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In four-dimensional lattice gauge theory, wi.thout quarks the lowest particle states in the strong 
coupling region correspond to a spin-zero and a spin-two glueball. They are degenerate in the 
lowest order of the strong coupling expansion. There exists an effective transfer matrix, acting in 
the lowest order'eigenspace, whose eigenvalues are identical with the corresponding ones of the full 
transfer matrix to all orders in the strong coupling expansion. It is constructed here up to the 
eighth nontrivial order for different gauge groups. Diagonalization yields the energy-momentum 
dispersion relations for glueball states. 

1. Introduction 

The low-lying spectrum of lattice gauge theories has been studied by different 
methods [1]. One of them is the strong coupling expansion. For several low-lying 
particle states (glueballs) strong coupling expansions of their masses have been 
derived for different gauge groups and lattice actions [2-8]. In the following we limit 
ourselves to the consideration of euclidean lattice gauge theory with standard Wilson 
action. For zero-momentum states the strong coupling calculation of their energies 
simplifies in comparison to the case of nonzero momentum. This is due to the fact 
that zero-momentum states transform irreducibly under some representation of the 
cubic lattice symmetry group. This allows the explicit construction of operators 
which create such states out of the vacuum [2, 9]. On the other hand, for states with 
generic nonzero momentum, the lattice symmetry does not give any restrictions on 
the operators creating them. If one likes to calculate their energy one has to 
determine the states properly. In particular they contain parts belonging to different 
irreducible representations of the cubic group and the relative amplitudes of these 
contributions must be calculated. 

In another article [10] we considered a triple glueball vertex function in the 
framework of the strong coupling expansion. The calculation required knowledge of 
the energy-momentum dispersion relation for low-lying glueballs and of the corre- 
sponding eigenstates. This information can be obtained from the results of the 
present article. 
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The essential ingredient of our method is an effective transfer matrix whose 
eigenvalues coincide with the eigenvalues of the full transfer matrix belonging to the 
lowest glueball states. We calculate the effective transfer matrix up to twelfth order 
in the strong coupling expansion. Since the expansion starts at fourth order this 
amounts to a calculation of eight orders. Diagonalizing the matrix the energy- 
momentum dispersion relations for the lowest spin-zero and the lowest spin-two 
glueballs are obtained. 

For gauge groups SU(2) and Z 2 Kimura and Ukawa [11] have already studied the 
energy-momentum dispersion relation of the scalar gluebali. In their calculation, 
however, they do not use the proper eigenstate but a state which behaves like the 
zero-momentum state with respect to rotations. As a result the two-plaquette 
correlation function failed to exponentiate. Their results for the energy are neverthe- 
less correct up to terms quadratic in the momentum. 

Our notation is the following. The models are defined on a hypercubical lattice in 
4 dimensions. The gauge field U(b) ~ G is attached to the links b of the lattice and 
takes values in the gauge group G. The ordered product of variables U(b) on the 
boundary of an elementary plaquette p is called U(p). The action is 

= _ 2  
S g:  ~ R e t r  U(p) .  

p 

(1) 

The sum extends over all unoriented plaquettes p and g is the bare coupling 
constant. Expectation values of functions O of the link variables are evaluated by 

(0 )  = z - ' f  ~I b d U ( b ) O e x p ( -  S ) ,  (2) 

where 

z= f  dU(b)exp(-S) (3) 

is the partition function. 
The quantity which corresponds to the euclidean time evolution operator 

e x p ( - t H ) ,  where H is the hamiltonian, is the transfer matrix T [12]. It is known to 
exist for the lattice gauge theories under consideration [13,14]. The lattice hamiito- 
nian is defined by 

H = - a - X l o g T ,  (4) 

where a is the lattice spacing. In the following we set a = 1. Physical states with 
energy E are eigenvectors of the transfer matrix with eigenvalue 

h = e x p ( -  E) .  (5) 
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The transfer matrix commutes with spatial lattice translation. Consequently 
physical states carry definite momenta p and we write 

T ¢ ( p  ) = e x p ( - E ( p  ))~b(p ), (6) 

P =  ( Pl, P2, P3), [p,] <rr .  (7) 

For a particular particle the corresponding function E ( p )  is its energy-momentum 
dispersion relation, and its mass is 

m = E(0) .  (8) 

Concerning the strong coupling expansion we use the notation and definitions of 
[3]. In particular the expansion parameter is denoted by u. 

2. Effective transfer matrix 

In the framework of degenerate perturbation theory in quantum mechanics the 
concept of an effective hamiltonian is well known [15]. Consider a hamiltonian of 
the form 

H = H 0 +  V, (9) 

where H o is a solvable unperturbed hamiltonian and V is a perturbation. Suppose 
H o has a n-fold degenerate eigenvalue E 0 with eigenspace ~3C 0. In higher orders of 
perturbation theory the degeneracy is lifted giving rise to n distinct eigenvalues 
E °), i = 1 . . .  n of the full hamiltonian H. An effective hamiltonian /q is an operator 
acting only in the n-dimensional space ~3C 0, whose eigenvalues are identical with the 
E t,>. There are different ways to construct/~/order by order in perturbation theory. 

In the following we apply this concept to the strong coupling expansion of lattice 
gauge theory. The transfer matrix T is normalized such that its largest eigenvalue, 
belonging to the vacuum ~0, equals one: 

T~o-- ~o. (10) 

In the strong coupling region the three next largest eigenvalues correspond to 
particle states [4, 5, 16]: 

Tq~,(p) = X,(p)q~,(p) ,  i =  1,2,3.  (11) 

For zero momentum ff~ belongs to the trivial representation A 1 of the cubic lattice 
symmetry group and is called 0 ÷ + glueball, whereas if2 and 63 are degenerate and 
transform according to the representation E of the cubic group, being called 2 ÷+ 
glueball [1]. Both types of states have even spatial parity and even C-parity [2, 5]. 
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In the strong coupling expansion one obtains 

~ , ( p ) = u 4 + O ( u S ) ,  i =  1 ,2 ,3 .  (12) 

Thus in the leading (fourth) order of the expansion the three states are degenerate. 
Furthermore there are no other states with even C-parity degenerate with the states 
above to leading order. 

For  some gauge groups, in particular for SU(3), there is a C-odd triplet, trans- 
forming under the representation Tt of the cubic group, which is degenerate with the 
states above in the leading order of the expansion. It is called 1 +- glueball. For 
simplicity we restrict ourselves to the C-even states in the following. Of course, 
everything can also be applied to the C-odd states. 

It is well known how to construct operators which generate the states ~k,(P) in the 
leading order of the strong coupling expansion. Let 

p , ( x ) ,  i ~  {1 ,2 ,3} ,  (13) 

be a space-like unoriented plaquette at time t = 0 with center x and being perpendic- 
ular to the /-axis. We call i the orientation of this plaquette. 

Define 

X,(x)  = {tr U(p i (x) )  - ~tr U(p))} ~0, (14) 

where tr U(p) acts as a multiplication operator on the vacuum state ~k0- Since the 
momenta commute with T it is convenient to work with momentum eigenstates from 
the beginning: 

%(p)  = N E e'PXXi(X ) . (15) 
X 

The sum extends over all possible centers of plaquettes and N is an irrelevant 
normalization factor. These states satisfy 

r + i ( p )  = u % ( p )  + (16) 

and they are orthogonal to the vacuum. In the strong coupling expansion as well as 
in Monte Carlo calculations they are used to create the lowest glueball states from 
the vacuum. The matrix 

C,~(p) = ( + , ( p ) l + k ( p ) >  (17) 

is nonsingular in the strong coupling expansion. 
Now let 

3 

e = ~ I~k,(p))(q~i(p)l 
i = l  

(18) 
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be the projector on the space of glueballs with momentum p and consider the matrix 

Obviously we have 

where 

P,k(n, P)  = ( % ( p ) l P r " P l ~ k ( p )  > . (19) 

p (n ,  p )  = C+C1 TM, (20) 

J~= C-aDC, (21) 

D = diag(>~,(p),>~E(P),>~s(P)) • (22) 

This means that knowledge of the matrices p would allow one to obtain an effective 
transfer matrix 7", whose eigenvalues are the desired exact eigenvalues ~ , ( p )  of the 
glueball states. 

In fact it turns out that the matrices p can be calculated in the strong coupling 
expansion. The essential observation is that the moment cumulant transformation 
[17, 3] provides a method of obtaining the projection operator P exactly to all orders 
of the expansion. I shall dispense with showing this in detail but merely indicate the 
line of reasoning. We start with the correlation functions 

~',k (n,  p )  = ]~ e'PX(tr V(p, (x  o + x, n))tr U(pk(xo,O)))~.  (23) 
X 

The second arguments of the plaquettes are the time coordinates. We write T in the 
form 

p)= <+,(p)l 

= O~k(n, p )  + ( ~ , ( p ) l ( l  -- P ) T " ( 1  - P ) I % ( P ) > -  (24) 

The second term in (24) is of order u 6" in the strong coupling expansion. The 
formulation of the strong coupling expansion for correlation functions in terms of 
lattice graphs [3] can now be generalized to the case of correlation matrices like T. 
The contribution of a graph is then given by a certain, matrix. Moreover it can be 
shown that the moment cumulant transformation applied to correlation functions 
[3, 17] also works here in the sense of matrix algebra. It yields an expansion for 
(1 /n ) log~  in terms of connected graphs. As usual it allows one to isolate those 
contributions which exponentiate and represent corrections to the leading term 
4 log u. In this way the piece p is projected out from ~. 

Using these methods I calculated the effective transfer matrix T up to order u 12, 
which are 8 nontrivial orders of the expansion. From it the effective hamihonian 

/2/= _ log 7" (25) 

can be derived up to order u 8. 
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3. Strong coupling expansion 

In the following we present the results for the effective hamiltonian f/. Define 

pj = 2sin~p~, 

t, = 2 cos ~ p j, j = 1,2, 3, (26) 

Aik = tit k - t26ik, 

B,k = (t, z - 2)3/k. (27) 

In terms of the matrices A, B and 1 the expansions are as follows. 
For SU(2) 

/2/= ( - 4 1 o g u +  2u2)1 - u " { [ ~ - p 2 ] !  + 2A} 

- u 6 {  [-1~-9-~-5 + p2]l  + 7A + l l B } -  [gS{[ 43z~_2_ 3.5/32 [ 243 + ½ ( / 3 2 ) 2 ]  | 

+ [ ~ + / 3 2 ] A + [ - l + 3 / 3 2 ] B + 3 A 2 + 3 B 2 + 2 ( A B + B A ) } .  (28) 

For SU(3) 

/~/= ( - 4 1 o g u -  3u + 9u 2 -  ~-7u3)! - u 4 { [ - 9 - / 3 2 1 1  + 2A } 

- u S { [  2°-!1 - 3p2]1 + 6A} - -  t / 6 {  [ - 12479'17 " t - 1 0 2 4 0  - -  7/3211 + 2A + l l B  

- - U 7 ( [  - 3602898971680 @ 12/32] 11 - 21A + 3B} 

-- U 8{ [ 113 631 493 -- 4-48-8~-9-89/3 2 q'- 1 ( /3 2 )2] | 40960 

+[ 76~34 + / 3 2 ] A + [ ~ + 3 p 2 ] B + 3 A 2 + 3 B 2 + 2 ( A B + B A ) } "  (29) 

For SU(oo) 

/ 2 / = ( - 4 1 o g u ) ! - u 4 ( [ 1 8 - / 3 2 ] !  + 2 A } - u 6 { [ 5 4 - / 3 2 ] l  + l l A + I l B }  

- u 8 { [ 1 2 4 -  9/52 + I(/32)2] I + [19 +p2]  A + [1 + 3p 2] B 

+ 3A 2 + 3B 2 + 2(AB + BA)) .  (30) 
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For Z ~_ 

For Z 3 

/ 4 =  ( - 4 1 o g u  + u z)l  - u 4 ( [ ~  - p 2 ] l  + 2A} - u6(~31 + 9A + l i B }  

-uS{[~47-10p2+½(p2)2]l+[20+p2]A + 3pZB 

+3A 2 + 3B 2 + 2(AB + BA)). (31) 

H =  ( - 4 1 0 g u -  u + ~u 2 -  7u3)! - u 4 { [ a ~ - p z ] !  + 2A)  

- . ' ( [ ~  - pq, + 2A } - . 6 ( [ -  ~7 + pq, + vA + 118 } 

- u T { [ ~ + p 2 l , - A  + B }  

+[16+3p2]B+3A2+3B2+Z(AB+BA)). (32) 

For U(1), the Wilson action, 

/~ = ( -  41ogu + ~u 2)1 -/d4{[ 2-~4 9 -  ~2]|  .q_ 2A } 

_ u 6 { [ _  2z~4~ + ½p2]! + 8A + l l B }  

+ 3A 2 + 3B 2 + 2(AB + BA)). (33) 

For U(1), the Villain action, 

/ ~ =  ( - 4 1 o g u  + 2u2)! - u 4 { [ 1 7 - p z ] !  + 2A } - u 6 { [  - ~ + p z ] l  + 714 + 11B) 

+3A 2 + 3B 2 + 2(AB + BA)}. (34) 
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Diagonalization of [ /  yields the energy-momentum dispersions E,(p) for the 
glueball states. Here we only write down the results for the energy E~(p) of the 0 + 
glueball and leave the other two as an exercise for the reader. Because the 
momentum dependence is rather complicated we present the energy in the form 

with 

+h.(p2)2+ O(h'), (35) 

m =  - 4 1 o g u +  ~ mk uk, (36) 
k - 1  

f=  ~.,fku k, g= ~.,gku k, h= ~_,hku k. (37) 
k = 4  k ~ 4  k = 8  

The coefficients are contained in table 1. The eigenvector v ~1) belonging to the 
eigenvalue E 1 of /~/ is  to lowest order in u given by 

= 2 , ( 3 8 )  V(k 1) t k ( # l + t k )  -1 

where ~tl is a root of the equation 

22 t2t•)l z -2t2t~t  2=0.  tt3--(t2t~ + tzt 3 + (39) 

What are these results good for? First of all the energy El(p ) as well as the 
corresponding eigenvector o °) for a particular momentum with 

/51 = O ( u - ' )  (40) 

were needed in [10] in the course of the calculation of a triple glueball coupling 
constant. In this case /~/can be determined up to order u 4 from the results above. 

Secondly the energy-momentum dispersion E(p)  allows one to consider the 
question of restoration of euclidean invariance [11]. In the continuum limit euclidean 
invariance should hold and E(p)  should approach its relativistic form 

E = (m 2 + p 2 )  1/2= m + p 2 / 2 m  + O ( p 4 ) .  (41) 

In particular the quantity 

c ,  = z m y  ( 4 2 )  

should approach the value 1. For gauge group SU(2) it has been considered in [11]. 
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T ^ B L E  1 

C o e f f i c i e n t s  o f  the  s t r o n g  c o u p l i n g  e x p a n s i o n s  (36) ,  ( 37 )  for  d i f f e r e n t  g a u g e  g r o u p s  

75  

S U ( 2 )  S U ( o ¢ )  Z 2 U ( 1 ) ,  W i l s o n  U ( 1 ) ,  V i l l a i n  S U ( 3 )  Z 3 

n h - 3  - 1 

m: 2 0 1 _21, 2 9 _5, 
27 7 

P~l 3 - -  2 - -  21 

"'4 - 7 - 34  - '~ - 73~ - 33 - 7 _ !~0 
297 211 

H I S  - 2" 5 

2 0 9 8 1  - -  1 6 4  287 1783 172 8 5 8 8 2 7  271 

47641 149 
r t l  7 71--~o - 471 

1 5 ~ , , ,  - 5 6 4  ~ ?  1 ~  1 ~  _ 1 . ,  1,,~121 _ ~ ,  
/ ~ l  N - -  2-43 - "  - -  2 8 N 1  - =  411 q ~ O  

f a  _7 _7 7 7 7 7 7 
3 3 3 3 3 3 21 

A 7 
f6  2~, 12 2¢ ,f  2? 221 2? 

4 
/7 -25  21 

g 4  - -  2 : 7  - -  2 ~  - -  2 7  - -  "~ - 2 7  - 27 - 7 

1 __ l 7 
,g5 - 

1 11 7 , I ,  ' 
g6 - ~ - 1-~ - 1o~ 168 - l ~>s  - 6 

5 1 
g7  f2 216 

,o, ] ,  2, ,1 217 52121 5 
gx - ~ 8  - i - 2q* - ?~24 - 2i), - z1¢-: - x 

25 25 25 25 25 25 25 
h~ - t8 - ~ - 18 - li - i~i - I~ - 18 

F o r  U ( 1 )  b o t h  W i l s o n ' s  and  Vi l la in ' s  a c t i o n  are  l i s ted.  

For SU(3) the strong coupling expansion of C L is 

C 1 = { u a { - l o g u [ 5 6  + 168u + 36u 2 -  600u 3 + 5313 u ' ]  

- 4 2 u  + 162u 3 -  134u 4 +  O ( u S ) } .  ( 4 3 )  

It is plotted in fig. 1 as a function of fl together with the diagonal Pad6 approximant 
applied to the power series in (43). The behaviour is similar to the SU(2) case. In the 
crossover region around/3 = 5 the function C t reaches the value 1 and continues to 
increase for larger values of  B. As the strong coupling expansion ceases to be reliable 
beyond the crossover, the true function Ct may well approach its limit value 1 there, 
as indicated by Monte Carlo calculations [18]. 

Finally I would like to point out that the correlation matrix P can also be 
determined in a Monte Carlo calculation. If the masses of  other glueballs in the 
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i ~ , , t , 

Pad~ 

1 2 3 4 ,$ 6 7 
13 

Fig. 1. The quantity C l, defined in (42), as a function of fl = 6 /g  2 for gauge group SU(3). The upper 
curve shows the expansion (43), the lower curve is a diagonal Pad~ approximant. 

parity sector under consideration are sufficiently higher and if n is sufficiently large, 
the measurable correlations r,k(n, p) are approximately equal to the P,k- Numerical 
diagonalization of P would give the proper energies and eigenstates. Such an analysis 
could be done by extending the calculations of [19]. 
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