(2)  doub le t  charge pa i r  is a character is t ic  

p r o p e r t y  o f  the  SU(2)  gauge field system: in the case of  conf inement  i t  increases  
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linearly for large distances, whereas in a screening phase (like the Higgs phase) it 
goes asymptotically to a constant. As is well known, E(R) can be determined from 
the expectation value of Wilson loops WR,T- 1Tr UR,T with time elongation T and 
euclidean distance R between the endpoints for fixed time: 

1 
aE(R) = - lim logWR r- (3.1) 

T--~ oo -T 

Some Monte Carlo measurements of the static energy E(R) were performed on 84 
lattice in ref. [11], where it was shown that rotation invariance of E(R) is well 
satisfied if the largest correlation length is at least 1. 

In this paper a more detailed study of the static energies will be presented. It was 
carried out on 124 lattice using the icosahedral subgroup for the SU(2) variables. 
The lattice actions (2.8) and (2.11) were used, and the Wilson loops were calculated 
from the gauge invariant links V(x,/Q. This is equivalent, because of gauge invari- 
ance, to the use of the original link variables which appear in the definition of WR, T- 
The values of planar Wilson loops with 1 ~< R, T < 5 were determined (after 1000 
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TABLE 3a 
The expectation values of Wilson loops WR, r m umts of 10- 5 

oo 2.0 0.55 57142(12) 35651(20) 22770(20) 14640(18) 
c~ 2.1 0.5 58983(9 )  37855(14) 24833(15) 16384(14) 
oo 2.1 0.6 60832(7 )  40634(10) 27774(11) 19094(10) 
oo 2 1 0.8 63142(7 )  44145(10) 31524(11) 22647(11) 
oc 2 3 0.3 60349(12) 38768(18) 25247(21) 16496(18) 
oo 2.3 0.4 61805(10) 41123(16) 27848(19) 18946(18) 
oo 2 3 0 45 63022(9)  43099(13) 30055(15) 21066(15) 
oo 2 3 0.5 63759(6 )  44257(9 )  31339(10) 22306(10) 
oo 2 3 0.6 64885(6 )  46021(10) 33314(11) 24233(12) 
oo 2 3 0.8 66529(6 )  4 8 5 9 9 ( 8 )  36215(9 )  27106(10) 
c~ 2 4 0 4 64259(8 )  44586(13) 31500(14) 22354(14) 
oo 2.4 0 5 65631(6 )  46819(10) 34052(11) 24883(11) 
oo 2 4 0 6 66547(5 )  4 8 2 8 2 ( 8 )  35711(11) 26536(12) 
oo 2 5 0 4 66155(8 )  47246(12) 34341(14) 25073(16) 
oo 2.5 0 45 66784(10) 48275(14) 35530(17) 26267(18) 
1 0 2.3 0.32 62896(9)  42880(15) 29806(17) 20829(17) 
1 0 2 3 0 35 64153(10) 44866(16) 32021(21) 22970(23) 
1.0 2.3 0.4 65753(6 )  4 7 3 7 8 ( 8 )  34835(9 )  25736(9) 
0 1 2 3 0.195 62428(11) 42129(18) 28970(20) 20021(20) 
0 1 2 3 0.205 64233(9)  44999(14) 32166(16) 23116(15) 
0 1 2 3 0.22 66004(8)  47772(12) 35280(14) 26179(15) 

09435(17) 
10827(12) 
13145(10) 
16287(11) 
10789(16) 
12906(17) 
14787(14) 
15900(10) 
17644(12) 
20316(10) 
15883(13) 
18206(11) 
19742(13) 
18328(16) 
19442(18) 
14582(16) 
16502(21) 
19038(9) 
13861(17) 
16634(13) 
19447(15) 

TABI.E 3b 
The expectation values of Wilson loops WR, r in units of 10 -5 

X # ~ W2z w23 w~4 w25 w55 

oc 2 0 0.55 16925(22) 08881(20) 04833(18) 02661(8) 
2.1 0.5 18783(18) 10212(15) 05722(12) 03238(10) 

oo 2 1 0.6 22101(13) 13111(12) 07982(11) 04890(9) 
oc 2.1 0.8 26323(12) 16984(12) 11168(12) 07382(10) 
oo 2 3 0.3 18187(23) 09030(22) 04555(15) 02303(11) 
oo 2.3 0.4 21263(23) 11814(23) 06715(18) 03858(15) 
oo 2 3 0 45 23873(18) 14268(16) 08731(14) 05386(12) 
c~ 2.3 0.5 25380(13) 15696(13) 09928(11) 06324(11) 
oo 2.3 0.6 27666(13) 17895(12) 11806(12) 07828(11) 
o~ 2.3 0.8 31013(11) 21161(11) 14677(10) 10225(9) 
oo 2.4 0 4 25113(19) 15163(19) 09352(16) 05812(13) 

2.4 0.5 28145(13) 18149(14) 11934(13) 07901(12) 
oo 2 4 0.6 30101(12) 20072(13) 13627(12) 09300(11) 
c~ 2.5 0 4 28083(17) 17822(18) 11532(18) 07522(16) 
oo 2 5 0 45 29512(20) 19260(20) 12810(18) 08570(16) 

1.0 2 3 0.32 23575(21) 13988(20) 08500(17) 05208(14) 
1.0 2 3 0.35 26154(20) 16441(21) 10552(19) 06820(15) 
1 0 2 3 0.4 29430(9 )  19603(9 )  13295(9 )  09063(8) 
0.1 2.3 0.195 22586(23) 13041(23) 07712(17) 04595(13) 
0.1 2 3 0 205 26327(19) 16604(20) 10698(16) 06939(14) 
0.1 2 3 0 .22 29939(16) 20100(16) 13737(14) 09431(12) 

00274(8) 
00385(7) 
00850(7) 
01794(8) 
00071(5) 
00351(7) 
00835(8) 
o1189(lO) 
01799(9) 
02958(9) 
00859(10) 
01722(9) 
02379(10) 
01388(11) 
01885(11) 
00785(10) 
01373(13) 
02371(8) 
00575(10) 
o142O(lO) 
02565(11) 
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TABLE 3c 
The expectation values of Wilson loops WR, r in umts of 10- 5 

191 

X f l  g ~3 ~4 ~5 ~ ~5 

oo 2.0 0 55 04247(21) 02171(13) 01130(7) 01101(8)  00553(7) 
o0 2 1 0 5 05059(14) 02658(9) 01430(7)  01356(9)  00720(6) 
oo 2 1 0 6 07316(13) 04284(10) 02554(7) 02470(9)  01447(6) 
oo 2.1 0.8 10561(12) 06790(10) 04401(8) 04333(10) 02795(8) 
o0 2.3 0 3 03617(18) 01510(12) 00626(8) 00511(6)  00179(5) 
oo 2.3 0.4 05798(18) 02999(14) 01579(10) 01459(11) 00731(8) 

2.3 0 45 07869(16) 04558(12) 02684(9) 02562(11) 01479(8) 
o¢ 2.3 0.5 09092(13) 05503(10) 03379(9) 03255(10) 01981(8) 
oo 2 3 0.6 11023(13) 07051(11) 04552(8) 04453(11) 02851(8) 

2.3 0 8 13960(12) 09478(11) 06479(9) 06376(10) 04342(8) 
o¢ 2 4 0 4 08374(18) 04833(14) 02835(12) 02681(11) 01531(9) 
o¢ 2 4 0 5 11045(12) 06989(14) 04472(9) 04339(10) 02739(8) 
oo 2 4 0.6 12784(13) 08423(11) 05607(10) 05471(11) 03617(10) 

2 5 0 4 10492(18) 06434(16) 04008(12) 03822(14) 02331(10) 
oo 2 5 0.45 11832(20) 07549(16) 04875(15) 04721(17) 03002(13) 

1 0 2.3 0 32 07615(18) 04352(14) 02539(11) 02415(13) 01386(9) 
1 0 2 3 0.35 09749(19) 06022(16) 03767(13) 03651(19) 02248(14) 
1.0 2.3 0 4 12541(11) 08286(10) 05529(8) 05425(10) 03580(9) 
0 1 2.3 0 195 06814(22) 03752(16) 02113(11) 01981(15) 01079(10) 
0 1 2 3 0 205 09870(18) 06116(15) 03844(11) 03721(15) 02306(11) 
0 1 2.3 0 22 12991(15) 08670(14) 05830(12) 05726(14) 03839(11) 

equilibrating sweeps) in 2000-3000 sweeps for some selected points in the 3-dimen- 
sional parameter  space (X, fl, r) .  The results are collected in tables 3a-3c. This 
calculation took about 600 CPU hours on the Siemens 7.882 computer at the 

Universi ty of Hamburg.  
Because of the limitation in the time elongation T, the best way to extract the 

static energy E ( R )  is to fit the 5 points (1 ~< T~< 5) by the sum of two exponentials: 

WR, r = clRexp( -- e lnT  ) + c2Rexp ( - -e2RT).  (3.2) 

The industrious reader is invited to repeat the calculation on the basis of table 3. 
Here  only the final results will shortly be summarized: the fit is good and the value 
of the smaller energy ele is always stable with small error. Therefore, one can 
identify a E ( R )  with elR. The second energy e2R is also reasonably well determined, 
and its value is typically 3 -6  times larger than err (typical values of e2~ are in the 
range 1.6-2.3). This means that the field configuration around the external charge 
pair  is sufficiently rigid and the static energy can be considered, to a good 
approximat ion,  as a potential energy. 
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TAn~ 4 
Parameters of  the potential in a Yukawa- (Y), HultMn- (H) and string-like (S) fit defined by eq. (3 3) 

h fl K fit a c am a2tj 

2.0 0.55 S 0.305(15) 0.75(2) 0.003(3) 
o¢ 2.1 0.5 Y, H 0.312(14) 0.66(2) 0 41(12) 
o¢ 2 1 0.6 Y, H 0.258(9) 0.538(4) 0.64(18) 

2 1 0.8 Y, H 0 214(9) 0.441(2) 0 91(21) 
oo 2 3 0 3 S 0 192(22) 0.46(3) 0.160(10) 

2.3 0.4 S 0 274(8) 0 63(1) 0.032(3) 
o0 2 3 0.45 S 0.250(5) 0.60(1) 0.002(2) 
oo 2.3 0 5 Y, H 0.234(6) 0.52(1) 0.42(16) 

2.3 0.6 Y, H 0 207(6) 0 453(2) o.61(18) 
oo 2.3 0,8 Y,H 0.178(5) 0.387(1) 0.82(22) 
oo 2.4 0,4 S 0 241(5) 0 571(6) 0.0118(17) 
o¢ 2 4 0.5 Y, H 0.206(5) 0.477(6) 0.33(15) 
oo 2.4 0.6 Y, H 0.191(5) 0 421(2) 0.60(19) 
oo 2.5 0.4 S 0.213(4) 0 519(5) 0 0067(14) 

2 5 0.45 Y, H 0.201(3) 0 48(1) 0.18(9) 
1.0 2.3 0.32 Y, H 0.264(3) 0.61(1) 0 14(7) 
1 0 2.3 0.35 Y,H 0.218(7) 0 50(1) 0.38(15) 
1 0 2.3 0.4 Y, H 0.187(5) 0.417(2) 0.69(21) 
0 1 2 3 0.195 S 0.277(5) 0.64(1) 0.0089(21) 
0.1 2 3 0.205 Y, H 0.218(6) 0 49(1) 0.44(19) 
0 1 2.3 0.22 Y, H 0.190(6) 0 404(1) 0.81(25) 

The errors in paranthesis are the sums of statistical errors and estimated systematac errors. 

The R-dependence of the potential for i ~< R ~< 5 was compared to 3 simple forms: 

o/ 
(Y): - ~ exp( - a m R )  + c ,  

aam 

(H): - e x p ( a m R )  - 1 + c ,  

tw 
(S): - - -+a2oR+c.  (3.3) 

R 

Y stands for "Yukawa", H for "Hulth6n" and S for a "string-like" potential. The 
best fit parameters are given in table 4, in those cases, when an acceptable fit could 
be obtained by the given form. The systematic errors of the fitting procedure were 
roughly estimated from the deviations in such cases, when different fits were 
possible. 

As can be seen from table 4, the Yukawa- or Hulth6n-form gives a good fit in the 
Higgs phase fat enough from the phase transition surface. Therefore, the potential in 
these points is given, to a good approximation, by the massive W-boson exchange. 
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Fig 8. Typical examples of the static potential aE in such points, where the Yukawa form gJves a 
good fit. 

For  typical examples see fig. 8. The fitted mass values am in table 4 are, within 
errors, consistent with the W-boson mass am w determined from the correlations 
(see table 1). There is, however, some systematic difference between the Yukawa 
and Hulth6n form: the former gives always smaller masses than the latter. Ap- 
proaching the phase transition surface from above, the potential develops a quasi- 
linear, confinement-like behaviour for intermediate distances. The change between 
the pure Yukawa-like and more and more explicit string-like behaviour is continu- 
ous (for illustration see fig. 9). Near the phase transition the Yukawa fit gets 
gradually worse (see e.g. figs. 10a-b). It is expected, that in the Higgs phase at very 
large distances the potential finally tends always to a constant, but the turn-over 
might set in rather late. Eventually, it would be very interesting to know the exact 
behaviour at very large R. For instance, if the R ~ oo form is given by const 
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Higgs- l ike  region. T h e  t rans i t ion  for h ffi oo, fl = 2 3 is a t  rcr = 0.386 + 0 005 

-(to/R)exp(-amwR), then the value of to could be quite different (e.g. much 
smaller) than the short-distance coupling a. Further Monte Carlo studies may give 
some hints in this direction, but this is presumably a rather difficult question for a 
numerical study. Below the phase transition surface the potential becomes rather 
similar to the pure gauge theory confinement potential. For instance, at (X = oo, 
fl = 2.3, r = 0.3) there is almost no difference compared to fl = 2.3 in pure SU(2) 
gauge theory (see tables 3-4 and fig. 11). 

Concerning the X-dependence of the potential, if the average link L is used as a 
variable (like e.g. in figs 4a-b), then the same universal behaviour is observed as in 
the correlation lengths. For fixed X the pattern of the short-distance behaviour of 
the potential can be characterized by the "renormalized gauge coupling" a obtained 
in the fits (3.3). This definition of the renormalized coupling is, of course, not very 
precise, because strictly speaking a is a function of R. But for a first qualitative 
understanding it is sufficient to consider the average defined by the fits. Taking the 
h = oo values of a from table 4, a simple linear interpolation gives the curves of 
constant renormalized gauge coupling shown in fig. 12a. 



O
l 

05
 

0,
~ 

aE
 

S 
~=

23
 

j.
.-

- 
~ 

~Q
19

s 
/~

/-
" 

X=
01

 
/~

//
//

/ 

/ 1//
 

63
5 

P 
I 

I 
I, 

I 
~ 

1 
2 

3 
4 

5 
R

:r
/a

 

Fi
g.

 1
0a

. 
A

n 
ex

am
pl

e 
of

 t
he

 p
ot

en
tt

al
, 

w
he

re
 t

he
 Y

uk
aw

a 
fi

t 
(d

as
he

d 
li

ne
) 

is
 m

uc
h 

w
or

se
 t

ha
n 

th
e 

st
rm

g-
po

te
nt

la
l 

fi
t 

(f
ul

l 
li

ne
).

 N
ot

e 
th

at
 t

he
 b

es
t 

Y
uk

aw
a 

fi
t 

gw
es

 a
 

m
as

s 
a

m
 

<
~ 

0 
0,

 
w

he
re

as
 t

he
 W

-b
os

on
 m

as
s 

m
ea

su
re

d 
fr

om
 t

he
 c

or
re

la
ti

on
s 

is
 

a
m

 w
 

= 
0.

45
 _

-4-
 0 

09
. 

O
? 

(1
6 

05
 o"I,

 

aE
 

[3
=2

.3
 

i(.
=0

4 
" 

~.
 

~ 
~k

=o
e 

x/
 

-t
 1

11
~

 

,~
 

' 
=

--
~

 
" Q

O3
2R

*O
,62

6 

I 
~ 

I 
I 

..I 
~ 

I 
t 

{ 
• 

1 
2 

3 
4 

5 

Fi
g.

 1
0b

 
A

no
th

er
 e

xa
m

pl
e,

 w
he

re
 t

he
 Y

uk
aw

a 
fi

t (
da

sh
ed

 h
ue

) 
to

 t
he

 p
ot

en
ti

al
 i

s 
ve

ry
 b

ad
, 

bu
t 

th
e 

st
nn

g-
po

te
ut

la
l 

fi
t 

(f
ul

l 
li

ne
) 

is
 q

ui
te

 g
oo

d.
 

N
ot

e 
al

so
 h

er
e,

 t
ha

t 
th

e 
be

st
 Y

uk
aw

a 
fi

t 
re

qu
ir

es
 a

m
 

= 
0,

 w
he

re
as

 t
he

 W
-b

os
on

 m
as

s 
ob

ta
an

ed
 [

ro
m

 t
he

 
co

rr
el

at
io

ns
 i

s 
a

m
 

w
 

=
 

0 
79

 _
+ 0

.0
8.

 



196 

aE 

1.C 

0.9 

0.8 

0.7 

0.6 

0.5 

O.t, 

L Montvay / Standard Hzggs model 

[3=23 / ~  "N.=O.3 / X= 

I I I I 
I 2 3 /, 5 r/a 

Fig. 11. The staUc potential in a point (k= o0,/]= 2.3,~0.3) below the phase transition surface 
(,c < '%0- 

3.2 "CHIRAL" LOOPS 

The potential energy deduced from Wilson loops refer to a pair of infinitely heavy 
particles, which are transforming as a vector-like (i.e. non-chiral) doublet under 
SU(2). In the SU(2) ® U(1) electroweak theory the fermions (leptons and quarks) are 
in a chiral representation: left-handed fermions form doublets, but the fight-handed 
ones are scalar. The chiral transformation property can influence the forces acting 
on a heavy particle. In order to have a feeling on this effect, let us consider heavy, 
chiral, naive fermions on the lattice. The fermion matrix in the bilinear fermion 
action can be written, in this case, like 

Q = I _ K~.s ( ~ _ ~ , ~ , V (  x, . 1+75  ) ~) + "" -~7~ ,~  • (3.4/ 
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Fig. 12b. The RGT's  in the studied region of the ~, = oo plane given by the requirement of the rescaling 
of  the force according to eq. (3.5). The vertical lines indicate the estimated errors. 
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Here V(x, ~) is the gauge invariant link variable introduced in the previous section 
and K is the hopping parameter inversely proportional to the mass. In the hopping 
parameter expansion, for very heavy fermions, only the shortest paths contribute. 
(For a review of the hopping parameter expansion see [20].) This gives the straight 
time-like sides of the Wilson loops for non-chiral fermions. In the case of (3.4) the 
dominant contribution for K ~ 0 is again the straight line, but instead of a product 
of all link variables along the time-like sides, we have the product of every second 
(gauge-invariant) V(x, #). For the space-like sides, representing the field between 
external charges, it is possible to take both a full product of all links or every second 
link (or even more complicated products of links). For the simplicity of comparison, 
let us take full products. In fig. 13 the potential extracted from such "chiral" loops is 
compared to the potential obtained in the same way from Wilson loops at 
(2~ = ~ ,  fl = 2.3, r = 0.5).As can be seen from the figure, the potential energy is 
reduced somewhat at larger distances by the chiral transformation property, but the 
overall qualitative behaviour remains the same. 
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Fig 13 Comparison of the static potential extracted from the expectatmn values of Wilson loops and 
"ctural" loops. All the points shown were obtained from the ratio of loops wath tm~e elongation T z 3 

and 5. 
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3 3 DIFERMION "ZOO" 

The interesting consequence of the potential acting on a heavy fermion doublet 
pair is the possibility of bound states in the difermion channels due to the exchange 
of W-bosons. (Note that the SU(2) representations are real, therefore both fermions 
and anti-fermions feel the same potential.) Even a pure Yukawa potential of 
- a  e x p ( - m r ) / r  has bound states, if the coupling a is large enough and if the 
constituents are heavy enough. A short numerical investigation shows that the 
existence of at least one bound state in the non-relativistic SchriSdinger equation is 
guaranteed for a M / m  > 1 (M is the reduced mass). The largest a-value in fig. 12 is 
around a - - 5 ,  therefore M / m  w > 3 is enough. Of course, the quasi-confining 
potential shape near the phase transition line is even more favourable for bound 
states than the Yukawa-like potential. 

3 4 RENORMALIZATION GROUP TRA/ECTORIES 

An important question in the lattice regularized SU(2) fundamental Higgs model 
is whether there exists a continuum limit defining a non-trivial (i.e. interacting) 
quantum field theory. The first complication compared to the pure gauge theory 
(where the existence of a non-trivial continuum limit is generally assumed, but up to 
now is not mathematically proven) is the presence of several independent couplings. 
The notion of renormalization group trajectories (RGT's) in such a case was 
discussed to the necessary degree of generality in the field theory and statistical 
physics literature (see, for instance, ref. [21]). 

In order to see how these notions work in a specific (well-known) case with more 
than one coupling, let us consider QCD with a single (dynamical) quark mass. In 
this case there are two couplings: the gauge coupling g (or ~ = 6g -2) and the 
dimensionless quark mass variable #q (for Wilson fermions one can define #q-- 
(2Kq) -1, where Kq is the hopping parameter). The renormalization group trajecto- 
ries are conventionally parametrized by the renormalization group invariant quark 
mass Mq (more precisely, by the ratio Mq/A, where A is the usual RG A-parameter 
for the SU(3) gauge coupling). The expected shape of the scaling region and the 
RGT's #q = #q(B, Mq) in the (/~, #q) plane are shown in fig. 14. (For a more 
detailed discussion of QCD with dynamical quarks see ref. [20].) The curve gcr(/~) is 
the line with zero quark mass Mq = 0 (gcr(fl) 11°°p is its l-loop perturbative ap- 
proximation). The scaling region is, for Mq >/0, below the line (SQ). The critical 
point, where all the RGT's with constant Mq meet, is at (8 = o0, #q = 4). If only 

p u r e  gluonic quantities (like glueball mass, string tension etc.) are considered, the 
scaling region is larger: it is for Mq >I 0 the whole region to the right of the line (SG). 
For this reduced set of physical quantities there is only one relevant coupling (for 
instance/~), and there exists an infinity of ("reduced") critical points along the line 
/~= oO, 4 </~q~ o0. 

In the SU(2) fundamental Higgs model the study of correlations and static 
energies gives valuable information on the RGT's. Along the RGT's the mass ratio 
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Fig. 14. The expected shape of the scaling region in the (B, ttq) plane for QCD with N/= 3 degenerate 
quark flavours. //is the SU(3) gauge coupling and ~tq is the quark mass parameter for Wilson fermions. 
The shape of the RGT's for small and large RG invariant quark mass Mq is shown. The meaning of the 
other curves is explained in the text. A spectrum calculation with dynamical quarks was performed in ref. 
[24] for (~ = 5 4, ~ q  m 3 . 0 6 7 5 )  a n d  (/~ m 5 .3 ,  ~q  m 2 9762). These points are denoted, respectively, by A 

and B. The RGT's with constant Mq and the critical line ttcr(//) tend for//--, 0c to ~q m 4. 

ran~row has to be constant, and the force a 2 d E ( r / a ) / d r  - F ( R )  acting on the 
external doublet  pair at physical distance r -- aR, can be scaled between two points 

with scale ratio ~12 = a2/ax as 

2 R (3.5) 

I f  the static energy is determined for N different distances, the force represents 
( N -  1) different physical quantifies. Since the static energy can be obtained with 
good precision, eq. (3.5) gives an accurate constraint on the RGT's .  In fact, the 
scaling properties of the potential can be used in pure SU(2) gauge theory for the 
precise determination of the scale ratio ~12 [22]. In the Higgs phase the shape of 
the potential  changes gradually f rom Yukawa-type to a quasi-confinement form 
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near the phase transition surface in the (h, 13, ~) space. Therefore, the RGT's can be 
pinned down by the requirements of a constant shape. 

Starting from the Wilson loop values measured in discrete points of the parameter 
space, first one has to interpolate them in some region. Because of the universality in 
X, I considered only the h = oo plane and took, for simplicity, a linear interpolation 
between the measured points. (The points are shown, for instance, in fig. 12a.) The 
force F (R)  can be defined in an arbitrary point by fitting the potential with one of 
the forms in eq. (3.3), and then by the requirement of rescaling according to eq. (3.5) 
it is possible to decide whether a point pair is on the same RGT or not. Choosing 
different combinations of point pairs and comparing the scale factors, it is also 
possible to check the systematic errors of this procedure. A source of systematic 
errors is the interpolation of the Wilson loop expectation values. This can, in 
principle, be easily decreased by using a higher order interpolation and/or  by 
measuring on a denser set of points. Another, potentially more dangerous, source of 
errors is the use of the fits (3.3) for the definition of the force. I checked this by 
defining the force also from a quadratic interpolation between neighbouring poten- 
tial points. The results turned out to be consistent with the results of the fitting 
procedure. In the vicinity of the phase transition the interpolation procedure was 
even more stable. The resulting shape of RGT's is shown in fig. 12b. Although the 
errors on the curves are not small, some qualitative consequences can immediately 
be drawn. For instance, the picture is completely inconsistent with a critical point at 
the end of the phase transition line near fl---1.5 (see fig. 1). All the numerical 
information (including the masses a m  ~ a n d  a m  w) is consistent with a critical point 
at the fl = oo end of the phase transition line, which coincides with the critical point 
of the o-model for the given, fixed )~-value. 

As it was discussed in detail previously, the masses and static energies are 
approximately universal functions of the link expectation value L (see figs. 4a-4b 
and 7). This means that there exists a mapping between any two planes ~ = hi and 
h = ~2 such that the physical quantities do not change. Assuming that the small 
deviations from universality either are due to lattice artifacts (i.e. disappear in the 
continuum limit) or can be transformed away by optimizing the mapping, it follows 
that the continuum limit is independent from ~. In other words, the number of 
independent parameters in the continuum theory is smaller than in the regularized 
theory: the same parameter reduction occurs in the gauge-Higgs system as in the 
pure ~4 theory. 

Below the phase transition line in the (fl, K) plane there might also be RGT's 
corresponding to a confining theory with scalar matter fields and zero vacuum 
expectation values (as advocated in ref. [7]). In the present data we see no evidence 
for this, because everything measured below the phase transition line looks very 
similar to pure gauge theory. Nevertheless, in future Monte Carlo studies one should 
go very close to the phase transition line from below, perhaps also at larger fl-values, 
in order to have better constraints. Of course, a direct Monte Carlo renormalization 
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Fig. 15. The schematic behaviour of the renormalization group trajectories in the (fl, ~) plane for any 
= const > 0 The phase transitton line is dashed-dotted. The full lines are the RGT's in the Higgs-like 

phase The dashed lines could be RGT's in the confinement-like phase, which tend to the critical point 
from below the phase transition line. 

group [23] study of the RGT's, both in the Higgs- and confinement-like phases, 
would be desirable. The expected picture of the RGT's in the )~ = const, planes is 
schematically shown in fig. 15. 

4. Conclusion 

The numerical Monte Carlo study of correlations and static energies in the SU(2) 
gauge theory with a Higgs-scalar doublet is rather useful for the understanding of 
continuum physics behind the lattice-regularized theory. In this paper numerical 
evidence was found for the (at least approximate) irrelevance of the Higgs self-cou- 
pling 2~. The renormalization group properties in the two relevant couplings (fl, r)  
are qualitatively similar to the situation in QCD with a single (dynamical) quark 
mass. It is expected, that for any fixed positive P, there is a single critical point at 
fl = O0, K = Kcr(~k) ( w h e r e  r c r ( h  ) is the critical point in the o-model at fl = o0). 

The marked jump found in both the W-boson and Higgs boson mass at the 
confinement-Higgs phase transition can be a hint for the first-order nature of the 
transition for any h, but for a decision between second order and weakly first order 
further detailed studies are necessary. Below the phase transition surface, there 
might be RGT's which define a confining continuum theory with scalar matter 
fields. The present data give no evidence for this, because every measured quantity 
looks, below the transition surface, very similar to pure SU(2) gauge theory. 
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In the Higgs phase there is a lower bound for the ratio of the Higgs mass to 
W-mass: 

mH 
>/1.0 + 0.3. (4.1) 

m w  

This relation was obtained in the region with strong gauge coupling, but presumably 
it holds also for weak gauge coupling (up to electromagnetic and fermionic correc- 
tions), because mn/m w increases with decreasing (renormalized) gauge coupling. If 
there are, indeed, only two relevant couplings, then the physical value of mH/mw is 
uniquely determined by the renormalized gauge coupling. The direct Monte Carlo 
evaluation of m tq/m w for the phenomenologically interesting weak gauge coupling 
seems difficult. A possible way is to go into the o-model at/3 = oo, and calculate 
m w from the mass parameter fg characterizing the spontaneous symmetry breaking 
SU(2) ® SU(2) ~ SU(2). (In the context of QCD fg is usually denoted by f,,.) A 
possible way to extract fg by a Monte Carlo simulation in the o-model was 
proposed recently by Dashen and Neuberger [15]. The numerical calculation seems 
not very easy, but it is certainly worth a try. 

It is a pleasure to acknowledge discussions with Peter Hasenfratz, Martin Liischer 
and Roberto Peccei. Their remarks contributed in an essential way to the final form 
of this paper. I am indebted to Christian Lang for a correspondence about his 
Monte Carlo data. I wish to thank the Computer Centre of the University of 
Hamburg for the generous support of the computations in this paper. 
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