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The 2% glueball is investigated in four-dimensional SU(2) lattice gauge theory. Using a recently pro-
posed source we carry out a high-statistics Monte Carlo calculation at 8=2.25 and 2.40. We obtain reliable
correlation up to distance t=2 and a signal/noise ratio > 3 for correlations up to distance r=3. With in-
creasing distances we find a significantly decreasing m (2+) mass. There is no indication that the asymptot-

ic limit (#— oo) has been reached.

Source methods play an important role for investigating
the spectrum of pure lattice gauge theories. For a partial
reference list see Refs. 1 and 2. Most investigations! con-
centrate on the 0** mass gap. In Ref. 2 sources for the
SU(2) 2* and the SU(2) 0~ spin state (the definition of
spin states on the lattice is given in Ref. 3) were proposed
and preliminary Monte Carlo (MC) calculations indicated a
reasonable signal in the case of the 2% state, whereas the
signal for the 0~ state disappeared already at distance r=1
into the statistical noise.

The 2* source consists in fixing a wave function |¥) on
a spacelike plane

[y =TI8(U)—4(D)]0) .
1

Here A(1)=1 except for those links in the &, direction
which have coordinates (ny,n,n3) with n;=0,2,4, ...
(and ny,n; arbitrary). At these links 4 (/) = —1 is taken.

In the present Brief Report we use this 2% source and re-
port MC results relying on the high statistics of Table I.
The MC procedure creates vacuum field fluctuations and
therefore expectation values (¥|0(¢)|0) are calculated.
t is the distance of the operator O(¢) from the source |¥).
In the column ‘‘measurements”> (MEAS) of Table I the
first number gives the sweeps performed for each measure-
ment and the second number gives the total number of
measurements performed (the product of both is the total
number of sweeps). The lattice size is always 8% As in
Ref. 2 we calculate expectation values of six different opera-
tors in the E + representation of the cubic group. This cor-
responds to spin 2+ in the continuum limit (see Ref. 3).
The six operators considered are depicted in Fig. 1. Error
bars are obtained by dividing all data into fixed numbers of
bins as given in Table 1.

TABLE I. MC statistics: Number of sweeps for reaching equi-
librium (EQUI) and for measurements (MEAS). Error bars are cal-
culated with respect to the given number of bins (BINS).

B EQUI MEAS BINS
215 1250 3% 5000 20
2.25 1250 2x 100000 40
2.40 1250 2% 50000 20

33

In this Brief Report we only report results from operators
which give

r =signal/noise > 3 , (¢))]

for correlations at distance ¢ =3 and 8=2.20, 2.40. The sig-
nal to noise ratio is defined as a mean value/error bar. Also
for the sake of stability at 1=2,3 correlations with a sign
change at distance ¢t =2 are not considered. At 8=2.15a
ratio r =3 is never obtained with our data at distance ¢=3.
The correlations with the two highest r ratios are taken into
account up to r=2. At this 8 value the 2% mass is sup-
posed to be high and correlations at distance ¢=2 should
give reliable results. A reasonable wave function may al-
ready be constructed from the one-plaquette operator.

The thus selected results are presented in Table II. A de-
tailed discussion of all results will be given in Ref. 4. In
Table II the mass-gap estimates

—1 . (¥lo,(1)]0)

m(t,t) = h— 1t In (¥lo,(e)loy

(0]

are used. The operators O; (i=1, ...,6) are taken in the
E + representation indicated in Table II. The reliability of
our results in the r— oo limit (8, volume fixed) has to be
discussed critically. An advantage of the E + correlations,?
as compared with the 41+ correlations,! is that the vacu-
um expectation value is known to be exactly zero. There-
fore we have one parameter less than, for instance, in the
work of de Forcrand, Schierholz, Schneider, and Teper,!
where the Wilson loop expectation values are treated as free
parameters. On the other hand, we only obtain reasonable
signals up to the rather short distance t=3. More precisely,
the mass ratio m(3,0) is clearly out of the statistical noise,
whereas m(3,2) already exhibits difficulties concerning the
accuracy.

G
A

FIG. 1. Operators as considered in the present MC calculation.

596 ©1986 The American Physical Society



33 BRIEF REPORTS

597

TABLE II. Selected MC results. The E + representations (repr.) are defined in Ref. 3 and the selected
component (comp.) of these two-dimensional representations is also indicated. Finally, the signal to noise ra-

tio r for correlations at distance =3 is given.

E+ E+
Operator repr. comp. m(0,1) m(0,2) m(1,2) m(0,3) m(1,3) m(2,3) r
2.15 1 1 1 3.75(1)  3.64(8)  3.54(16)
2.15 5 1 1 4.02(1)  3.62(10) 3.22(19)
2.25 1 1 1 3.72(1)  3.62(2)  3.52(5) 3127 2.81(FEH) 21125 48
2.25 2 1 1 3.92 3.45(2)  2.98(5)  2.92(8)  241(F[)  1.85(3) 46
2.25 3 2 1 2.86(5) 237(219)  1.89(*3) 3.8
2.25 4 2 1 2.87(5) 233(X3)  179(*3) 43
2.25 5 1 1 3.92 3.47(3)  3.03(5 2970100 249(*])  1.96(3%) 4.0
2.40 3 1 2 4.59 4.00(7)  3.42(12) 2.98(11) 2.18(*}$) 0.95(¥§) 3.8
2.40 6 1 2 4.94(1) 3.42(1) 190(16) 2.57(10) 1.40(*]}) 0.90(*§) 4.1

The values at B8=2.25 are (at the presented distances)
presumably most reliable. Typically we find a series like

m(0,1)=3.92, m(1,2)=298, m(2,3)=1385 ,

and there is no self-consistent evidence that we are already
in the asymptotic limit r— oo. Mass ratios are decreasing
systematically for increasing t; at 8=2.40 they even go
down rather drastically.

In the strong-coupling limit (8— 0) (Ref. 5) as well as in
the finite-volume weak-coupling limit (8— o, volume
fixed)® a mass ratio

m(2*)/m(0*) =1 (3)

is obtained. In contrast with this high-statistics MC varia-
tional (MCV) calculations’ give the order of magnitude

m(Q2*)/m(0*)=138 . (4)

The present work indicates that the mass ratio, given by Eq.
(4), may further decrease. Averaging our source method
MC results gives (in lattice units) m(2+)=1.9 at 8=2.25
and m(2*)=0.93 at B=240. With the estimate’
m(0%) =190A this yields

mQ2*)/m0*)=15 (B=225) . %)

At B=2.40 the ratio is even down to m(2+)/m(0*) =1.1
( £40%). However, at this 8 value the lattice is presum-
ably already too small to reflect true continuum limit
behavior.

Finally, we would like to compare standard MCV methods

with source methods. Source calculations have the advan-
tage to give a signal for correlations up to larger distances
than MCV calculations. In our case the signal at distance
t=3 is better than the previous (rather bad) signal at dis-
tance ¢ =2 as obtained in variational calculations.

However, there are several disadvantages of the source
method: Firstly, in contrast with the MCV method, the
source method does not give upper bounds. Hence, since
our results in Table II show no tendency of stabilizing we
cannot exclude the possibility that the estimate m(2,3) is,
in fact, an underestimate of the asymptotic value. The
analysis of all data* exhibits further warnings with respect to
this point. What one needs would be consistency over
several steps in the distance ¢+ This cannot be achieved us-
ing the methods proposed so far since the signal dies away
too rapidly. -Secondly, MCV calculations allow (in principle)
to get reliable results already at distance r=1 by systemati-
cally improving the wave function. On the other hand, a
systematic improvement of a source seems to be very diffi-
cult. An important last point is that MCV calculations give
information about the whole glueball spectrum and the
energy-momentum dispersion, whereas a source calculation
has to concentrate on a single state.

Despite the points mentioned above our present 2% glue-
ball calculation improves previous MCV results.” The final
aim of a reliable continuum limit extrapolation is, however,
not reached.

We are indebted to Hamburg University for support with
computer time.
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