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Predictions of the scalar-quark-pair-production scenario, proposed to explain monojets observed .at the
CERN pp collider, are extended to multijets with missing p;. The n-jet cross sections are calculated from
lowest-order subprocesses as functions of scalar-quark and gluino masses. Predictions are made for azimu-
thal correlations A¢, pseudorapidity correlation An, and a jet transverse-momentum asymmetry in dijet

events.

After the UAI1 collaboration reported! the observation of
monojet events with large missing transverse momentum
(pr) at the CERN pp collider, several models?-® based on
supersymmetry were proposed to explain the data. Super-
symmetry (SUSY) naturally leads to events with p; since
the photino (%), which is produced in § or % decays and is
supposed to be stable, interacts feebly and is thereby un-
detected in collider experiments. A common feature of the
supersymmetric interpretations is the prediction of pr events
with multijets at differing rates.® The UAI1 collaboration has
just reported’ the observation of dijet and monojet events
with large pr (> 40 GeV) from the new run at /s =630
GeV. Also, a trijet event with large pr was found! in the
previous run at Vs =540 GeV. With future more detailed
information from multijet events, it should soon be possible
to more closely define the permissible range of SUSY-
particle masses that can describe the observed pr events.
The new data motivates a more detailed study of the predic-
tions of the various supersymmetry scenarios, all of which
have a light photino ( < 20 GeV).

The three SUSY scenarios advocated in previous studies
are the following: (A) scalar-quark-pair production with
g— qy decay: m(g) > m(g)~40 GeV; (B) gluino pair
production with & — qg¥ decay: m(g) > m(g) ~ 40 GeV;,
and (C) single extra-heavy-scalar-quark production, from*
qg — g or from® gqg — § subprocesses, with a light gluino
and §— g% decay; m(g) ~— 100 GeV, m(g) —3-10 GeV.
In each scenario the missing pr is ascribed to decay pho-
tinos. In C, gluino pair production does not contribute im-
portantly to large pr because of soft § fragmentation.?
Scenario B is disfavored® because it gives rather broad
monojets and a soft py spectrum, unlike present indications
from the data. Scenario C gives the hardest py spectrum,
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from the Jacobian peak in the two-body heavy-scalar-quark
decay, for which there may be some preference from the
observed monojet pr spectrum. However, C gives a rather
low dijet-to-monojet ratio® of order %— Because of the pos-
sibility that dijets may be more plentiful than previously in-
dicated (the analysis of the first data set may have been
biased against detection of dijets’), we concentrate our at-
tention here on a more detailed examination of scenario A.

As in previous calculations, we assume that the ¥ and £
couplings are flavor diagonal and that the scalar-quark mass
spectrum is approximately mass degenerate for five flavors
and two chiralities; scalar-quark masses below 22 GeV are
excluded by e*e~ annihilation experiments.® We neglect
the photino mass in §— g% decay calculations. Simple
grand unification schemes!? give the mass relation

m;/mf = 8a/[3as(m§)] = ';‘

in the absence of significant mixing in the neutral-
gauge/Higgs-fermion sector. A photino mass of this order
would affect our analysis only for limited ranges of the
My, m; masses of interest. The cross sections are calculated

from the order-a;2 QCD subprocesses ¢g,gg — 44,88 and
qg — g following Ref. 6; contributions from gluino decays
& — §q,qq are taken into account. Final states produced by
these subprocesses and subsequent § — gy decays contain
two photinos and from two to four quarks, giving missing
pr and up to four jets.

‘Jets are defined by an algorithm® that approximates that
of the UA1 collaboration. Quarks with momenta that sat-
isfy

[(An)2+ (A6)? V2 < 1
where An is the pseudorapidity difference and A¢ is the az-
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FIG. 1. Predictions of the scalar-quark-pair scenario for o (n-jet) cross sections with g7 > 40 GeV, vs scalar-quark and gluino masses. (a)

(1)) + o (2j); (b) 0(2)/o(1j). A branching fraction B(§ — q¥) =1 is assumed here.

imuthal angle difference between them, are coalesced in
clusters which are identified as jets provided that

pr(D =13 pnl >25Gev
i

for the leading jet (j;) and py(j) > 12 GeV for any remain-
ing jets (ji,j3, . ..)

Figure 1(a) shows cross-section predictions at Vs = 630
GeV, summed over monojet and dijet events with pr > 40
GeV, assuming B(g— g¥)=1. The results are presented
as contours of constant cross sections in a plane with axes
my; and m;. The cross sections are calculated with a X factor
of 1, and allowance must be made for the possibility of an
enhancement factor of order 2. The cross-section values at
/s =540 GeV can be approximately obtained by multiply-
ing the results in Fig. 1(a) by 0.6.

We can attempt to estimate the cross section from the
eight events at /s =630 GeV with gr> 40 GeV for the
analyzed luminosity of f Zdt=0.13 pb~!l. Assuming a
detection efficiency € of order 0.5, and a decay branching
fraction B(§— g%) > 0.7, whose precise value depends!!
on the lowest charged gauge/Higgs-fermion (@) mass, we
obtain

3 (r(n-jet)=N/(Bzef.Ydt]x200 +100pb . (1)

n=1,2

From Fig. 1(a), with K =1, cross sections of this order are
obtained for m; <70 GeV.

Figure 1(b) gives the predicted dijet-to-monojet ratio for
2r>40 GeV. Assuming that the numbers of dijets and
monojets observed in the more recent run implies that

o (1,)/a(2)) < 2, we infer the bound

my < 55 GeV . @

This restriction is independent of a possible K factor.

The predicted trijet event rate for pr > 40 GeV relative to
the sum of monojets and dijets is rather insensitive to § and
& masses. For m; < 100 GeV, the result is in the range

c(3)/o (1)) +0(2,/)]1=0.08-0.16 3

The one observed three-jet event! with pr=51 GeV is con-
sistent  with this expectation. Since QCD radiation
(incident-parton bremsstrahlung, etc.) may add additional

jets at the 10% level, the three-jet rate calculated from g and
g decays alone is to be regarded as a lower limit only.

Figure 2 shows the predicted py distributions (> 20
GeV) at /s =630 GeV for one-, two-, and three-jet events
with the SUSY-particle mass choices m;,m,=(45,70) and
(55,70) in GeV units. The distributions obtained at
/s =540 GeV are rather similar to these. The arrows along
the top of the figure denote the data values of the UAl
monojet events at Vs =630 GeV with pr > 40 GeV; the ini-
tial monojet data at v/s = 540 GeV are denoted by asterisks.
We make the following observations about the results.

(i) The n-jet pr distributions fall rapidly with increasing pgr
beyond #r=my. Two photinos, each with Jacobian peaks at
Tm-, can easﬂy add up to give pr=my, but not much

higher pr.
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FIG. 2. Predicted pr distributions of one-; two-, and three-jet
events in the scalar-quark-pair scenario, for the (m- m-) choices (a)
(45,70), (b) (55,70), in GeV units. The artows along the top
denote pr values of the more recent UA1 monojet events (the as-
terisks label pr values of monojet events from the earlier run); see
Refs. 1 and 7.
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FIG. 3. Cumulative monojet cross sections with gy > py for the
SUSY-particle mass choices of Fig. 2, compared with the recent
UA1 data from Ref. 7.

(ii) The pr distributions are consistent with a scalar-quark
mass of order 45-55 GeV. For scalar-quark masses in this
range, o (2/)/o (1)) ~ 2 for pr > 40 GeV.

(iii) The pr distributions are insensitive to the choice of
gluino mass, which we have chosen relatively low to have a
larger o (1) + o (2)) cross section.

Comparisons of the predicted pr distributions with the
present low-statistics data are more meaningful for the cu-
mulative cross section, o (pr > pr), integrated over pr > pr.
Figure 3 shows this comparison with the more recent UA1
monojet data.

Further tests of the scalar-quark-pair scenario are possible
based on correlations in dijet events. Interesting correlation
variables are the azimuthal angular differences A (jy/2)
and A¢(jpr), the pseudorapidity difference An=|n{(j)

—mn(2)|, and the transverse-momentum asymmetry
between the two jets,
a=pr(j))/pr(j1) . (4)

Predictions of these correlations are given in Fig 4.

The scalar-quark-pair scenario predicts dijets with the fol-
lowing features.

() |A¢ (pr)] > 120° almost always.

(ii) Broad A¢(j,j,) distribution; about three quarters of
events fall between 40° and 140°.

(iii) Preference for small An(j;,j,); about half the dijets
have |An| < 1.
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FIG. 4. Predicted correlations in dijet events at /s =630 GeV.
(a) Azimuthal difference between the two jets, A (jy,j,) and az-
imuthal difference between the fast jet and the missing
21,08 (i1,p7); () pseudorapidity difference An(jy,/,) between the
two jets; and (c) transverse-energy asymmetry defined by Eq. (4).
The SUSY-particle mass choices (m-,m§)=(45, 70) and (55,70)
GeV are illustrated.

(iv) A momentum asymmetry between the jets that has a
broad enhancement near pr(j)/pr(j1)=0.4 (and little
contribution below 0.2 due to the cuts).
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