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tum field theory. We also comment on the physical significance of the “split property,” 
underlying our analysis, and discuss some local aspects of superselection rules following from 
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1. INTRODUCTION 

One of the general features of field-theoretic models is the appearance of local, 
conserved currents resulting from internal or space-time symmetries. Within the 
setting of classical Lagrangian field theory this fact is well understood, and 
Noether’s theorem even provides for each continuous symmetry of a Lagrangian an 
explicit formula for the corresponding current. In the Lagrangian approach to 
quantum field theory, the general understanding of the relation between symmetries 
and currents is, however, less satisfactory. It can happen, for example, that sym- 
metries of a classical Lagrangian disappear at the quantum level due to the effects 
of renormalization (cf., e.g., 3, Sect. 11.5). Therefore it is unclear how to base a 
proper quantum version of Noether’s theorem on this formalism. 

It is the aim of the present article to discuss a different approach to a quantum 
Noether theorem. In this approach we consider as symmetries of a quantum field 
theory the set of global space-time or gauge-transformations acting on the physical 
Hilbert space. So, roughly speaking, we restrict our attention to “visible” sym- 
metries of the solutions of the equations of motion which manifest themselves, e.g., 
through the presence of superselection rules. The problem of constructing the 
corresponding currents can then be discussed in the general (“axiomatic”) setting of 
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quantum field theory. It consists essentially of two parts: first, one must determine 
to each global symmetry of a quantum field theory a set of local generators. Note 
that in the presence of Noether currents such generators can be obtained by 
integrating the (regularized) current densities over finite volumes of space; so the 
solution of this partial problem may be regarded as a weak form of Noether’s 
theorem. The second step consists then in the reconstruction of the currents from 
these local generators (integrated densities). 

This program has been initiated in [ 11, where the existence of local charge 
operators in theories with a global abelian symmetry group was established under 
very general conditions. An extension of this analysis to theories with a non-abelian 
global symmetry has been carried out in [2], providing a rigorous variant of local 
current algebras. 

In the present paper we generalize these results to arbitrary symmetries, including 
space-time and super-symmetries. The proof that local generators of these sym- 
metries exist thus completes the first step towards a quantum Noether theorem. The 
difficult second step, i.e., the reconstruction of currents, however, requires further 
investigations and is not touched upon in this article. 

The setting used for our analysis is standard’: we assume that the physical states 
are described by vectors in some Hilbert space 2 and that the fields underlying the 
theory generate an irreducible set of local field algebras s(O) on X which are 
assigned to the bounded regions 6 of Minkowski space. It is convenient here to 
assume that these algebras are von Neumann algebras. Thus each S(C~) may be 
regarded as a set of bounded operators built out of fields with localization centers 
in 0. Since it is obvious how to express the covariance properties and spacelike 
(anti-) commutation relations of fields in terms of the algebras B(S), we refrain 
from listing these properties here. 

Let us consider now the cases where the theory has an unbroken internal sym- 
metry. In the present setting this means that there exists some group G (the global 
gauge group) which is represented on 3’ by unitary operators U( g), g E G transfor- 
ming the vacuum Q E X into itself, 

U( g1.n = Q, (1.1) 
and leaving the localization of fields unchanged, 

U(g) 5(O) u(g)-’ = S(S). (1.2) 

Space-time symmetries of a theory, such as the translations or the Lorentz-transfor- 
mations act in a similar manner, the only difference being that on the right-hand 
side of relation (1.2) the region 0 has to be replaced by the transformed region OR 
according to the geometrical action of the group element g. Supersymmetries, 
however, require a slightly different treatment as will be discussed below. 

The structure described so far is familiar from many field-theoretic examples. But 
it is note-worthy that it can also be derived from first principles. The only input 
needed is the spacelike commutativity of local observables and the assumption that 

1 For a detailed exposition see the introduction of [4]. 
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the physical states under consideration are well-localized excitations of a vacuum 
state. Under these circumstances the following results have been established in a 
series of papers [S-S]. 

Given the structure of the algebra of all local observables one can reconstruct the 
Hilbert space X of physical states, the algebras s(0) of charge-carrying fields, the 
global gauge group G and its representation U(g), g E G. Moreover, the algebra 
generated by the local observables in a region 0 is represented on 2 by the algebra 
2X(0) of all gauge-invariant elements of S(S), i.e., 

Vi(O) = g(O) n U’. (1.3) 

(Here U’ denotes the set of bounded operators on 2 commuting with all gauge- 
transformations U(g), g E G.) It should be noticed that the local field algebras g(0) 
are generated by Bose- or Fermi-type operators (with normal commutation 
relations at spacelike distances), even if there exist super-selection sectors in the 
theory obeying para-statistics. The latter (intrinsic) property would reveal itself in 
the non-abelianness of the gauge-group. Hence, summing up, the global symmetries 
of a theory are fixed by the algebraic structure of the observables and can be deter- 
mined without any reference to local currents. 

These model-independent results show that the present setting covers all theories 
with localizable charges, such as baryon-number or strangeness in pure quantum 
chromodynamics. Gauge charges (such as the electric charge in quantum elec- 
trodynamics) or quantum-topological charges (as discussed in [9]), however, do 
not lit into our setting since the corresponding charge carrying fields are necessarily 
non-local. In view of the latter fact one actually may have doubts that such non- 
localizable charges are always related to local currents acting on the physical 
Hilbert space 2. We therefore leave aside these cases for the time being, but we will 
return to them at the end of our paper in a discussion of some local aspects of 
superselection rules. 

Let us now turn to our main objective: given any global (internal or space-time) 
symmetry transformation U(g) and any bounded region 8, we want to exhibit local 
unitary operators’ U,(g) which induce the same action on g(0) as U(h), i.e., 

U/f(g) FU/f(g)r’ = U(g) FU(g)-’ for FE%(~). (1.4) 

Our local operators U,(g) will actually form a representation of the global sym- 
metry group which is covariant in the following sense: if, e.g., h is a global gauge- 
transformation, then 

U(h) U,(g) U(h)-‘= U,$(h.g~h-‘). (1.5) 

By virtue of this covariance property and relation (1.3) U,(g) is a local observable 
whenever g commutes with the global gauge group. 

* The significance of the index A will be explained below. 
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Guided by the example of an internal symmetry transformation U(g), which is 
the exponential of a local current density integrated over all space, one might 
expect that one can always find such unitaries U,(g) in g(6), whenever the region 
6 is slightly larger than 1!9.~ Yet there are models fitting into our general setting (a 
simple one being the theory of a charged generalized free field) in which no such 
operators exist for bounded regions 6 [lo]. Fortunately, these physically awkward 
models can be ruled out by a general and physically significant condition which will 
be discussed in the following section. 

2. LOCAL PREPARATION OF STATES AND THE SPLIT PROPERTY 

We say that a quantum field theory has the split-property if for any bounded 
region 0 there is another bounded region 6 3 0 and a type I factor4 JV such that 

S(S) = J- = 5@). (2.1) 

Since the physical significance of this condition is not immediately obvious we give 
some explanations. 

At the level of models the split-property has been established for the free, scalar 
field [ 1 l] (see also [12]) and hence for interacting theories which are locally Fock, 
such as the $?P((P)~ models. These results were extended to arbitrary spins as well as 
to the Yukawa model in two dimensions in [13]. On the other hand it is known 
that certain artificial models do not have the split property. Examples are the 
generalized free field with continuous Kallen-Lehmann measure or theories with 
infinite particle multipletts [lo]. 

The common feature of these counterexamples is the fact that they describe 
systems with a tremendous number of local degrees of freedom. (As a consequence, 
there are for example no reasonable temperature states in these models.) This clue 
of a relation between the split property and the number of local degrees of freedom 
has been confirmed in [15]. Taking as a measure the energy level-density of 
localized states in a theory, it has been shown that the split-property holds if the 
level-density does not grow too fast with the energy. Roughly speaking, the particle 
spectrum has to be such that the “partition function” xi edBmf exists for all /I > 0. 
(The sum is to be taken over all particle types counted according to their mul- 
tiplicity; mi are the particle masses.) It seems that this condition is satisfied in most 
models of physical interest. 

3 The region 6 has to be larger than 0 since integrals over current densities require a regularization 
which enlarges the localization. Of course, 6 depends also on g if U(g) is a space-time symmetry trans- 
formation. 

4 We recall that a von Neumann algebra H’ is called a factor if its center is trivial, i.e., if 
X n .M’ = @. 1. As usual, JV’ denotes the set of all bounded operators on 2 commuting with X. A 
type Ifacfor M is a factor which contains some minimal projection E # 0; it is isomorphic to the algebra 
of all bounded operators on a fixed Hilbert space (cf., e.g., [14]). 
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If the split inclusion (2.1) holds for the fields it an easy consequence of (1.3) that 
an analogous relation holds for the observables, i.e., that 

A(0) c MC A@) (2.2) 

for some type I factor M [l]. We shall demonstrate now that this property of the 
algebra A = UC, A(O) of all local observables can also be grounded on the basic 
experimental fact that it is possible to fix locally certain specific physical situations 
(e.g., the vacuum) irrespective of the given initial conditions of the world. 

According to the basic principles of quantum theory any physical state 
corresponds to a positive linear functional cp over the algebra ‘$I, giving the expec- 
tation values of observables in this state.5 Performing a yes-no experiment 
(corresponding to a selfadjoint projection E E ti) one can prepare from q a new 
state (Pi by rejecting all events where the result of measuring E in cp is zero. This 
reduced state (Pi is given by 

qe(A)=w for A~2l, (2.3) 

provided the probability q(E) of finding the value 1 for the observable E in the 
state q is different from 0. A projection E is called a pure (ideal) filter if for every 
state cp with q(E) # 0 one obtains (Pi = o, where o is a fixed state which is indepen- 
dent from cp. It is easy to see that o must be a pure state of ti, so by measuring a 
pure filter one can produce ensembles with maximal information. 

Pure filters are familiar from systems with a finite number of degrees of freedom. 
In quantum field theory, however, a pure filter cannot be a (local) observable, 
because it affects in a sharp way all states at arbitrarily large spacelike distances. 
On the other hand, one never attempts to measure pure filters. In practice one is 
content with the possibility of fixing states within limited space-time regions. It is an 
important empirical fact that this can be achieved with an experimental set-up, 
where only the parameters of the states in question enter. Phrased differently: by 
suitable monitoring experiments one can establish a definite state within a given 
region, irrespective of the unknown and complicated details of the rest of the world. 
So, locally, such experiments have the same effect as a pure filter. 

Translating these facts into the setting of quantum field theory one is led to 
introduce the concept of a localjlter for a given state: a projection E E ‘$I is called a 
local filter for o in the region 0 if all reduced states (Pi coincide with o on the 
algebra 2I(0), i.e., 

cp,(A) = w(A), A E (LI(O) (2.4) 

for any state cp of ‘?I with q(E) # 0. The empirical situation just described then 
suggests that all physically reasonable theories have to admit such local filters. We 

’ Thinking of ‘9l as an operator algebra on the Hilbert space Pcontaining all superselection sectors, 
the states of interest here are of the form q(A) = Tr p. A, A E VI, where p is some density matrix on 2. 
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shall demonstrate now that this condition, which expresses a principle of 
experimental definiteness, implies the split property. 

PROPOSITION. The algebra A = uO A(0) of local observables in a local quantum 
field theory has the split property (2.2) if and only if there exist local filters for all 
bounded space-time regions. 

Proof If a theory has the split-property, then there exists for any bounded 
region 0 a type I factor J&’ c ‘%!I such that ‘3(O) c A!, cf. relation (2.2). Bearing in 
mind that the minimal projections EE J! have (relative to A) the same algebraic 
properties as a one-dimensional projection on a Hilbert space it is clear that 

EAE=w(A). E for A E 2I(Lo), (2.5) 

where o is some state depending on E. One then obtains relation (2.4) by taking 
the expectation value of this equation in an arbitrary state cp. So the minimal pro- 
jections in A%’ act as local filters in the region 0. In fact, in theories with the split- 
property such filters exists for all locally normal states o of ‘?I. 

Conversely, assume that there exists a local filter E E ‘9l for some state w  in the 
region 0. Since the physical states cp separate the elements of ‘?I it follows from (2.4) 
that relation (2.5) holds for the projection E. Let 8 be the von Neumann algebra 
generated by ‘u(O) and E. Since E is a local operator it is clear that 
‘u(0) c W c %(6) for some bounded region 8. Moreover, relation (2.5) implies that 

E.%E=@.E, (2.6) 

which means that E is a minimal projection in 9. Thus the proof of the split- 
property is complete if 93 is a factor. Turning therefore to te cases where 3? has a 
center, let C be the entral support of E (i.e., the smallest projection in the center of 
9 containing E). It then follows from (2.6) that the reduced von Neumann algebra 
93. C is a type I factor on C. P and, by construction, 

2l(8)~CC~~CC(u(d). (2.7) 

Now given any isometry W mapping JP onto C. A?, i.e., W* W= 1 and WW* = C, 
one can map B. C onto a type I factor A = W*9?, C W on A?. It is an important 
consequence of the Reeh-Schlieder theorem and the fact that CE g(0)’ n (rr(6) that 
one can find such an isometry W in ‘?I($)’ n a(~!!&,), provided the closure of the 
region $ (resp. 6) is contained in the interior of 0 (resp. &) [ 173. Replacing 0 and 
6 in (2.7) by the slightly smaller and larger regions @, and $ and multiplying the 
resulting relation from the left and right by W* and W, respectively, one thus 
arrives at the inclusion 2l($) c A? c a($), where A is some type I factor. Q.E.D. 

It is an interesting question of whether the split property (2.2) of the observables 
implies the corresponding relation (2.1) for the fields. In the special case of a theory 
with a finite abelian gauge group G this is known to be true [ 11, and there are 
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strong indications that this result can be extended to more general situations [ 161. 
In view of the fact that the split property of the observables admits a direct physical 
interpretation it would be desirable to clarify this point completely. 

It is an easy consequence of the split inclusion (2.1) and relation (2.5) that the 
reduced states rp,, where E E JV is any minimal projection, are product states on 
g(S). s(6). Actually, there exist product states with certain specific properties 
which are substantial for the subsequent analysis [2, lo]: given any vector Q in X 
which is cyclic and separating for the algebra g(0)’ n g(6) (we can take here the 
vacuum [Z]) one can tind a vector $2, E L%Y such that 

(i) Q,, induces a product state on g(O). g(6)< given by 

(Q,, FFn,)=(SZ,Ff2)~(Q,FQ) (2.8 1 

for FE g(S) and FE g(@)‘. 

(ii) Q,, is cyclic for the von Neumann algebra s(O) v g(@)‘.6 

(iii) Q,, is an element of the natural cone’ P@ c &‘ associated with Q and 
ix@)’ n 5(4. 

The vector Sz, is completely fixed by these properties, so it only depends on the 
triple 

n = (As, 5(4> Q). (2.9) 

Moreover, the assignement n + Q,, is covariant in the following sense [2, lo]: if a 
triple 

no = (5(@0’0), Wd Qo) 

is isomorphic to A, i.e., if there exists some unitary U, on R’ such that 

(2.10) 

A,= (UoS(fl) U,‘, UomQ U,‘, UOQ), 

then the corresponding vectors Sz,,, and Sz,, are related by 

(2.11) 

Q,,= uo.Q;2,. (2.12) 

Note that in the case of a global gauge transformation U, one obtains ,4, = il (cf. 
relations (1.1) and (1.2)) and therefore Q,,, = 52,. Thus implies, according to 
relation (2.12), that 52, is invariant under the action of U,. 

It may be noticed that the existence of product state vectors Sz,, as in equation 
(2.8) expresses a strong form of statistical independence between the regions 0 and 
6’, which is actually equivalent to the split property [ 111. 

6 The symbol 9, v &$ denotes the von Neumann algebra generated by 2, and 3& 
’ For a short account of the theory of cones see the Appendix of [lo]. 
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3. LOCAL GENERATORS OF SYMMETRIES AND THE UNIVERSAL LOCALIZING MAP 

Assuming that the split inclusion (2.1) holds for the fields we now introduce a 
mapping IC/,, of the algebra B(2) of all bounded operators onto a natural type I 
factor NA associated with the triple ,4 = (g(O), g(6), Sz). This universal localizing 
map $,, will prove to be a convenient tool for the passage from the global sym- 
metries to the corresponding local generators. 

Let Q,, be the natural choice of the product state vector of A. First, we define an 
isometry W, of 2 onto 2 Q &? setting 

W,, . FFQ, = FG’ @ FQ (3.1) 

for FE g(O) and FE g(6)‘. (That W,, is an isometry as a consequence of (2.8); the 
assertions on its domain and range follow from the fact that Q, and 52 are cyclic for 
i?(S) v W@ and 5(o), 5(6)‘, respectively.) It is an immediate consequence of this 
definition that for F, F’ as above 

w,,. FF’= F@F. W,. (3.3) 

Now we set 

$n(U= W,‘(TQ l)W, for TEB(Z) (3.4) 

which fixes the universal localizing map’ Il/,, of G?(X) onto the type I factor 

J-/l = $n(~B(Jn). (3.5) 

It follows from (3.3) that 

$n(F)=F for FE g(O), (3.6) 

and taking into account that CC@%)@ 1 c (1 @s(6)‘)’ as well as the fact that 
g(6)” = %(I!?) it is also clear that 

$,9(T) E iw? for TE B(S). (3.7) 

So, in particular, we obtain the inclusion 

iIf(@) c =4 = wa. (3.8) 

Next, let us determine the transformation properties of Il/,, if one proceeds from ,4 
to any isomorphic triple A,,: from the transformation law (2.12) for the product 
state vectors and the definition (3.1) of the unitaries W,, , W,,, it follows that 

w,; u,= u,o Uo’ WA, (3.9) 

’ I),, is actually an isomorphism. 
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where U, is the unitary establishing the isomorphism between A and &. If one 
makes use of this relation in Eq. (3.4) defining $,, one obtains 

Il/,,(U,‘TU,) = W,ki,,(T) Ui, for TE g(X), (3.10) 

giving the transformation law for the universal localizing maps. Recalling that 
A, = n if U0 is a global gauge transformation it follows in particular from (3.10) 
that $n commutes with the gauge transformations. 

With this information at hand we can turn now to the construction of local 
generators of the symmetries. We begin by discussing internal symmetries; since in 
this case we merely reproduce (in the frame of the universal localizing maps) the 
results obtained in [2, lo], we can be very brief. 

Internal Symmetries 

Let G be the global gauge group (internal symmetry group) and let U(g), g E G 
be the corresponding unitary transformations on 2 satisfying the conditions (1.1) 
and (1.2). Setting 

U/i(g) = e/AU(g)) (3.11) 

we obtain a new reresentation of G by unitary operators in s(8), cf. relation (3.4) 
and (3.7). Since $n acts trivially on s(0) and since internal symmetry transfor- 
mations do not change the localization of fields it follows that for FE g(S) 

U,(g)FU,(g)-‘=II/,(U(g)FU(g)-‘)=U(g)FU(g)-’. (3.12) 

So the local operators U,,(g) induce the same action on 5(O) as the global trans- 
formations U(g). 

If G is a Lie group one can proceed from the local symmetry transformations 
U,,(g) to the corresponding infinitesimal generators. As has been discussed in [2], 
these generators are the analogue of locally integrated current densities, and they 
provide a version of local current algebra. Note that the local symmetry transfor- 
mations U,(g) also exist in the case of discrete symmetries (multiplicative charges). 
In this respect the information contained in relation (3.11) goes beyond Noether’s 
theorem. 

It is also worth mentioning that, under fairly general assumptions, the local sym- 
metry transformation U,(g) converge to the global ones if the regions 0 and 8 
tend to the whole space [lS]. 

Space-time Symmetries 

We now extend this construction of local symmetry transformations to space- 
time symmetries. Let $9’ be a group acting on the space-time points x by x --t Lx, 
LEY and assume that the theory is symmetric under 9, i.e., there exists a con- 
tinuous, unitary representation V(L), L E 9 on Y? such that 

V(L)Q = a (3.13) 
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and 

V(L) S(O) T/(L)-’ = S(LO). (3.14) 

Examples for L?J are the translations and the Poincart-group (resp. its covering 
group), possibly extended by conformal transformations. 

As in the case of internal symmetries one obtains a representation of B by 
unitary operators in g(6), setting 

V/l(L) = $A W)). (3.15) 

These unitaries induce locally the same action on the fields as the global transfor- 
mations V(L). Namely, let Q, be any region contained in the interior of 8 and let .c??~ 
be a neighbourhood of the identity in L?J’ such that L,C& c Co for all Lo E gO. From 
the fact that $,, acts trivially on g(O) and from relation (3.14) it then follows that 
for L, E p0 and F,, E G(&), 

VALO) Fo V/i(Lo)- I = $/A U-h) WLI-‘) = ULd WLJ-‘. (3.16) 

This establishes the locally correct action of the unitaries VA(L). 
Assuming that the global transformations V(L) are gauge-invariant, i.e., that 

U(g) UL) = UL) U(g) for all g E G, (3.17) 

it also holds true that the operators V,,(L) are observable. At this point the 
covariance properties of the universal localizing map $,, are essential: from relation 
(3.10) it follows that the set U’ of all gauge invariant operators is mapped into itself 
by $,,. Hence, using the characterization (1.3) of the observables, one obtains 

as claimed. 

V,(L) E S(B) n u’ = 2l(6), (3.18) 

These results show that the infinitesimal generators of the local spacetime trans- 
formations V,,(L) are the analogue of the (0, v)-component of the energy-momen- 
tum tensor, etc., integrated over a finite volume. Yet in contradistinction to these 
locally integrated densities the generators of V,(L) have the same spectrum as their 
global counterparts. This follows immediately from the definition (3.15), according 
to which the representation V,,(L), LE S is unitarily equivalent to the global 
representation V(L), L E Z? amplified with infinite multiplicity, 

V,(L) 2: V(L) 0 1. (3.19) 

To give an example: the generators of the translations V,,(x), x E [w4 fulfil the 
relativistic spectrum condition (positivity of the energy); in contrast, the energy- 
density integrated over a finite volume cannot be a positive operator in a relativistic 
theory because of the Reeh-Schlieder property of the vacuum. This apparent 
paradox unravels if one notes that one can add to the integrated densities operators 
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from g(0)’ n s(6) without affecting their locally correct action (in the sense of 
relation (3.16)). It follows from our results that there always exist such marginal 
perturbations which adjust the spectrum of the local generators to that of the global 
ones. 

We conclude this discussion of space-time symmetries with the remark that, 
similar to the case of internal symmetries, one can define the local transformations 
(3.15) also in the case of discrete symmetries, e.g., space-inversions. Of course, the 
regions 0, 6 in the underlying triple /i should then be symmetric. 

Supersymmetries 

Our general discussion also applies to theories with supersymmetries (see, e.g., 
[ 19,203). In a supersymmetric theory there exist Bose as well as Fermi fields which 
can be identified with the help of the unitary U, inducing the sign change on Fermi 
fields. An arbitrary element F of the local field algebras s(0) can thus be decom- 
posed into its Bose and Fermi parts F, and I;-, respectively, setting 

F, = f(Fk U,FU,‘). (3.20) 

A supersymmetry of the theory is given by a ( f )-graded Lie-algebra Z! = 1, 0 % 
represented on 2 by selfadjoint operators9 Q and acting on FE ff(O) in a way 
which is compatible with the ( f )-grading of the fields. Namely, 

d,(F) = CQu, Fl for UE%+ 

d,(F) = CQto F, I+ {Q,, F- > for ME&, 
(3.21) 

where [ , ] and { , > denote the commutator and anticommutator, respectively. 
Actually, the expressions (3.21) are not defined for arbitrary elements FE g(O) since 
the operators QU are unbounded. But there should be a common dense domain 
&J(o) c s(0) so that the operators 6,(F), FE go(~) are affiliated to s(U). 

The global gauge-group G induces an action on the elements u l 2 which we 
denote by g(u), g E G. The corresponding transformation law for the generators QU 
is given by 

Qnw= U(g) QuU(g)-‘. (3.22) 

An analogous statement holds for the space-time symmetries 9. 
In complete analogy to the cases discussed before one obtains a representation of 

9 by selfadjoint operators affiliated to s(6), setting 

Q;' = IclAQ,J (3.23) 

These operators induce on a,(O) the infinitesimal supersymmetry transformations 
6,. Moreover, 

U(g) Q; U(g)-’ = Q&p gEG (3.24) 

’ Note that by going to a Majorana representation the supercharges Q become “real.” 
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for any UEL& Similar covariance properties of the local generators Qi under Poin- 
care transformations, etc., follow easily. So the universal localizing map II/,, supplies 
adequate local generators also in the case of supersymmetries. 

The present results can be viewed as a step towards the construction of local 
currents which are related to global symmetries. Namely we have established the 
analogues of finite volume integrals of the zero-components of such currents. It is 
still a major open problem how to recover these currents from our local generators. 
In this context the freedom of choosing the region 6 arbitrarily close to 0 and yet 
having the split inclusion (2.1) may be expected to be crucial [ 11. As a matter of 
fact, this more restrictive form of the split property has been established in models 
[ 11-131; it also follows from a slightly strengthened version of the general 
assumptions in [15] (cf. [21]). 

Our arguments also apply to theories where non-localizable (topological) charges 
are present [9]. There the construction of the normal field-algebra [S] leads to a 
set of von Neumann algebras B(y) which are associated to spacelike cones Y c R4 
(“thickened strings”). In the absence of massless particles it is still reasonable to 
assume that there exist cones 9 1 Y such that the analogue of relation (2.1) holds, 
i.e., 

S(Y) c Jf = ??(a (3.25) 

for some type I factor JV [22]. The above analysis then provides a representation 
of the global symmetries by unitary operators in g(p) which induce the correct 
action on g(y) (cf. relation (1.4)). But there is no indication (in the case of con- 
tinuous symmetries) that these operators are related to local currents. 

4. LOCAL ASPECTS OF SUPERSELECTION RULES 

We conclude this investigation with a discussion of some local aspects of super- 
selection rules emerging from our analysis. According to its basic definition a super- 
selection rule is just a lable of equivalence classes of irreducible representations of 
the observable algebra 2l. In our present setting these representations can be 
obtained by restricting % to the coherent subspaces (superselection sectors) of X, 
and the superselection rules (global charges) can be identified with the elements of 
the center of a”. All these concepts are of a global nature involving observations at 
arbitrarily large distances. In practice, however, superselection rules are observed 
within the limits of a laboratory. So there arises the question of how the superselec- 
tion structure manifests itself locally within our theoretical setting. 

If the global charges are explicitly given as operators acting on %, then an 
answer can be obtained from [ 1,2] as well as from the preceding discussion: with 
the aid of the universal localizing map Il/,, one can construct from the global 
charges a family of commuting observables which are localized in 6 and measure 
the charges contained in Lo. Yet this result is not completely satisfactory because it 
relies on an a priori knowledge of the superselection structure. 
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If one does not insist on pinpointing specific observables which measure the 
charges in a given region, a conceptually more satisfactory answer can be given. We 
shall see that the superselection structure of a theory can be completely uncovered 
within bounded space-time regions if one knows the “correct” local Hamiltonian. In 
order to simplify this discussion we assume that the underlying theory has the 
additivity property, i.e., that 

2l(O)e2I(O,) v ... v 2qOJ (4.1) 

if 0 c 0, u ‘. . v 0” and 0, 8, ,..., c?& are regular regions such as double cones. Under 
this assumption, which is reminiscent of the properties of local Wightman fields, 
one can determine the suprselection structure even within a fixed, bounded region. 

Let us first consider theories with localizable charges, where we can make use of 
the previous results; we will then extend our analysis to theories with non- 
localizable charges and long-range forces. Denoting by I’(t), t E R the global time- 
translation and by V,(t) its local analogue, cf. relation (3.1 l), we consider the 
algebra 9 generated by VI(O) and the local Hamiltonian H, (the generator of 
vAtI), i.e., 

3?=9l(O) v H>. (4.2) 

Taking into account that IC/,, acts trivially on ‘%I(&‘) and is normal (ultra-weakly 
continuous) on 9?(Z) we obtain 

a?2 v V/&r)cU(B) vn(t)-‘=Il/n v V(t) ‘u(O) V(t)-’ 
( > 

. (4.3) 
lE(W rslQ 

Now, as a consequence of the relativistic spectrum condition and the additivity 
assumption (4.1) the von Neumann algebra generated by the time-translated 
algebras V(t) 2I(cO) I’(t)-‘, t E 58 is %!I” [23], thus 9 3 +n(2l”). On the other hand, 
assuming that the total energy H is an observable,” i.e., V(r) E 2I”, it follows that 
9 c $,#I”), and consequently 

a = l+bn(W’). (4.4) 

So, in particular, the center of 9 is isomorphic to the center of ‘?I”. 
This result means, in physical terms, that by combining measurements of the 

local energy and of observations in 0 one comes across a certain specific set of 
observables (corresponding to the center of 9) which are simultaneously 
measurable with all other observables of this kind. From the spectrum of these 
specific observables one can then read off the superselection structure. 

We now relax the assumption that the theory describes only localizable charges; 
so we no longer have at our disposal local charge-carrying fields which generate the 
physical states from the vacuum. But it is still reasonable to assume that there is 

lo By the spectrum condition, such a choice of H is always possible, cf. the remarks below. 
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some Hilbert space Z of physical states on which the local observables are 
represented by an algebra 9I of bounded operators. Moreover, on 2 there should 
exist a continuous, unitary representation of the translations V(x), x E lR4 which 
acts covariantly on the observables, 

V(x) 2qO) V(x)-’ = 2l(O +x), (4.5) 

and fullils the relativistic spectrum condition. Without restriction of generality we 
may require that V(x) E ‘8” and that the energy-momentum spectrum has a 
Lorentz-invariant lower boundary in each superselection sector of Z’; as a matter 
of fact, these assumptions fix V(x) uniquely (cf. [24 and the references quoted 
there]). Note that we do not assume the existence of Lorentz-transformations since 
this would exclude from the outset states carrying an electric charge [25]. 

In theories with a countable number of superselection rules one may think of X 
as a direct sum of all possible superselection sectors. In the presence of massless 
particles such a construction would, however, lead to a non-separable Hilbert 
space, since there exist uncountably many superselection sectors due to the 
numerous possibilities of forming infrared clouds. In view of this abundance of sec- 
tors a coarser concept is needed, which groups together sectors differing from one 
another only by the collective effects of infinitely many massless particles of zero 
energy, but which still allows to distinguish charges which can be attributed to 
individual particles as, e.g., the electric charge. Such a concept of charge classes has 
been proposed in [26]. If there exists a countable number of such classes one 
obtains a separable physical Hilbert space Z by picking from each class a represen- 
tative and taking the direct sum. This construction is clearly ambiguous, but this 
ambiguity is physically irrelevant because it merely concerns the infrared behaviour. 

So let us assume that # is separable and that the observables have the split 
property (2.2). We want to show then that the structure of the center of ‘?I” can still 
be uncovered within bounded space-time regions. We begin by noting that, as a 
consequence of the above assumptions, all superselection sectors of # are locally 
equivalent (cf., e.g, [14, Theorem V.5.11). Taking the subspace HO c J? of states 
carrying the charge-quantum numbers of the vacuum as a reference point and 
denoting the restriction of the observables A E %’ to SO by 

no(A)=A r -6, (4.6) 

this equivalence can be expressed as follows: for any bounded region 6 there exists 
an isometry W mapping 2 onto ZO such that 

WAW-‘=x,(A) for A E 2I(6). (4.7) 

Next, using the split property for the observables and taking into account that 
x0(‘%) acts irreducibly on ZO one can construct (in complete analogy to the dis- 
cussion in Sect. 3) a universal localizing map $$‘I corresponding to the triple /i(O) = 
(COWL)), ~ocwm9 w  c? maps W(Zo) into rr,(‘$I(b)) and acts trivially on 
~OWQ). 
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Now because of relation (4.7) one can lift IC/n (O) to a universal localizing map $n 
acting on B(2), setting” 

tfbn(T)= w-‘~II/y(wTw-‘)~ w for TE g(X). 

It is obvious that $,,(W(X)) c a(6) and that $,,(A) = A for A E a(Q). So, bearing 
in mind that V(X)E%“, one can still define local translations V,,(x)=@,(V(x)), 
x E R4. As in the case of localizable charges, it then follows that the center of the 
algebra B generated by the local Hamiltonian H, and ‘8(O) is isomorphic to the 
center of ‘$I”. So the superselection structure manifests itself locally in a clearcut 
way also in the presence of non-localizable charges. 

We emphasize that the knowledge of the correct local Hamiltonian H, is crucial, 
however. Denoting the restriction of the global translations V(x) to the vacuum 
sector so by YCo)(x) one can, for example, define on 2’ another local representation 
of the translations 

vy(x) = w- ll+q’( V’“‘(x)) * w, 

which also acts correctly on the observables in 0. But the spectrum of V$‘)(x) coin- 
cides with that of the states in the vacuum sector; moreover, the algebra .%Y(‘) 
generated by ‘$I(@) and the local Hamiltonian H$‘) is isomorphic to g(Xo), so its 
center is trivial. Hence by using this “wrong” local Hamiltonian one would not 
recognize any superselection structure. 

The differences between Hy) and H, can roughly be explained as follows: the 
observable H$)) measures, in a sense, the energy neeed for the preparation of states 
in the region 0 by perturbations of the vacuum. More precisely, if WY) is a state on 
.42(“) with spectrum (relative to HT)) about EC” there exists a unique state CO(‘) of ‘3 
which coincides with COY) on ‘8(O) and has finite total energy. This state is given by 

do’(A) = coj?o)( W-11fby(710(A))W) for AE%, (4.10) 

so it belongs to the vacuum sector and, as can easily be seen, has total energy ECo’. 
Hence if the state CO(~) describes a charged particle which is localized in the region Lo 
one ascribes to it the total energy of a neutral state consisting of this particle and a 
compensating charge in the causal complement of 0. So charged particles are regar- 
ded as pieces of extended neutral states, and consequently one does not see any 
superselection rules. This point of view is, however, artificial because it does not 
take into account that particles are well-localized concentrations of matter to which 
one can asign an individual energy. (Note that this holds also true for particles 
carrying a non-localizable charge, cf. [9].) Accordingly, the energy ascribed to a 
state consisting of several, sufficiently far separated particles in the region Co should 
be equal to the sum of the energies of the individual constituents. It is obvious that 

” The map tin depends on the choice of the isometry W establishing the equivalence (4.7). Yet since 

this dependence is irrelevant here we do not indicate it explicitly. 

595/170/l-2 
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ZQ) does not fuhil this requirement, and because of this lack of additivity [27] it 
has to be discarded as observable defining the local energy. 

That H,, leads to a more reasonable definition of local energy can be made 
plausible as follows: let w  be any state of ‘9I describing a configuration of particles 
whose total energy E is concentrated in 0. Then there exists a state CO,, on 93, given 
by 

on(R) = 4ll/,‘uo) for REW, (4.11) 

which coincides with o on ‘3(O) and has, with respect to H,, spectrum about E. 
Thus HA assigns to the state w, an energy which is compatible with the idea of 
additivity. A full justification of the interpretation of H, as local energy requires, 
however, a proof that the operators H,, converge to the global Hamiltonian H if Q 
tends to R4. It is then necessary to remove the remaining ambiguities in the 
definition of H, (cf. footnote 1 1 ), i.e., to select a coherent set of local Hamiltonians 
for an increasing net of regions 0. That this is possible has recently been shown in 
[IS] for theories of localizable charges. It would be desirable to extend these results 
to the general case discussed here. 

It is another interesting problem to find a characterization of the local space-time 
and symmetry transformations which does not rely on the existence of the global 
ones. A better understanding of this point would be important for an extension of 
our analysis to theories with spontaneously broken symmetries, where the local 
transformations still ought to exist. We hope to return to these problems elsewhere. 
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