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We present explicit, approximate, remarkably precise results for the Kazama-Yang hamilto- 
nian, which describes a Dirac monopole interacting with a spin-t 2 fermion that has an extra 
magnetic moment. The results are valid for bound states of angular momentum j >1 Zleg I ~ ]2, 
where the radial wave functions are determined by four coupled differential equations. These 
equations have been .solved analytically for M - E << M, which is a limit of considerable practical 
interest. Binding energies and wave functions are given. 

I. Introduction 

A n  analysis  of the monopole-fermion states of higher angular  momen ta  is very 

compl ica ted  because one has to study four coupled differential equations.  One  way 

to at tack this p roblem is through a Sturm-Liouvil le  angle analysis as shown by Yang 

[1]; ano the r  is through asymptotic series expansions as discussed in paper  I [2], 

where accurate  numerical  results were obta ined for b ind ing  energies and  wave 

funct ions ,  us ing  a method that is valid for arbitrary parameters.  

The  monopole- fe rmion  spectrum has bound  states of zero energy [3] for all 

nonze ro  values of K, the extra magnetic  moment .  Such states, for which the b ind ing  

energy is equal  to the fermion mass, exist for all angular  mome n t a  if K > 0, and for 

all except the lowest angular  m o m e n t u m  if K < 0. Also, if IKI is not too small, 

add i t iona l  states will exist. Most of these states will be very loosely bound.  Unless 

Zleg~l is fairly large, all excited states are in fact very loosely bound.  

* Work supported in part by the US Department of Energy under grant no. DE-FGO2-84ER40158 with 
Harvard University. 

** Now with the Department of Mathematics and Computer Science, Clarkson College, Potsdam, NY 
13676. 
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The present paper deals with that limit of weak binding, where explicit expres- 
sions for the binding energies can be obtained. These explicit results turn out to be 
highly accurate. 

The hamiltonian we study is [3] 

H = ~x . (p -  ZeA) + t i M -  Kqflo. r/(2Mr3),  (1.1) 

i.e., we study an infinitely heavy Dirac monopole of magnetic charge g interacting 
with a fermion that has an extra magnetic moment K. In (1.|), M denotes the 
fermion mass, and 

q = Zeg = Z( + ± - 2 ,  +1,  + 3 . . . .  ), (1.2) 

with Ze the electric charge of the fermion. 
Such loosely bound monopole-fermion states have been studied previously [3-5] 

for the case of lowest angular momentum, j = Iql - ½- That case is much simpler 
than the present one, since there are then only two coupled ordinary differential 
equations. 

2. Radial equations 

For the bound-state eigensections, we make the following decomposition* [3]: 

h i ( r )  ~°)~JJ: + I-~ h2(r)~(2)w/: 
q,(r) = 1 

r . K [ ~q/~ /r~:(x) ] (2.1) 
-,-(~-( h3(r)~ff'+ Iql '.4t /s,j: ] 

wriere j >/ Iql + ½, and ~)!), and l~] ), are eigensections of j2  and J.,, with eigenvalues 
j ( j  + 1) and j:. Using lemma 1 of ref. [6], and changing the radial scale, 

r= IKqIo/(2M), (2.2) 

the eigenvalue equation 

Hq~(r) = EJ/(r) (2.3) 

leads to the following set of four coupled radial equations: 

-d-pp-O hl + ( A +  B ) h 3 + l h 4 = O '  (2.4a) 
0 2 

2 + l h  3 + (A + B ) h ,  = 0, (24b)  
0 2 

* T h e  presen t  no ta t ion  is that  of  paper  l [2], which is slightly different  f rom that  of  refs. [1,3.6]. 
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1 
( A - B ) h l + - - h 2 +  ~0 + h3=O,  

d 

In these equations, we have used the abbreviations [6] 

211/2 / ~ = [ ( j + ½ ) 2 _ q  ] , 

A = ½~lql, 

E 
B = ½ K I q I ~ .  

The boundary conditions imposed on h i are [3] 

lim h,(o) = lim hi(p) = O, 
0 4 0  0 ~  

In the limit of weak binding, 

i = 1 , 2 , 3 , 4 .  
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(2.4c) 

(2.4d) 

(2.5) 

(2.6a) 

(2.6b) 

(2.v) 

the radial equations (2.4) can be solved approximately as follows, at least when 

A = O(1), (2.9) 

which will be assumed throughout this paper. In both of the two cases 

# << IA - BI-~/2 (2.10) 

O >> IA + B I - l / z ,  (2.11) 

(2.4) can be approximated by equations that can be solved exactly. Clearly, when the 
condition (2.8) is fulfilled, these two regions (2.10) (the interior region) and (2.11) 
(the exterior region) overlap. Furthermore, when (2.9) holds, the exact solutions 
found in the two regions can be matched to determine the binding energy. 

It turns out that the exterior region (2.11) is much easier to treat than the interior 
region (2.10). They are studied in sects. 3 and 4. 

( M -  E) /M << 1, (2.8) 
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3. Exterior-region wave functions 

In the exterior region, 

p >> IA + BI I/2 

the terms p-2h,, and p-2h 3 may be neglected in eqs. (2.4a) 
equations to be solved are thus 

(3.1) 

and (2.4b). The 

[d2 ] 
@=p2 _ _ _ 2 A ( A _ B )  

dp2 

the equations can be written as 

[ @ -  ~ ( ~ +  1)]h 2 -  2Ah~ = 0, (3.5a) 

[°3 - ~,(~, - 1)]  hi  - 2 A h 2  = 0 .  ( 3 . 5 b )  

Eliminating here h I or h 2, we find that the differential operator factorizes: 

(¢-  ~ + ) ( ¢ -  ~ ) h ,  = o ,  

( @ - ~ , ) ( @ - 5  . ) h : = 0 ,  (3.6) 

(3.4) 

( d )  -- p 1 + 2Ah3 = 0, (3.2a) 

-~0 + 0 h2 + 2Ah4 = O, (3.2b) 

(d -~O+ h a + ( A - B ) h l  + h 2 = 0 ,  (3.2c) 

(-~O It-;)ha+-~hl + ( A - B ) h : = O .  (3.2d) 

We combine these to yield two coupled second-order equations for h 1 and h 2: 

1 d 
[ ~ ( - ~ O - ~ ) ( ~ - - - ~ + ~ ) - ( A - B ) l h : - - - ~ h l = O ,  (3.3a) 

1 d 
[-~(-d-~O+~)( ~ - - - ~ - ~ ) - ( A - B ) l h , -  ;-sh2=O. (3.3b, 

With 



(oD- ~,)hl+)= 0, 

(®-~_)h~ >=0. 

Consider the first of these equations, (3.8a): 
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with 

±= ~t2 + (#2 + 4A2)1/2. (3.7) 

We shall work with h x. Clearly, h~ can be expressed in terms of the two solutions 
h~ +) and h~ -) which satisfy 

(3.8a) 

(3.8b) 

~ - 2 A ( , ~ - B ) -  p, ] , (3.9) 

The differential operator is a Bessel operator, and the solution hi +) that vanishes as 
p ---) ~ can be expressed in terms of a modified Bessel function. We thus find 

where 

h~-'=,"1<.  (v;2~(A - B ) , ) .  

h~ +)= p'/2K..(~2A( A - B) p), (3 .lO) 

v += [¼+ #2 +(t~2 + 4A2)'/2] '/2 (3.11) 

The general solution h~ that satisfies the boundary condition (2.7) as p ---) ~ is 

h , = p I / 2 [ N _ K , _ ( , / 2 A ( A - B ) p ) + N + K , , ( , / 2 A ( A - B ) P ) I ,  (3.12a) 

where N_ and N+ are two constants to be determined by the matching with the 
interior region, and by the normalization. 

The other radial wave functions can be determined from the differential equations 
(3.2). We find 

h,= 2-~ 0'-{ N_ [ , -  ( , '  + 4A') '/=] K. (<2A( A - B)O) 

1/2 
+ N + [ / x + ( / x 2 + 4 A  ' )  ]K ,+(¢2A(A-B)p ) ) ,  (3.12b) 

- [ 2 A (  A - B ) ] , . , . [  N_ ,< .  (,;2~ (~  - ~ ) , ) +  ~,,<:, (¢2~(  ~ - .).)1}. 
(3.12c) 
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ha = 1 ._,/2[(/ t+~){N_[~ (~2+4A2)I /2]K,  (v'ZA(A B)p)  
- 4A2P - _ 

+ N+ [~ +(~ + 4A~)~']X. .(v/ZAI A - 8)p)} 

+ [ 2 a ~  A - . )1 ' /%(N_ 1 . -  (.~ + 4a~)'J~l K; (V"2A~ A - . )O) 

+N.[ .+( .2+4A~) ' /~]~: , ( , /ZA~. - . )O)} ] .  13.,2d) 

where primes denote differentiation with respect to the argument. 

4. Interior-region wave functions 

In the interior region, 

P << ]A - B] a/2 (4.1) 

the terms (A - B)h I and (A - B)h 2 may be neglected in eqs. (2.4c) and (2.4d). It is 
furthermore convenient to introduce the variable 

1 x = - .  (4.2) 
P 

( ~_~ + ~ )hl _ 2Ax~__~h 3 _ ] 7 4  = 0, (4.3a) 

( d  ~)  2A 
-~x - -x h2 - ha - --~ ha = 0, (4.3b) 

d 
h 2 = ( ~ x - ~ ) h  3, (4.3c) 

/x h 

These can be combined to give two coupled second-order equations: 

[ (d--~ + ~)2 - 1]h4 -2Ax--S-h3 = 0 , (4.4a) 

[( d--~ - ~)2 - 1 ] h3 - ~--~2 h4 = 0. (4.4b) 

Eqs. (2.4) then reduce to 
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Eliminating also h3, we obtain a fourth-order ordinary differential equation for h4: 

{ d4 d3 d2 ~ x  
x 4_dx 4 + 4x3 Sx3 _ 2X2(X 2 +//.2 _ 1) --dx 2 -- 4X 3 

+ x 4 - 2 ( # - l ) 2 x 2 + [ l ~ 2 ( l ~ 2 - 1 ) - 4 A 2 ] } h 4 = O .  (4.5) 

This is the equation we have to solve, subject to the boundary condition 

h 4 ~ 0  as x ~ o o  ( o r p ~ 0 ) .  (4.6) 

It turns out that the solution to (4.5) can be expressed as a Fourier-Bessel 
transform of a solution to a second-order equation. We find that we can rearrange 
(4.5) so that a factor of x :  can be cancelled, enabling us to write the equation in 
terms of a Bessel operator and quadratic powers of x. The method has previously 
been used in studying the Corben-Schwinger problem [7] of the scattering of a 
charged vector meson [8]. Appendix A of ref. [8] also contains discussions of some of 
the more subtle points of the Fourier-Bessel transform. 

Let 

f =  x - 1/2]'/4, (4.7) 

then the substitution into (4.5) gives the differential equation for f :  

/[(x 4 2,  x[(x 0 
(4.8) 

The point here is that x (d /dx )  appears only in the form of a square. It is therefore 
natural to introduce the Bessel operator 

d 2 1 d v 2 
T, = - -  + (4.9) 

dx  2 x dx  x 2 '  

where the constant p is chosen so that the constant term in (4.8) is cancelled: 

[~,2_ (¼+/t2)]2 _ (#2 + 4A2) = 0. (4.10) 

Therefore, 

p2 = ¼+/X2 4- (bt 2 -t- 4A2) 1/2. 

Comparing with (3.11), we see that 

P =  "bP_ 

(4.11) 

or ~= +~+ . (4.12) 
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It will turn out that all four values of v are needed, and that 

when bound states exist. 
Since 

v ~ < 0  (4.13) 

2 x L x  = T,,x 2 + x2T , , -  2, (4.14) 

This holds when v is given by (4.12). 
Since T, is a Bessel operator, we have 

T~Z~(xy) = - y 2 Z , , ( x y ) ,  

(4.15) 

(4.16) 

with Z, a cylindrical Bessel function of order +v. Because (4.15) is linear in x 2, 
after a Fourier-Bessel transform we are left with a differential equation that is linear 
in the Bessel operator, i.e., of second order. 

We make the ansatz 

f ( x )  = f c d Y Z ~ ( x v ) g ( y ) ,  (4.17) 

where C is a contour to be specified. Then (4.15) is satisfied provided g satisfies 

{ d____~ 2 1 d 2 d v 2 1 p . 2 - v 2 + ¼  

dz  +zdz z ( 1 - . , )  2 ( l - z )  2 

~t 2 - 21~ + v__~ 2 -  ~ } 
- 7 z ~ - -  z) 2 g = O ,  (4.18) 

with 

z = -.v 2, (4.19) 

and with the contour C chosen such that boundary terms vanish. After appropriate 
factors are extracted, we recognize (4.18) to be the hypergeometric equation. The 
final solution is 

f ( x )  = f . d y y ' '  ~Z,(xv)( l  + y 2 ) P u ( - y 2 ) ,  (4.20) 

eq. (4.8) can be written in the form 

{ T ~ x 2 T ~ - [ x  2 + 2 ~ 2 -  2 ( v 2 -  ¼)]T. - r~x 2 + x 2 -  2(p. 2 -  2p.+ v 2 -  ] ) } f =  0. 
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where u(z)  is a solution of the hypergeometric equation. We shall be using the 
following solutions [9]: 

u , ( z ) = r ( a , b ; c ; z ) ,  

u 2 ( z ) = F ( a , b ; a + b +  1 - c ; 1  - z ) ,  

us(z  ) = z ~-cF(a + 1 - c ,b + 1 - c ; 2 -  c; z ) ,  

u6(z)  = ( 1 - z ) " - ' ~ b F ( c - a , c - b ; c + l - a - b ; 1 - z ) ,  (4.21) 

where F is the hypergeometric function. Of these four u's, of course, only two can 
be linearly independent. In (4.20) and (4.21), 

p = # - I  or p =  - # ,  (4.22) 

; } = 1  + p + ½ ( v + ~ ) ,  

c = 1 + v. (4.23) 

Here, v and ~ are used generically: 

or 

V2= p2, ~2= P2, (4.24a) 

v2 v 2 ~2 2 (4.24b) 

whereas v+ and v refer to the specific values defined in (3.11). 
The fourth-order differential equation (4.5) has four linearly independent solu- 

tions. It is readily seen from the leading terms in (4.5) that, apart from powers, two 
of those are exponentially small, whereas two are exponentially large, as x + m. 
There are thus two linearly independent solutions ha that satisfy the boundary 
condition (4.6). 

It is clear that a large number of different solutions f ( x )  can be written down. 
First of all, we may choose different Bessel functions, and different hypergeometric 
functions. Further, we have two choices for p, four choices for (v, ~), and finally, 
there are several possible contours. In appendix A we give a survey of these different 
solutions, some of which can be related using identities of the Bessel or hypergeo- 
metric functions. It turns out that this set contains all the four linearly independent 
solutions. 

Two convenient bases for the functions that vanish as x ---, ~ are ( fo ) ,  f<s>) and 
(ft2), f<6)), where 

f < j , ( x ) =  fc dyy~H~,,(xy)(  1 + y 2 )  ~ u , ( _ y 2 ) ,  (4.25) 
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-i  

Q 

Fig. 1. The contour of integration C l that defines the functions f t :~(x)  of eq. (4.25). Other contours are 
discussed in appendix A. 

and uj is one of the functions (4.21). (These are referred to as solutions of class I in 
appendix A, and denoted by f~J~(x) there.) The contour C 1 is shown in fig. 1. The 
combination of the contour C~ and the Hankel function H~t)(xy) makes all 
boundary terms vanish; fO)(x) thus satisfies the differential equation. Further, as 
shown in appendix B, these solutions are well-behaved (i.e., decreasing) for x ~ oo, 
e.g., 

/ t 2 ) ( x ) } -  ( 2__]'/2sin(~rt~)e-~{ F(1-t~)(2/x)-"+t 
f t6) (x  ) x~o ~ 7rx / r(# )(2/x ). 

(4.26) 

In order to match the interior-region wave function with the exterior-region wave 
function of sect. 3, we need to understand both the large-x and small-x behaviour of 
our solutions. In appendix C we present convergent series expansions that satisfy the 
differential equation (4.15), and in appendix D we relate those series to the functions 
(4.25) that are well-behaved at large x. 

For  the purpose of determining binding energies, we have chosen to work with the 
basis f~l)(x) and f~S)(x), whose behaviours for small values of x are given by eqs. 
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(E.5) and (E.6), respectively. Thus, in the interior region, 

h 4 = x 1/2 [ N l f ~ l ) ( x )  + Ns f~5 ' (x ) ] ,  (4.27) 

where N a and N 5 are two constants to be determined from the matching with the 
exterior region and the normalization. The other radial wave functions can be 
determined from the differential equations (4.3). With the abbreviation 

F( x ) - U , f ° ) (  x ) + Usft5)( x ) ,  (4.28) 

the interior-region wave functions can be written as 

h I = x-x/2 [(# + _~) F ( x )  + x r ' ( x ) ] ,  (4.29a) 

+ [ (_#2  + 2tt + ~ ) x -  x 3 ] F ' ( x ) + ( t ~  + 7 ) x 2 F " ( x ) + x 3 F ' " ( x ) ) ,  

(4.29b) 

(4.29c) 

(4.29d) 

h3=  2--~-x'/2( [(~ 2 -  ~ ) -  x2l F ( x ) + ( 2 i t  + 1 ) x F ' ( x ) +  x 2 F " ( x ) } ,  

h 4 = x l / 2 F ( x ) ,  

where primes denote differentiation with respect to x, and x = 1/O. 
A summary of the properties of the functions f t l ) ( x )  and f t5~(x)  is given in 

appendix E. 

5. Matching and eigenvalue condition 

The interior- and exterior-region wave functions given by eqs. (4.29) and (3.12), 
respectively, have to match for 

IA + n l -1 /2  << p << IA - BI - 1 / 2  (5.1) 

The approximations that we have made in solving the differential equations are 
consistent in this region of overlap. Therefore, it is sufficient to match one of the 
four radial functions. We shall consider h 4. From eqs. (3.12d) and (4.29d) we then 
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get the condition 

+ 

-- - 4 ~  ' ~ ' ~  [/~ + ~t(~ [~ - / ~  + - ~ / " ]  ~. (¢2~ ~ - ~>~/ 

+ ~ [~ + / ~  + 4~/"~] ~ . . (¢2~  ~ - ~>~// 

2 1/2 t. + N ÷ [ # + ( , 2 + 4 A  ) ]K. ( ¢ 2 A ( A - B ) p ) } ]  (5.2> 

In the region (5.1) of overlap, the functions appearing in eq. (5.2) can be expanded 
in power series. For p >> 1, the functions f°)(1/p) and f ° ) (1 /p )  can be expanded 
as given in appendices D and E. We have from (E.5) and (E.6) that 

pl/2 [l.h.s. of (5.2)] 

_- N1 [(2~) ~" sin(~") r(- ~_)r(_ ~+) 
p::~l  '/r 

( 1 ) "  s i n ( ~ - , , . ) r ( - , ~ + ) r ( ~ , _ ) r O  + , , ~ ) r ( - ~ _ )  
- ~ ~r cO - t, + , , _ ) r ( t ,  + , , _ )  

( 1 ) - ~  s i n ( ~ r a _ ) r ( - ~ _ ) r ( ~ + ) r o + , + ) r ( , _ ) ]  

[( 1 )-'" sin(~t') r(,~ +)r(,, ) +N~ ~ ;; _ 

(1)" s i n ( ~ r a _ ) r ( ~ _ ) r ( - ~ + ) r ( , - , + ) r ( - . _ )  
+ ~ ~ r ( 1 - ~ -  ~+)r(~- ~ )  

( 1 ) - ' - s i n ( i r a + )  r(~+)r(-~_)ro-=+)r(,_)] (5.3) 
+ ~ ; ~ - ~ - ~ ( ~ - ~ )  , 

where we have made use of the abbreviations (compare eq. (E.I)) 

ot+= ½(v + + v ). (5.4) 
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W3=8A:[lx_(.Z +4A2),/2 ] l(~t+12_v ) , s in(~ra.)  
gr 

r ( - . , ) r ( .  ) tO +~+)r(-~_) ). 
x r(1- ,+.-)r( ,+._)r(~ ) (~¢TA(A-8) 

w , =  - ( .  2 + 4A ) - ' ( .  + 
) -1 sin( ~ra ._ ) 

7r 

x r ( . _ ) r (  ~ - ~ - - - . - S V ( - ,  - "  ) r o  - _ ~+)r(;.-W(-~_) - ~- ) ( l i 2 A ( A  - B) )~ 

Ws=8A2[l~_(l~2+4AZ)l/2]-'(l~+~+v_)-asin(~ra ) 
- 7r 

r ( - ~  ) r ( ~ . ) r ( ~  + . + ) r ( . _ )  : . .... 
r o - .  + . . ) r ( .  + . + ) r ( - . .  ) I~v2A(A -B))  . × 

W6= -8A2[lt-(.2+4A2) '/2] I sin( ~ra + ) '(~+-i+ ~_) 

x f - ( lr(" ' )r(-"-)r(1z  ~- ~ i~(~: -~ ~r-~-~+)r(~ --)) (~ (2A(A - B) )  -" 

, ( 5 . 9 a )  

(5.9b) 

(5.10a) 

(5.rob) 

These coefficients have the following symmetry properties, as also follows from the 
properties of f(~), f(s) and K.: 

w2= Wl(,.---. -p_). 

W,= W,(,..--. -~+). 

W,= W,(,._--. -,_). 

w,= w,(~ --, -~+). 

w,= w,(,_--, - ~ ) .  (5.11) 

For the purpose of determining the binding energy, we do not need the constants 
N~. N 5, N_ and N÷. Therefore, we eliminate these from eqs. (5.7), and find the 
following condition on the W's: 

~ ( ~ -  ~ ) = w , ( ~ -  ~ ) .  (5.12) 

This is the equation to be solved for the eigenvalue B. 
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6. Binding energies 

The binding energies are given implicitly by eq. (5.12), which is to be solved for B. 
Inserting for the coefficients W1,..., W 6 of eqs. (5.8)-(5.10), the equation becomes 
rather involved. It has the following structure: 

- ' ÷ " +  x2(,~J2A(A B))  Xl(~,j2A{A B))-"  - -" ' -"  

~'+- v_ / i )u++~ 
=X3(~¢2A(A-B))  + X4(4¢2A(A-B ) (6.1) 

If we inserted the actual values for X 1 . . . . .  X 4, we would see that (6.1) is symmetric 
under p÷~, ~,_. That this has to be the case is also clear from the symmetries of the 
K~_ and K~  in the exterior region and the f_+ ~_ and f±  ,÷ in the interior region (see 
(C.1) and (D.1); an interchange ~,+ ~ v_ would merely interchange them). 

It was found by Yang [1] that excited states of nonminimal angular momentum 
only exist for 

IAI > Ao= ½(#2_ ¼). (6.2) 

This condition is equivalent to stating that 

~ _ -  iB is imaginary. (6.3) 

On the other hand, ~,÷ is always real: 

p+> (21+ 2//.2) 1/2, (6.4) 

c.f. eq. (3.11). That the condition (6.2) has to be satisfied can also be seen from the 
present analysis: without the condition (6.3), the radial wave function would not be 
oscillatory, and the eigenvalue B (or the energy) would not be real. 

We shall make use of (6.3) and (6.4) to simplify (6.1). Having made the assump- 
tion that the binding is weak, 

A - B  
e = A << 1, (6.5) 

we can neglect the two terms proportional to (~¢2A(A - B) ) "  in eq. (6.1), and are 
left with W 3 = W 5, or 

] 

(# + ½ - v_)-1 sin(Ira+)(¼~/2A(A - B))~- r(-~.)r(~)r(1 + , ÷ ) r ( - , )  

= (/, + ½ + p ) - ,  sin(~a_)(¼¢2A(A - B)/-v- r(-%-)-r(~ +)r(!  +-.+)r(=_) 
, r ( 1 -  ~ + ~+)r (~  + ~ j ~ - T _ - )  

(6.6) 
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k v A - B ~ ] 2 ~  I z + ½ - v  ,,_ r ( 1 - . + ~  ) r ( . + .  ) 
. + ½ + ~ _  ~_ r ( a - . + ~ , ) r ( . + ~ + )  

[ F ( a + ) ] 2 [  F ( v  ) ]2. (6.7) 

×Lr(  )J -) 
It is now convenient to make use of eq. (6.3), and define phase angles qJ and q~ as 

follows: 

e_2, ~ = g + ½ - ifl (6.8) 

e2,,l, I'(1 + ifl) (6.9) 
r(1 - i/3) " 

Thus, 

[ C(r  ) ]2 e"* (6.10) 

The above angles q~ and q~ are generalizations of those introduced in ref. [4]. As 
/~ ---, 0, with A positive, they reduce to those given there, since 

f l=  [(/.t2 + 4 A 2 ) ' / 2 _ . 2 _  ~]x/2 (6.11) 

in that limit reduces to the familiar (2A - ~)~/2 [4]. 
The remaining factors on the right-hand side of (6.7) can also be written as a 

phase factor. We define the angle X, 

, , -  i/3 ~i/3) ] r (1  - / , +  } v , +  ~i /3)r (~+ ~,~+ ~i/3) " 

(6.12) 

where we have substituted for a .  and a according to (5.4) and (6.3). In the limit 
g --, 0",  X is seen to vanish. 

In terms of/3, A, and the angles defined above, the fractional binding energy may 
be written as 

e j . = A ~ e x p ( ~ ( n ~ r - 2 O + ~ k - X )  ] ,  (6.13) 

* With angular  m o m e n t u m  quantized, g is also quantized. For I ql = 12.0. = ~y ( j ~ - - 1 ) ,  and the lowest 
values are p. = 0, I/~, I/6 . . . . .  
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1d ~° 

10 .5 
t . l . I  

H I / i l k  I!! - 
Ill/if\ II\ li\ li:', 

I 
0.0 50 I0.( 

A 

Fig. 2. Plot of  b ind ing  energies ( M -  I',),,)/M versus A = ~ r lq l  = 4~,~ where K is the extra magnetic 
m o m e n t .  T h e  b ind ing  energies are as given by (6.13). with j the angular  m o m e n t u m .  There arc also 

bound  states  at Ejo = 0 {31. 

for n = 1,2 . . . . .  As follows from the definitions of fl, ep, ~ and X, if one formally 
takes the limit ~ --* 0, one recovers the result valid for the states of minimal angular 

momentum.  
With Iq) = ½, we show in fig. 2 a plot of the binding energies for the lowest states 

(n = 1, 2 and 3) of angular momentum j = 0, 1, 2 and 3 versus A. For a few values 
of A, these binding energies are also given in table 1. There we compare them with 
the exact ones, determined by the method of paper I [2]. The agreement is seen to be 

excellent. 

7. Fine structure 

The binding energy depends in general in a rather complicated way on the angular 
momentum j.  While this dependence is dramatic when [AI is close to the critical 
value A o of (6.2), it becomes much weaker for ]A] >> A 0. As will be shown in sect. 
10, the assumed range of validity (2.9) can be extended to [A I >> 1, provided that we 
require ~ to be sufficiently small. In that limit of large {A [ the energy depends only 
weakly on 7. We shall here discuss that limit. 

Let 

(21AI - ( 7 . 1 )  
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TABLE 1 

1 j and n, with Iql = 12 Binding energies E:,, = ( M - E:,, ) / M  for a few values of A = 4 K, 

,4 1 = 4 K  

j n Method 1 2 5 10 20 50 

3 3 exact 7.246 
WBA 7.243 

2 exact 6.656 

WBA 6.634 
1 exact 6.238 

WBA 6.077 

3 exact 4 .819.10 -5 3.701 

WBA 4.819.10 5 3.707 
2 exact 1.095.10 3 1.993 

WBA 1.095.10-3 1.999 
1 exact 2 .499 .10-2  1.087 

WBA 2.490.10 2 1.078 

3 exact 9.915 
WBA 3.242-10 -19 9.915 

2 exact 8.498 
WBA 4.171.10 13 8.499 

1 exact 5.367-10 -7 7.238 
WBA 5.367.10 -7 7.285 

3 exact 
WBA 

2 exact 
WBA 

1 exact 
WBA 

4.134 10 .7 3.621 
4.134 10 -7 3.622 

4.776 10 5 9.281 
4.776 10- 5 9.290 
5.488 10 3 2.361 

5.519 10  3 2.383 

10 7 7.155-10 4 6.769 
10  7 7.159.10 -4 6.786 

10 5 6.721.10 3 2.994 
1 0 5  6 .742-10-3  3.009 

10 3 6.306.10 2 1.344 

10  3 6.350.10 -2 1.334 

10-s  1.423.10 3 8.478 

10-5 1.424-10-3 8.503 
10 4 1.061 • 10 -2 3.479 

10-4 1.065.10 2 3.496 
10 2 7 . 9 3 2 . 1 0  2 1.452 
10 2 7 .968 .10-2  1.437 

10 4 1.622 • 10 -2 7.834 
10 4 1.625.10 2 7.826 

1 0 3  5 .343 .10-2  1.557 

1 0 3  5.339.10 -2 1.530 
10 2 1.810-10-1 3.222 

10 -2 1.754.10 ~ 2.992 

10- 3 2.284 • 10- 2 8.387 
10 3 2.293.10 2 8.376 
10 2 6.747- 10 2 1.634 

1 0 2  6.755.10 -2 1.603 
10 t 2 .051.10-1  3.308 
10 i 1.990-10 1 3.066 

10 3 2.730-10 2 8.739 
10- 3 2.741 • 10  2 8.725 

10 2 7.612.10 2 1.679 
10 2 7 .619 .10-2  1.647 

10 ] 2.188.10 i 3.361 
10 ' t  2 .118.10 - l  3.110 

10 3 2.948.10 2 8.910 
10 " 3 2.961 - 10 -2 8.893 
10 -2 8.017 • 10 -2 1.702 

10 2 8.020.10 2 1.668 

10-]  2.249.10 2 3.386 
10 -1 2.173.10 2 3.130 

10 -2 
10 2 

10-1 
10  1 

10.-1 

10 

10 2 

10-" 
10 - l 

1 0  
10-1 

I O - L  

10 -2 
10 2 

1 0 - L  

10-1 
10-1 

10 i 

10 2 

10-2 

10-]  
10 t 

10 
10 ' 

Exact: numerical  results of paper I [2]; WBA: weak-binding approximation, eq. (6.13). (The values for 
j = 0 are from table 1 of paper III [5].) Where both entries are missing, the state does not exist. 

I n  t h e  l i m i t  

g---<<l or j(j+l)-q2<<21AI, (7.2) 
fl0 

w h i c h  f o r  s m a l l  Iq l  c o r r e s p o n d s  t o  

j 2  << 21A I ,  ( 7 . 3 )  

t h e  v a r i a t i o n  o f  t h e  p h a s e  a n g l e s  ~ ,  ff a n d  X w i t h  tt ( o r  j )  c a n  b e  d e t e r m i n e d  

e x p l i c i t l y  b y  e x p a n d i n g  in  t h e  s m a l l  q u a n t i t y  t t / f l o .  
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We find 

; 
q~ = * o -  ~o ln /3o  + \ &  ] 

~P=~O-~oo + 0 

X = - (1 - g ) + O  , 

where q'o and +o are given as 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

~o = ImlogF(1 + iflo), (7.8) 

1 
~b 0=½~r 2fl ° . (7.9) 

Here 4'o corresponds exactly to the # = 0 case, whereas fro differs from the # = 0 
value by terms - O(1/f13o). 

Consistent with (7.2), we must take/3 o >> 1, and thus find 

q,o = flo(ln/3o - 1) + ~Tr, fro = ~r. (7.10) 

The expression for the binding energy, eq. (6.13), then factorizes: 

-__ ( _  p2 
ejn % exp --~n~'/ (7.11) 

1' 

with % the binding energy for the states of minimal angular momentum, g = 0 [4]: 

% = ~ z e x p [  -2(nTr-2q '°+~°) l f lo  . (7.12) 

For [q[ <<j << [A [ 1/2, the "fine structure" is thus essentially gaussian in the angular 
momentum j. 

The largest value of A considered in table 1 is A --- 50 with/3o = 10. In that case, 
the binding energies predicted by (7.11) differ from those of (6.13) by 0.1-1.5%. 
They are most accurate for states of low n and low angular momentum. 
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8. Normalized eigensections 

The radial wave functions for the external and internal regions are given in sects. 3 
and 4, respectively. The relative normalization constants and the overall normaliza- 
tion shall here be determined. 

We first express all normalization constants in terms of N_. Solving (5.7c) and 
(5.7d), we find 

N~ = N _ ( W  6 - W a ) / ( W 3 W  6 - WaWs). (8.1) 

We here use the matching condition, W 3 -- W 5, to reduce this to 

N x = N _ / W  3 . (8.2) 

Eqs. (5.7a) and (5.7b) then give 

U s = U x W 1 / W  2 = N _  W,/(141214"3), (8.3) 

U ~ = N 1 W  1 = N _  W l / W  3 . (8.4) 

Using (6.7), we find 

W3.. ,=( -1)  "+' 1 [l.t2+4A2 #(F2+4A2),/2],/2 
4v~-A F(I + ~,~) 

x IF(1 - t~ + ½~,++ ½i f l ) r (~  + ~p++ Lift)l, (8.5) 

and hence 

N 1 = N_ W3 -1 , (8.6) 

r(-,,)lr(-o*) :( 
r ( , , )  (8.7) 

8A 2 1 sin( qr# ) 
N + =  - N  _W3 -1 

,tt+(/.t2+4A2)l/2 i t t+} -v~_ 'n" 

x (8.8) 

For small arguments, one of the exterior-region solutions, K,. (v/2A(A- B)p), 
becomes large, -e-",/2p-~-, but we notc that these potentially large tcrrns are 
multiplied by a small coefficient, N+- ~-/2. 
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The normalization constant N is determined by 

fd3rrt(r)6(r)  = 1. (8.9) 

With [6] 

f dO to~tt(*) = 8,,, (8.10) - - - -  "n j j ,  " J  J, 

and r = plA I/M, the decomposition (2.1) then leads to 

IAIM f f f d p { h ~ + h ~ + h ~ + h Z 4 } = l .  (8.11) 

We consider separately the contributions from the interior and exterior regions: 

IA--I~? d p M  {h~+h~+h23+h]}i"t" (8.12) l int  = 

l ex t  = Ihl f ~ d o  { h~ + h~ + hJ + h ~, }ex, (8.13) 
M oil " ' 

with 

l in  t + lex ' = 1 .  (8.14) 

As a transition point between the interior and the exterior regions we take the 
geometric mean of the boundaries of the range of overlap: 

P0 = ( A 2 -  B2)-1/4 >> 1. (8.15) 

To leading order in the binding energy e, the contribution of the interior region can 
be neglected. This can be seen by noting that 

N~ a 
i f - - f (  ~- 0(1) ,  

Hence, 

N5 f(s) O(e 3"+/') << 1. 

N-2li.t-O(f°pdo)=O(p2o)=O(~-l/2). 
In contrast, as will be evaluated explicitly, 

N-_2lext = O ( e - 1 ) .  

(8.16) 

(8.17) 

(8.18) 
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For the purpose of determining the normalization, in the exterior region we may 
drop terms - N+, since N + -  e"*/2N,  and terms with an explicit factor [2A(A - 
B)] 1/2. Among the remaining terms, the h t and h 2 contributions will dominate, 
because of an extra power of p. To leading order in e, the normalization condition is 
thus 

lc~, --- IAI f ~ d 0  { h, ~ + h~ }cx,= 1, (8.19) 
M o. 

o r  

' i t I N 2 {  1 [#_(/~2+4A2)'/2] 2 )fpo~ - -  + 1 K,2~(~/2A(A - B ) p ) =  I. M .. 4A 2 ,, pdp 

(8.2o) 

The lower limit may here be replaced by zero, and using (see, for example, eq. 
(6.576.4) of ref. [11]) 

fo°~X dx  K,~(x) ~r/3 (8.21) 
2 sinh(IrB) ' 

11 q---~ ' j--1 

ff 

i I i I 

V \ \}i 

[ " \  

I 10 
P 

10 2 

Fig. 3. Squares of normalized radial wave functions h~, h~, h] and h~ versus p. These are defined by 
the decomposi t ion  (2.1). For  large p they are given by (3.12), whereas for small p they are given by (4.29). 
The parameters  considered are Iql = ~:, J = 1 and A = 2. Results for three values of n are given. The 

minima are actually zeroes of the h,. 
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1 
q=~ j=l b) 

A--2 
I 

10 4 10 3 

• 1 

n = 2 ,  , , , \ ! 

1 10 10 2 
P 

Fig. 3 (continued). 

4 7 1  

we finally get 

N 2  = 8IA 13Me sinh(rr~) [F 2 + 4 A 2 - / x ( / l  2 + 4A2) '/2] -1 - (8.22) 

For  j = 1, and A --- 2, we show in fig. 3 the approximate radial density distribu- 
tions, h 2, h22, h32 and h 2. These are calculated from our analytical expressions (3.12) 
and (4.29) and are valid in the weak binding approximation. (The actual binding 
energies for the states considered are given in table 1.) Within the accuracy of the 
plots, the more accurate wave functions calculated numerically by the method of ref. 
[2] would not be distinguishable from the present ones. Also shown, in fig. 4, are 
plots for the case A = 3, j = 2. 

9.  M i n i m a l  a n g u l a r  m o m e n t u m  a s  a s p e c i a l  c a s e  

For/~ = 0, of j = Iql - ½, there is only one eigensection of angular momentum [6] 

= 6(2) (9.1) 
~ /y j :  r i d ,  • 

With # = 0, we can formally express this in terms of ~j~) and ~(2) [6] as 
: J . / :  

~U: = V/~-(-~eO'+ q 4(2, (9.2) 
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t q-- ½ 'j:l 
16 5 

,°,o 1iy 
i 

] 0 ~  1 

' ' ' c )  

I ¢ V 

10 102 ]03 104 
P 

Fig. 3 (continued). 

If  we d e c o m p o s e  the j = Iql - ½ bound-s t a t e  eigensect lon 

= -- IKql : • 
r -iG(r)~j~, 

as 

(9.3) 

m a k e  use of  eq. (9.2), and  compare  with the decompos i t ion  of eq. (2.1), we find the 

c o r r e s p o n d e n c e  

with  

( h 3 _  h ,  ) , (9.4) 

h t =  - h  2, h 3 =  - h  4. (9.5) 

In a p p e n d i x  A, eq. (A.14), we have found for /~ = 0 in the in ter ior  region a 

so lu t ion  

,/~t(,) CraKe(x) (9.6)  h 4 = V x l i  v = 



10 -5 

io ~o 
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, I I I 1 

q--½ j=2 o) 
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, i t I I J ~  
10 "1 1 10 102 10 3 
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10 -5 , 
I 

I 
I I I I I I 

l@ 

r A-'3 n=2  

10 "1 1 10 

~,' \,x 

10 6 

Fig.  4. S a m e  as fig. 3 b u t  w i th  j = 2, ,4 = 3 a n d  fo r  n = 1 a n d  2. 
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where  x = l /p ,  C is a constant,  and ~ must be taken to be 

v_(Ix = 0) ~ i/3 0 - i/3(Ix = O) = i(21A I - ¼)1/2. (9.7) 

The  differential  equations (4.3) furnish the other  three radial wave functions: 

A 
1-41 

- -  - - h 3  = h a = Cv~ Kiao( X ) , 

A___ h d r ,  

- 1-41  --hl = C- --Iv g'oo (x)lu . • . (9.8) 

It follows f rom (9.4) and (9.5) that, for A > 0, the present h i give precisely the 
solut ions of  the interior region found in ref. [4]. 

In the exter ior  region, we note that N+---, 0 as IX---, 0 (cf. eq. (8.8)), and thus find 
f rom (3.12), 

A 
1-41 

- - - h  2=h I = N  p ' /2K,oo( (2A(A-B)p) ,  

A 1 ~O[Ol/ZK,Bo(V/2A(A B)O) ]  - h  3 = i - -~-h4  = ~ - ~ ' N _  - , (9.9) 

again in agreement  with (9.4) and the solutions of ref. [4]. 

I0 .  R a n g e  o f  va l id i ty  

For  clarity of  presentation, we have assumed that IAI is not large [see eq. (2.9)]. 
We here show that this condit ion can be relaxed provided that the binding is 
sufficiently weak. 

Let  

/3o = 1 + /3 ,  (10.1) 

w i th /3  def ined in terms of A and IX by (6.11). The condit ion for the validity of the 
power  expansion used in the exterior region is thus (compare  (8.2) in II and (5.5)) 

(A2- B2)02 << (lO.2) 

Together  with (3.1) we get 

IA + BI -1 /2  << O <</30//2( A2 - B2)  1/2 (10.3) 
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From (C.4) with v = ifl we find the following condition for the validity of the 
power expansion used in the interior region: 

b_L 1 1 l + i f l -  ½~l~2-nA 2 +/~(/~ - 1) p2>> 
(10.4) b0 4 I I + i f l l  l + i f l - ~ ¢ ~ 2 + 4 A  2 

Since the last factor is O(1), we can rewrite this simply as 

p >>/~o 1/2 . (10.5) 

Together with (4.1) we thus have 

~0 -1/2 << O << IA - BI-x/2 (10.6) 

In order for the procedure of this paper to be valid, the ranges (10.3) and (10.6) 
must overlap. This requires 

~0 a/2 <</~01/2 ( .4: _ B 2) - a/2, (10.7) 

IA + BI-1/2 << IA - BI-1/2 (10.8) 

The inequality (10.7) implies 

whereas (10.8) implies 

1 (1 + 13 2) (10.9) 

e << 1, (10.10) 

which is the same as the original (2.8). Of these two, (10.9) is the more restrictive. It 
is somewhat more explicit to rewrite (10.9) as allowing the following two cases: 

(i) When t3 = O(1) [or IA I > .401, then the condition is 

e << IAI-2 (10.11) 

(ii) When fl >> 1 [or [A[ >> A0], then the condition is 

e<< IZl -1 

These are consistent with (8.20) and (8.22) in II. 

(10.12) 

We would like to thank Professor Chen Ning Yang for many helpful discussions. 
Also, we are grateful to Professor Fritz Gutbrod, Professor Hans Joos, Professor 
Roberto Peccei, Professor Paul Srcling, and Professor Volker Soergel for their kind 
hospitality at DESY, where a major part of this work was done. 
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{a) 

/ 
(b) 

{c} 
/ 

) 

(d) 

C4 

Fig. 5. Contours of integration in the complex y-plane. The branch singularities are indicated by crosses. 

Appendix A 

SOME SOLUTIONS TO THE DIFFERENTIAL EQUATION (4.15) 

This appendix gives a brief survey of some of the solutions to the fourth-order 
differential equation (4.15). We organize these according to the paths of integration 
shown in fig. 5. 

Class I. Contour C l. Since this contour starts and ends at lYl ---' oo, above the real 
axis, we choose a Hankel function H~ ~) in the integrand. The boundary terms 
therefore vanish, and eq. (4.15) is satisfied by 

f ( : ) (x)  = fc dyy' '~H~"(xy)(1 + y2)Puj ( -y2) .  (A.1) 

Here  p can take on four values [see eq. (4.24)], p = - ~  or / z - l ,  and u, is a 
hypergeometric  function given by eq. (4.21). It will be shown in appendix B that the 
functions defined by eq. (A.1) all vanish exponentially as x ---, oo. At most two of 
these can be linearly independent, since eq. (4.15) also has two solutions that become 
exponentially large as x ---, oo. 

For  large values of x, the asymptotic behaviour of the integral (A.1) is controlled 
by that of u j ( - y  2) in the neighborhood of y = i. In this respect, the simplest 



P. Osland et al. / Monopole- and d.von-fermion bound states (V) 477 

hypergeometric functions are u 2 and u 6. A natural choice of functions which are 
well-behaved as x ~ oo is thus 

fl(2)(x) = fc, dyyl  +=H~Z)(xy)(I + y 2 )  - .u2  ( _ y 2 ) ,  (A.2) 

f(6)(x ) = [~ dyy,+,H~a,(xy)(1 + y2)-~'u6 ( _ y 2 ) .  (A.3) 
t 

We have here picked a value for p, p = - ~. Taking the other value, p =/~ - 1, we 
would merely interchange u 2 and u 6 (and the two solutions). 

For large x, we find these two solutions to be given by (see appendix B) 

f(6)(x)=(--~x)Z/2sin(~r#)F(~)e-X(2)~'[l+O(1)].  (A.5) 

We note that the leading powers are different. The functions f(Z)(x) and f[6)(x) are 
therefore linearly independent. 

Class IL Contour C e. The contours C~ and C 2 are identical for large lYl. 
Therefore, the Hankel function H~ ~) must again be used, and the integrand is 
identical to that of (A.1): 

f ~ ' ( x )  = f%d yy'+~H~')(xy)(1 + y2)Puj( -y2) .  (A.6) 

For large x, the region around y = - i  dominates the integral, and the simplest 
functions are again those for which j - - 2  and 6. A computation analogous to the 
one given in appendix B gives (with p = - ~ )  

) s i n (~ t ) r (1  x 2 "+~ 

(A.7) 

f(i6)(x)=e,_~,_2,),,: ( 2 )I/2sin(~r~)F(~)eX( 2 )~' [1 + O( 1 ) ] ,  (A.8) 

valid as x --, oo. Again, taking the other value of p is equivalent to an interchange of 
fxt2)(x) and fit6)(x). 

Class IIL Contour C~. The functions 

fxt~)(x) = f%dyy,+~H~l)(xy)(1 +y2)Pu i  ( _ y 2 )  (A.9) 
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are very similar to those of class II. In fact, with p = -/~, we find asymptotically, as 

""[ 1 f(x])(x) = -  ei(3"- 3- 2")"/2 sin(Trg) F(1 - g)eX( 2 ) x  1 + O ( 1 )  ' 

(A.10) 

f(6)(X) = __ ei(_ 3t~_. 2~)~/2 ( 2~.x l/1/2sin("/rP') ff(P')e~ ( x  2--- )u[ 1 +  O ( 1 ) 1  " x  (A.al) 

Up to a phase factor, as x--* o¢, these are thus equal to the class II functions. 
Presumably, the class II and class III functions differ by some function which is 
exponentially small as x --, ~ (related to the class I functions), and which therefore 
cannot be determined by an asymptotic evaluation of the kind given in appendix B. 

Class IV. Contour C~. The contour C 4, which is the positive real axis, is especially 
useful for small values of x. We therefore choose the Bessel function in the integrand 
to be J~(xy), which has the simplest behaviour for small x. Furthermore, for the 
present problem, the only relevant function of this class IV is the one with j = 1. 
Therefore, we study the function 

f(~)(x) = fo~dyy '+"J~(xy)( l  + y 2 ) a u l ( - y 2  ) . (A.12) 

This integral (A.12) is convergent at the lower limit when 

Rev > - 1. (A.13) 

At the upper limit, it is absolutely integrable if IRe~l < ½; it is however summable 
for all finite values of ~ because of the oscillatory nature of J~(xy). It is thus 
convenient to think of the right-hand side of (A.12) as including an extra factor of 
e x p ( - e y )  with e ~ 0  ÷ after integration. This is precisely Abel summability. The 
f~lv)(X ) interpreted in this way is studied further in appendix C. 

We comment briefly on the special case p = - i t  = 0. In this case, the integration 
can be carried out explicitly to yield (see p. 855 of ref. [11]) 

r ( i  + 

= r ( 1  + + + 
(A.14) 

Apart from a normalization constant, this is a radial wave function for j = [ql - ~. 
The connection with that case is discussed in sect. 9. 
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Appendix B 

A S Y M P T O T I C  E X P A N S I O N  OF  ]'t 2) ( x ) A N D  f~6)(x ) 

As x --* oo, relatively simple asymptotic expansions can be obtained for f~2)(x) 
and fl(6)(x). These functions are defined by (A.1). For large x, the main contribution 
to the integrals (A.2) and (A.3) comes from the neighborhood of y = +i.  It is 
therefore convenient to shift the variable of integration, 

y = e"/2(1 +/2) 1/2. (B.1) 

The Hankel function can be expressed in terms of a modified Bessel function [10]: 

H~t)( xy ) = 2e- '~ ' /2K,(  x¢l + 12 ), (B.2) 
l'h" 

and, using y d y  = - td t ,  we find 

2 fo ~ 2 ) , / 2  /i(J)(x) = - ~ d/ l (1  + t K , ( x ¢ l  + t 2 )t2pAj. (S.3) 

Here t 2pAj is the discontinuity of (1 + y 2 ) P u j ( - y 2 )  across the cut (taken along the 
real axis in the t-plane), 

Aj= l i~+[ei~Puj( l+t2- i~)-e-"Puj( l+t2+ie)] .  (B.4) 

Since U2(1 + /2) and t-4p-2ur(1 + t 2) have no branch point at t = 0, we find the 
following simple results: 

t21"A2=2isin(~rp)tEpF(1 + p +  a ÷ , l  + p + a _ ; 2 + 2 p ;  - t 2 ) ,  (B.5) 

t2pAr=Eis in( Irp) t -2p-2F(-p+a+,-p+a ; - 2 p ; - t 2 ) ,  (B.6) 

where we have introduced the abbreviations 

a_+= ½(~± ~). (B.7) 

These expressions show explicitly that interchanging the two possible values of p, 
namely, - #  and # -  1, i.e., interchanging p and - ( 1  + p), is equivalent to inter- 
changing f(2)(x) and f(6)(x). 

We now expand the hypergeometric function: 

= _ _  f o o  2 ~,/2 
fx(2)(x) 4 sin(~rp) dttX+2p(l+t ) r~(xv / l+t  2 ) 

Jo 

r ( l + p + ~ ÷ + n )  r ( l + p + ~ _ + ~ )  r ( 2 + 2 p )  ( -1)~t2 . 
. -0 r ( l + p + ~ ÷ )  r ( l + p + a _ )  r ( 2 + 2 p + n )  n! • 

(B.8) 
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This integral can be evaluated in closed form (see p. 95 of ref. [10]). With p = - i t ,  
and using K,(z)= K ,(z), we find 

2 r ( 1 - g +  a ÷ + n )  r (1  - i t + a _  + n )  F(2 - 2#) 

n = 0  0~_ 

X - - - ~ .  l t - g t l + n  -- K , .  i , ( x ) .  (B.9) 
• X u 

The other solution, ft6)(x), can be obtained by repeating this procedure with 
p =/~ - 1. This amounts to replacing - g  by/~ - 1 in the above expression, keeping 
J,, a ,  and a unchanged. 

The present expansion is an asymptotic one, useful as x ~ oc. We may then also 
expand the modified Bessel functions in an asymptotic series [10]: 

K , ( x ) =  ~ E r ( ~ + v  ,,,) m, ' 
m - - 0  

and express f~2)(x) as an asymptotic series where each coefficient is given by a sum: 

( 2 ]  '/2 /I~2~(x)= ~x-x: e-"sin(#g)]~ E F(1 tt+a++n) 
n=0,,,=0 F ( 1 - g + a + )  

I'(1 - g +  a + n )  F(2 - 2#) ( - 1 ) "  
× - - - F ( - g + l  + n )  r(1-tt+a_) r(2-2g+n) n! 

xr,r(-½+~-~-~-+m)' ~+~ ~ - n  m) 4-"(21 - ~ + ' ~ ' ' " ~ (  (B.11) 

By an explicit evaluation, we find the first few terms to be given by 

( 2 ) - ' "  ( 2~]'/2sin(~.)e-~r(-#+ a) x 

- ( ;  + r~)( - .~ + -~; - ~ + ~) 

+ ¼ ( u 4 + ~ 4 ) ( 2 - g ) + ~ r 2 ~ 2 ( 1 - t t ) ] x  2 + O ( x - 3 ) } .  (B.12) 
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The solution fi~6)(X) is obtained from this expression by the substitution - #  --, # - 1, 
with u and ~ kept unchanged. 

Appendix C 

SERIES EXPANSIONS FOR THE DIFFERENTIAL EQUATION OF SECT. 4 

We choose as the starting point the fourth-order ordinary differential equation 
(4.8). Let 

L(x)  = E bkx ~' 2k (C.1) 
k - 0  

be a solution of (4.8), where v is given by (4.12). The substitution of (C.1) into (4.8) 
gives the recurrence formula 

( [ ( p +  2 k ) 2 - ( ¼  + # 2 ) ] 2 -  (#2 + 4A2)}b, 

- 2 [ ( v + 2 k - 1 ) z - ¼ + ( # - l ) 2 ] b , _ x + b k _ 2 = O .  (C.2) 

In terms of the a_+ of (B.7) with the v and ~ of (4.24), (C.2) can be written in the 
form 

4k(k  + ~,)(k + a+)(k + a_)b k 

- [ k (k  + r) + ( k -  1 + a + ) ( k -  1 + a_) + # ( ~ -  1)]bk_ 1 

+ ¼bk-2 = 0. (C.3) 

Eq. (C.3) is solved by 

+2k 1 F ( l + v )  ~ ( ]k  bk = ( - 1 ) k ( ½ )  1+" 
r ( l + - ;  t J ( -  1) k-I 

r ( - a  - l ) r ( - a  +- l) 
x c(1  - # -  t ) c ( t ~ -  t)  ( c . 4 )  

as can be verified by considering separately each term in the sum over /. These 
coefficients are symmetric under interchange of a + and a , or ~ ~ - ~. 
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An alternative form of this solution is 

ak=(_l)k(½),+,+2kl F ( I + v ) . ~  (k)F(l+p+a +m) 
k! F(l+~,+k) :o m r(1 +?+a  ) 

r(-p+a++k-m) r(-a_-k)r(-,~+-k +m) 
× , ( c . 5 )  

r ( -p  + a+) r ( - p ) r o  + p -  k + m) 

where p is given by (4.22). The coefficients a k and b, are in fact equal, as will be 
shown presently. Both forms are useful. 

Historically, the coefficients b k and a k were obtained by formal expansions of the 
integrand in (A.12). 

In order to show that 

a ,  = b k , (C.6) 

we consider 

A k = a k / C  k , B k = b k / C  k , (C.7) 

where C k is some k-dependent factor. If the two generating functions 

a~(z )  = A :  ~, G~(z) = E B~z ~, 
k - 0  k - 0  

(c.8) 

are identical for all z, then the two original coefficients a ,  and b, must be identical 
for all k. The factor C k is chosen such that the expressions (C.8) can be summed in 
closed form. 

Let us first consider 

1 ~ (k)F(l+p+a-+m) F(-p+a4+k-m) 
Ak= ~ m F(1 + p + a _ )  F - ( - - p + ~ + )  

m l 0  

r( -a+-k +m) 
× r( -p)rO + p - k + m ) '  (C.9) 

which implies a constant of proportionality 

Ck-- ( _  1)k(~)l+,+2k r (1  + ~ ) r ( - a _ -  k) 
F(1 + v + k )  

(C.10) 
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With k =j + m, the generating function is seen to factorize: 

483 

~ zm+J F(1 + p + a _ + m ) Y ( - p + a ~ + j ) r ( - a + - j )  
GA(z) = m!j! r(1 + p  + a - - ) F ( _ - - S ~ a - + ) ~ + - - - p _ ~ ' )  

m~O j--O 

= [Y(1 + p + a _ ) F ( - p + a + ) F ( - p ) ] - l G ; ( z ) G ; ( z ) ,  (C.11) 

where 

G ( ( z )  = F(1 + p + a _ + m )  
m l  0 • 

= V(1 +p + a_) (1  - z ) - ' - " - -  z, (C.12) 

zJ r ( - p  + ~ + + j ) r ( - ~ + - j )  
GA2(z)= ~ j! F ( l + p - j )  

j - o  

sin(~rp) ~ z ~ r ( - p  + j ) F ( - p  + a++j) 
- s ~ )  j! r(1 + ~ + j )  j-O * 

sin(~rp) F ( - p ) r ( - p  + a+) 
s in(~a.)  /'(1 + a+) 

F ( - p , - p + a + ; l + a + ; z ) .  (C.13) 

In the last step we have used the reflection formula, and F is a hypergeometric 
function. Thus, 

GA(z ) sin(~rp) 1 (1 - z )  -p-" 
sin(~ra+) Y(1 + a+) 

- Z F ( - p ,  - p  + a+; 1 + a t ;  z) .  

(C.14) 

The coefficients B k are now given by b k and C k (eqs. (C.4) and (C.10)): 

1 1 k ( k )  ..k_,F(-ct_-l)F(-ct -I) 
0 ( c l s )  

where p can be either -/~ or ~ -  1. With k = j  + 1, the generating function can be 
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written as 
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r ( - ~ _  - l ) r ( - ~ . -  l) G'(z) sin(~ra_ ) ~  ( _ 1 ) , ~  ~_(i + p _ L / ~ ( _ ~ p _  f~ 

I=O 

Z j 

j - O  

sin(~a_) ~, (_l),Z' F(-a_- l)F(-a~- l) 
1=0 

× F(1 + a _ + / ) ( 1  - z) - ' - " - '  

= (1 -z)-'-" F(-a.) F(-p,1 + p ; 1  + a . ;  -z/(1 -z)) 
F(1 + p ) r ( - p )  

(C.16) 

By reexpressing the hypergeometric function of argument -z/(1 - z )  in terms of 
one of argument z [9], and using the reflection formula for the F-functions, we 
arrive at the form (C.14). We have thus proved (C.6). 

These coefficients are especially simple in the limit /~ ~ 0. Let us consider the 
quantity 

b, -= lim 2 bk" (C.17) 
~ o  ~ r ( - a .  ) r (  - a . ) r ( 1  + . )  

Only the ! = 0 term contributes in this limit, and we obtain the series expansion for 
the modified Bessel function I v [10]: 

k - O  

Note  that this is exponentially increasing for large x. 
In the remainder of this appendix we discuss in the general case the asymptotic 

behaviour of f~(x) as x -~ oo. We shall see that for all four values of ~, the functions 
f~(x) become exponentially large as x ~ oo. 

The behaviour of f~(x) for large x is determined by that of a k (or bk) for large k. 
This latter problem is most naturally studied through the generating function (C.14). 
By (C.8) and Cauchy's theorem, 

1 ~¢GA(z)dz (C.19) 
Ak'~- ~ Z k ~ l ' 
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, 

( 1 

I 

Fig. 6. Contours of integration used for the evaluation of A,. 
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with the contour of integration encircling the origin (see fig. 6). The integrand has a 
branch point at z = 1. We shall deform the contour of integration as indicated by 
the dashed curve labelled C'  in fig. 6. 

For  large k, the dominant contribution to the integral will come from the region 
near z = 1. We can then approximate 

z - k - l  = (1 + z -  1)-k-1 = e_{k_t)~_l). 

We next use an identity of hypergeometric functions [9]: 

F ( - p ,  - p  + a+; 1 + a+; z) 

r(1 + ~+)r(1 + 2p) 
r(1 +p + a+)r(1 +p) 

+ 

F( - p ,  - p  + a+; - 2 p ;  1 - z) 

(C.20) 

(C.21) 

and replace the F(a, fl; ~; 1 - z) by 1, their limiting values as z ---, 1. The integral 
(C.19) can then be approximated as 

1 sin(~rp) fc -t) 
A k -  2~i s in(~a+) , dze-(k+l)(z 

r (1  + 2 p )  (1 - - p - l - a  
x F ( l + p + a + ) F ( l + p )  Z 

F ( - 1  - 2 p )  (1 - z ) P - " - ] .  (C.22) 
+ r ( - p  + ~+) r ( -p )  ] 

F(1 + a + ) F ( - 1  - 2p )  (1 - z) '+2PF(1 + p  + a , , 1  + p ; 2  + 2p ;1  - z ) ,  
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The contribution along the arc at I zl--* oe vanishes, and each of the remaining 
integrals is just the Hankel representation of the F-function. Thus, 

A k -  sin--n-~aT)sin(vrP) { F(1F(a ++2p)p) IF(1 + p  + a _)F(1 + p  + a . ) ]  l(k + 1) p ' '  

+ ( p  ,-* - p -  1)) ,  k > > l .  (C.23) 

The coefficients of interest, ak, may now be obtained from eqs. (C.7) and (C.10). 
Using also the Stirling formula for the k-dependent F-functions, we find that, as 
k -* oo, 

sin(crp) F(I + 2p) 
a ,  --=- -(½)2+~+2kF(1 + u)sin(cra_)sin(~ra ~.) F(1 + p )  

x [C(1 + p  + ,~_)C(1 + p  + a~)] -le2kk "" 2k-l-g+P + (p  ~ - p  - 1). 

(C.24) 

The asymptotic behaviour of f~(x)  as x --* ~ can now be determined by replacing 
the sum over k by an integral, and evaluating the integral by the method of steepest 
descent. Let us introduce the abbreviation 

Z~ = -(½)2+~F(1 + u) sin(~rp) I'(1 + 2p)  
sin(~ra_)sin(vra,) F(1 + p )  

x [ r ( l  + p + a  )r(1 + p + a ~ ) ]  i (C.25) 

Then 

with 

f ~ ( x )  = Zvx Y'~(~)2ke2kk 2k l - , -Px2k  +(  p - - p - - l )  
x ~ x ;  k 

= Z ~ x " f d k e X ~ k ~ + ( p  ,---, - p  - 1), 

x ( k )  = 2k + 2k ln (~ ,x ) - (2k  + 1 + v - p ) l n  k. 

The saddle point is determined by 

d ) k-t,, ~ x ( k  = 0 ,  

(C.26) 

(C.27) 

(C.28) 
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which gives (neglecting terms of O(1/k)  and O(1/x)) 

k s ~ I X . 

Further, 

d2 k)k_k  ' 4+0(  1 ) 
~--Fx( = - ~  ~ , 

and thus 

L(x) ~o~ Z"x"e~k~ f dk e-~2/~Xk-k~2" 

This leads to the asymptotic behaviour 

(C.29) 

with 

(c.30) 

(C.31) 

f~(x) = f ~ ( x ) ,  (C.32) 
x ~ o o  

1 C F(1 + ~) sin(g#) eX 
f ~ ( x )  = ~ sin(~a_)sin(~a+) 

r(1 - 2#) [r(1 + _)r (1  + a+)] -1( - .  
× ?~1-  ~5 - #  " - #  ½x) 

+ r(- 1 + 2#) - ) 
r ( # )  [r(#+=_)r(#+=+)] '(2tx)" ' . (C.33) 

Appendix D 

S E R I E S  E X P A N S I O N S  O F f t ° ( x )  A N D  f}S~(x) F O R  S M A L L  x 

In appendix B we have found that the solutions f~J)(x) of the differential 
equations (4.15), which were given in terms of integrals, are bounded as x --* oo. In 
this appendix, we give the corresponding series expansions for small x. Since (4.15) 
is of fourth order, it follows from (C.1) that 

f t tJ)(x)=c~'i) f , . (x)+ct2J)f- ,÷(x) +'~j)¢~3 g,_ ,tx~+c~4"i)f-,, (x) . (D.I) 

The coefficients c[ j) depend on the choice of parameters v, ~ and p adopted for 
fx~J)(x). These relations will be analogous to the relationship between Bessel func- 
tions [10]: 

K , ( x )  = 2 s i n ( ~ v ) [ I _ , ( x ) - l , ( x ) ] .  (D.2) 
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The f ~ , ( x )  and 
K~(x) become exponentially small as x --* oo. 

We need the formulas for two linearly independent f(S)(x). Let us fix 
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l + , ( x )  all grow exponentially for large x, whereas f (n (x )  and 

and consider f(a)(x) and f(S)(x). Our approach is to evaluate 

with [101 

f~ t ) (x)  = f c tdyy ,  ~H~,)(xy)(1 + y2)-~,F(a, b; c; _yZ)  (D.4) 

to leading order for small x, in order to determine the coefficients c~ u by recogniz- 
ing the various leading powers of f , (x)  at small x. By symmetry arguments we shall 

later obtain the coefficients c} 5~ from c~ u. 
The following evaluation is only valid for v and ~ both pure imaginary. While this 

is not the case for the physical values (4.24), we assume that the validity of our 

formulas can be extended by analytic continuation. 
For  small Ixyl, we can approximate 

H~"(xy) = U--~, (D.5) 

H =A, (xy ) "+Az (xy )  ~, (D.6) 

I'(1 + v-----~ (D.7a) 

A2=[isin(wv)] 1 1 (1)  -". (D.7b) 
r(1 ~) 

On the other hand, for large y, 

(1 + y 2 )  ~'F(a,b; c; _ y 2 ) =  if, 

~=A3Y 2(~,+a)+A4y 2(u,h)  

with I9l 

r ( c ) r ( b - a )  1"(1 + v ) i ' ( -  ~) (D.10a) 
A3= I " ( b ) r ( c - a )  = r ( 1 - ~ + a  ) r ( ¢ + a  ) '  

F ( c ) F ( a  - b)  F(1 + v ) l ' ( i , )  (D.10b) 
A,=  F ( a ) F ( c - b )  = C ( l - ~ + ~ + ) I " ( ~ + ~ , )  " 

(D.8) 

(D.9) 

p = - ~ ,  (D.3) 
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provided 

[arg(y2)  I < 7r. (D.II) 

We will thus use the following approximation: 

fc dyyl÷'[H(1)(xy)-H~][(l + y2)--"F(a,b; c; - y Z ) -  F] =O. (D.12) 

At small lYl, the first and /o r  the second factor is small, while at large lYl, the last 
factor is small. It follows that 

where 

f i ~ l ) ( x )  = I 1 + 12 --  13,  

I, = fc, dyy'  +~H~')(xy)F. 

(D.13) 

(D.14) 

fC +P-- 
12 = dyy' H , ( l + y 2 ) - ~ ' F ( a , b ; c ; - y 2 ) ,  

1 
(D.15) 

13 = fcz dyy I +"H,F. (D.16) 

These three integrals can all be evaluated analytically. 
We first consider I~, and divide the contour of integration into the two parts C a 

and C b, as shown in fig. 7. On C a the condition (D.11) is not satisfied. We shall 
therefore make use of the fact that the left-hand side of eq. (D.8) is symmetric under 
y ~ - y ,  and evaluate ff on C; instead of on C a. We thus have 

on C" ( y  = R e - i " / 4 ) :  

if= Aaei(2+~+~),,/4 R --2- ~- ~ + A4e,2. ~ -~),,/4 R --2-,~ ~, (D.17a) 

on C b (y  = R ei~/4): 

i f = A 3  e i(2+~+~),,/4R 2-~-~+A4e-aZ+~ ~),,/4 R 2--~+~ (D.17b) 

having inserted for a and b the values (4.23). 
Further, we note that for small lYl the integrand behaves like lYl raised to an 

imaginary power (p and ~ are here assumed to be imaginary). The contours Ca and 
C b can therefore be extended down to the origin: 

C 11= dRR-1 ~A3[e-,,,~/4H~l)(xRe,./4) 

- e'"(~+~/4)H[l)(xR e3'~/4)] + (~ ~, - .~) .  (D.18) 
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Fig. 7. The contour C 1 divided into the two parts C~ and Cb, which make angles of 2,- 45 ° with the real 
y-axis. Note that the condition (D.11) is not satisfied on C~. 

W i t h  t = xR,  we ob ta in  

I~ = x~A3 f ~  dt t - ~ - ~  [e - ' '~ /4H~x)( t  e i~r/4 ) 

-e'"t~+~/a)H~l)(te3"/')] + ( ~  - ~ ) .  (D.19)  

Next ,  we express  the H~ 1) in terms of  modi f ied  Bessel funct ions  [10]: 

K,(  z ) = -~icre'""/ZH~l)( z e " / z ) ,  (D.20)  

and  use (see eq. (6.561.16) of  ref. [ l l  D 

f ° ~ x O K ~ ( a x ) d x = 2 ° - l a  ° - l I ' ( ½ ( l + o + v ) ) F ( ½ ( l + o - v ) )  (D.21)  
J0 

to get 

_ ~ x ~  sin(, , , ,+) ~ J r ( - ~ + ) r ( ~ _ ) r ( a  + . ) r ( - ~ )  
Ix 

~r F(1  - p + a _ ) I ' ( I t + a _ )  

_(½x)-~s in(~ra  ) r ( - ~ _ ) r ( ~ + ) r ( 1  + , , ) r (~ )  
,~ r(1 - t~ + ~ + ) r ( ~ , + , ~ + )  (D.22) 
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Fig. 8. The contour C~ as it appears in the w =.v 2 plane (solid, ACDF). We deform the contour as 
indicated by the dashed curves (ABCDEF). The phase of w = y2 at E and B is 0 and 2~r, respectively. 

The  remaining two integrals we do simultaneously, in order  to exploit the 
cancellat ions at large lYl. In the variable w=y 2, the contour  of  integration is 

indicated by the solid line in fig. 8. We deform the contour  as indicated and note 

that, since ff is the large-argument limit of F, there are no contributions to 12 - 13 

a long the arcs AB and EF. Also, because p and ~ are imaginary, there are no 

cont r ibut ions  near the origin (along CD). We are left then with 

'2-'3= f.c oEdww '2[AlxVw '2+A2x- w- J2] 
X [ ( 1  +w)-~'F(a,b;c;-w)-A3w-~'-"-A4w-U-b].  ( D . 2 3 )  

The terms in this expression with coefficients A 3 and A 4 give integrals of the type 

(with t = l w  l) 

lim (Rdtt-l+'~= lim I ( R ' ~ -  e~'). (D.24)  
E~O Je ~ 0  O) 

Since w is pure  imaginary, these vanish. 
In the y-plane,  there are three branch points at + i and 0. We take the first two 

cor responding  branch cuts to be along the imaginary axis extending to infinity, and 
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the third one to be the negative real axis. Thus in the w =yZ plane, there are two 
branch cuts, one from - 0¢ to - 1, and the other from 0 to + oo, both along the real 
axis. The phase of w is accordingly 0 along DE and 2~r along BC: 

12 - 13= ~fo~Cdt {[A,xVt~+A2x ~]-[A,x~e2"'~t~+A2x-~]) 

X(1 + t)-"r(a, b; c; - t ) .  (D.25) 

The A 2 contributions cancel, and we are left with 

12 - 13= ½x=A,(1 -e2"'")f°Cdtt=(1 +t) "F(a,b;l + ~ , ; - t ) .  (D.26) 
" 0  

This integral gives (see eq. (7.512.10) of ref. [11]) 

1 2 - 1 3 = ( ~ x )  " s i n ( ~ ' # ) F ( - a  )F(-a~),  (D.27) 
71" 

where we have inserted the values for a, b and At. 
To summarize, for small x, to leading order, we then have 

flU)(x) = (-~x)" sin(Tr#) F ( -  a _ ) F ( - a ,  ) 
71" 

_ ~ ) r ( - a + ) r ( a _ ) r ( i  + 

_ (½x)-~sin(  ~ra- ) 
7r 

valid for r and ~ both pure imaginary. 

r ( 1 - . + .  ) r ( . + a  ) 

r ( - a _ ) r ( a + ) r ( 1  + 
' (D.28) 

We need these formulas for two linearly independent functions. Let us now turn 
to j = 5 (cf. eq. (D.4)): 

f (5) (x)  = fc dyyl *~H~I)(xy)(1 + y2)-~us(-y2 ) 

= fcdYfl+,(_y2)-,H~,(xy)( 1 +y2)-, 

X f ( 1 - g - a _ , l - # - a + ;  1 -  g; _ y 2 ) ,  (D.29) 

where we have taken u 5 from eq. (4.21). The phase factor must be chosen to allow 
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for a cut along the negative imaginary axis (starting at the origin), i.e., 

( _ y 2 ) - " = e i , , ( y 2 ) - ~ "  

Since [10] 

H(1)( xz ) = e-  i'"H(!) ( xy ) , 

the phases cancel and it follows that 
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(D.30) 

(D.31) 

f {5) (x )  = fc  dyyI - 'H(- I~(xy) ( I  +y2)-~ 'F( l  - ~ -  a _ , l  - # -  a+ ; l  - v; _y2 ) .  
i 

(D.32) 

We note that the integrand is the same as for f~)(x),  with the replacement 
( v o  -v ) .  Hence, 

flts)(x) = f ( l ) ( x ;  // ~ - - I P ) .  (D.33) 

An expansion of flts)(x) in powers of x will thus yield as the first terms 

f~5)(x) = (½x)-"  sin(~r#) r( . . )r ( .  ) 
or 

+(½x)~Sin(ora_) r ( , _ ) r ( - , . ) r o  - ~ ) r ( - ~ )  
or F(I - / ~ -  a , ) F ( ~ -  a÷) 

+(_~x)-~sin(ora.) r ( , . ) r ( - , _ ) r 0  - , ) r ( ~ )  (D.34) 
or r 0 - , - . ) r ( ~ - , _ )  

The above analysis was aimed at determining the leading powers. Since we know 
on general grounds that relations of the type (D.1) exist, we may replace the various 
leading powers by the complete series. Thus, we obtain from eqs. (C.1) and (CA) 

Z(x) = ½(}~). sin(.~) r ( - a _ ) r ( - . . )  + O(x'*~). 
"/7" 

(D.35) 

By comparing the leading terms, we are led to the following results: 

2 sin(ora+) r(1 + . ) r ( -  ~) 
f{')(x)=2f~(x)- sin(or#) r(1-.+~_)r(~+~_) f~(x) 

sin(ora_) F(1 + ~,)F(~) 
- 2  sin(0r/z) r(1-~+~+)r(,+~+) f-~(x)' (D.36) 
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= 2s in(~ra  ) r ( 1  - ~ ) r ( - ~ )  
f l S ' ( x )  2f_~(x)+ sin(~r/t) F(1  - ~ -  a . ) F ( / t -  a , ) f ~ ( x )  

2 sin(~ra ) I'(1 - u)F(~,) 
+ + f _ ~ ( x ) .  (D.37) 

s in(Ir~)  r ( 1  - . -  ,~ ) r ( t~  - a ) 

The fact that these combinations of series are actually free of terms that behave 
like e x as x -~ oo can be checked using the asymptotic form, eq. (C.33). 

Appendix E 

SUMMARY ON THE BASIS f l ) ( x )  AND/<5>(x) 

In this appendix we shall give explicitly the functions fo> and fcs> which we have 
used as a basis in our description of the interior region, together with some of their 
properties. These functions are actually the functions f~)  and f(5) of class I, 
described in appendix A, with particular choices for the parameters: p = - ~ ,  

i ' = v +  and ~ = v _ = i f l .  
In order to get more compact formulas, we shall here use the abbreviations* 

where 

and with [6] 

The quantity fl is real, i.e., 

a + =  ½(v + + i f l ) ,  (E.1) 

IAI > ½(/- ¼)= -~[/( /+ 1)-U2] .  

* This notation has been used in a more generic sense in the other appendices. 

(E.2a) 

(E.2b) 

(E.3) 

(E.4) 
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For small x we have the convergent expansions (cf. eqs. (D.36) and (D.37)) 

2 sin(Ira+) F(1 +~+)r(-iJ) S(iB,~+;x) 
f<l)(x)=2S(v+'iB;x)- sin(it#) r 0 - . + : _ ) r ( . + .  ) 

2 sin(~ra ) r(1 +~+)r(iB) s(-iB,~+;x), 
sin(~r#) r ( 1 - z +  ~ + ) r ( ~ + ~ + )  

(E.5) 

fO)(x) = 2 S ( - v + , i f l ;  x) +2 
sin(Tra_ ) F(1 - v+)F(-ifl) 
sin(It#) F(1 - # -  a + ) F ( # -  a+)  

s(iB, .+; x) 

sin(~ra+) r(1 - ~,+)r(iB) 
+2 S(-iB, v+;x), (E.6) 

sin(=~) r(a - ~ -  ~ ) r ( v -  ~ )  

with (cf. appendix C) 

s(~, ~; x) = s(~, -~ ;  x) = L ( x )  = ~ b,~ "+2., (E.7) 
k - 0  

b, = ( -1 ) * (½)  '+'+2k 1 r (1+1, )  
k! F(1 + v + k )  

×,~o(k) (-1)k-tF(-½v+ F(1-#.I-I)I"(#-I) (E.8) 

At large x, it is convenient to make use of the asymptotic expansions found in 
appendix B. If we use two Kummer relations [9], we can express f o )  and f{5) in 
terms of f(2) and ft6): 

r(1 + v + ) r ( - 1  + 2z) 2 

r(1 + , ,+)r(1 - 2z) ).ft6)(X ) (E.9) 
+ F ( 1 - # + a + ) F ( 1 - # + a _  

r(a - ~ + ) r ( -  1 + 2z)  
) = - f C Z  s ,  x ) 

r(1 - ~+)r(l  - 2~) 
+ T6~(x), (Ea0) 

r ( l  - ~ -  ~ _ ) r O  - ~ -  ~+) 
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where (cf. appendix B) 

( 2 ] t/2 
y~(x )  = ~TX-xj e -* s in ( '~ ' )  

F ( l - . + a + + n )  F ( 1 - . + a  + n )  F ( 2 - 2 . )  
× E E T(i ~ ~-+-g~-j g(i-~-+~,- j r ( 2 -  2 .  + ) n=0 m=0 r/ 

{ -  1 '"  I ' ( - ~  + . - v ~ _ - - n + _ _ m ) 4 - "  ( 2 )  1 " u-" ~"' 
× ~ - '  r (1-"+")r ( -~+.  .+-.  m) mi 

(E.I1) 

( 2 )l/2e_,sin(~/~) E E I ' ( . + a + + n ) l ' ( g t + a + n )  r(2~) 
f ~ ' ( x ) =  ~r--;j .-,,~=o r ( ~ + ~ , )  r ( . + ~  ) r(2t~+n) 

_ ,, F ( l _ . _ v  _ n + m ) 4 - " ' ( 2 )  ~ . . . . . .  
(E.12) 

As pointed out in appendix B, ft:~ and ft6) are related. If we let . ~ 1 - .  (but 
leave v+ and fl unchanged), then we have 

f '2 ) (x)  ~ f ( 6 ' ( x ) .  (E.13) 

Since v+ and fl are real, c~_= a * ,  and the basis is real: 

/ " ' (x )  =/" ' (x)* ,  

fO ' (x )  = / ( ~ ' ( x ) * .  (E.14) 

Also, the two functions are related by 

v, ~ -v¢  . fO ' ( x )  o f ( 5 ' ( x ) .  

The functions f(1)(x) and f(5)(x) may be thought of as 
modified Bessel functions. In order to illustrate this relationship, we shall multiply 
f(X)(x) and f(S)(x) by suitable constants, and consider the l i m i t ,  ---. 0. We first note 
that f~(x) is a generalization of the modified Bessel function l~(x): 

lim 2 [ , F ( -  -~v + ½~) I ' ( -  ½v - ~ ) I ' ( 1  + v)] lf~(x) = l~(x) .  (E.16) 
0.~0 

as follows from (C.17) and (C.18). In (E.16), we have (v,~)= (v, , i f l ) ,  ( - v . , i f l ) ,  
(ifl. , +). or ( - i f l .  ~,.). 

(E.15) 

generalizations of 
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'I 
I k (5)  (a) 
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= I0  "4 

A = 3  

- o . % . ,  i , 
10 .3 10. a 10 "1 

I ] 1 
1 1 0  10 a 

x 

0.1 I I 1 i / ~  I 

V VI 
- 0 . 1  I I I I I 

I 0  -4 I0  "s 10 "z I0 "l I I0  10 2 
X 

Fig. 9. Compar ison  of the functions k i n ( x )  and k(S)(x) of (E.17) and (E.18) with the modified Bessel 
funct ion K,p(x) for A - 3 and (a) ~ = 10 -4 and (b) V = 7~ (Iql = ~2 and j = 1). Solid: K,l)(x); dashed: 

k i n ( x ) ;  dash-dotted: k(5)(x). In (a) K,p(x) and k i n ( x )  are indistinguishable. 
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Let us then define the real functions 

k m ( x  ) = c(1 + a_ )/ '(1 + a ,  )f"~(x) 2F(a + ~ . )  ' (EA7) 

k ~ 5 ~ ( x  ) = r ( 1  - a . ) r ( 1  - a 
-27~ -~v~j - ) f ' 5 ) ( x ) "  (E.18) 

This is just a convenient rescaling of f tl)(x) and f tS)(x). These functions (E.17) and 
(E.18) have simple limits as ~a --* 0: 

lim k in (x )  = lim k~5)(x) = K,t~o(x ) , (E.19) 
~.~0 ~ 0  

with K.% a modified Bessel function and 

130 = (2IA[ - 1 )  1/2. (E.20) 

In fig. 9 we compare plots of the functions k°)(x) ,  kt5)(x) and K,/~(x) for A = 3, 
= 10 -4 and ~ = ~- .  (The latter case corresponds to IqJ = ~ and j = 1.) 
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