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Two possible ways of extending Symanzik's improvement programme to lattice fermions 
namely improvement to first and second order in the lattice spacing a are discussed. The correspond- 
ing lattice actions for fermions are constructed and tree-level improvement conditions are derived 
by considering "classical" improvement. The concept of "on-shell" improvement is generalized to 
the lattice fermions studied here and the free parameters are determined for O(a) and O(a 2) on- 
shell improved actions to all orders of perturbation theory. No evidence is found that the complicated 
structure of the O(a 2) on-shell improved action, especially the arising fermion contact terms can 
be removed beyond tree level, The effect of terms in the action that explicitly break chiral symmetry 
and therefore remove the phenomenon of species doubling are investigated by considering the 
energy-momentum relations of the arising tree-level improved actions. Our main result is that the 
O(a) improved action is a slightly modified Wilson fermion action which can still be written with 
only nearest-neighbour fermion interactions. 

I. Introduction 

Much effort has been spent  in applying Symanzik ' s  improvement  p rogramme [1] 

to lattice act ions of various models.  Original ly  developed by Symanzik  in the 

f ramework of the (/)4 theory [2] this procedure  to systematically construct  a lattice 

act ion with improved  c o n t i n u u m  limit approach  has been  appl ied to the non- l inea r  

o--model in  2 d imens ions  [3, 4], the G r o s s - N e v e u  model  [5, 6], pure Yang-Mi l l s  

theory [7-10] and  full Q C D  [11-13]. 

For  the ~4- theory  Symanzik  was able to prove the consistency of the improvement  

p rogramme to all orders of per turba t ion  theory. To this end he d e m a n d e d  improve- 

ment  of all (off-shell) Green  functions.  For  lattice gauge theory this procedure  is 

compl ica ted  because  gauge-dependen t  terms have to be added to the action. A way 

of c i rcumvent ing  this p rob lem is by d e m a n d i n g  only the improvement  of on-mass-  

shell quanti t ies .  This concept  has been  recently in t roduced  by Lfischer and Weisz 

[14] in the context  of pure Yang-Mi l l s  theory. The parameters  in the act ion that 

are free, i.e. do not  enter  in spectral quant i t ies  are de termined (to all orders of 

per tu rba t ion  theory) by construct ing a spec t rum-conserv ing  t rans format ion  of the 

action. The remain ing  constants  have to be fixed order by order in per turba t ion  

theory by cons ider ing  a sui table set of  spectral quanti t ies.  

i Supported by Deutsche Forschungsgemeinschaft. 
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In this paper  we adopt  this concept of  on-shell improvement  to Wilson lattice 
fermions. Previous work on the subject of  improved lattice actions for fermions has 
been done by Eguchi and Kawamoto  [11], Wetzel [12] and Hamber  and Wu [13]. 
While these authors make a rather heuristic ansatz for the structure of  their improved 
fermion action we present a somewhat more systematic approach.  Improvement  for 
lattice fermions can be considered on two levels. The first one is only to demand 
the cancellation of lattice artifacts to first order in the lattice spacing a which will 
be called O(a )  improvement  in the following. To this end it suffices to use the 
standard one-plaquette Wilson action for the Yang-Mills part of  the lagrangian. 
Furthermore the fermion part  of  the action has to be determined only up to operators 
of  dimension five resulting in a fairly simple on-shell improved action. The second 
step, i.e. O(a  2) improvement  needs an improved action for the gluon part and 
additional operators of  dimension six in the fermion part of  the action including 
fermion contact terms. 

In sect. 2 of  this paper  we set the stage for our investigations by constructing the 
most general lattice action for fermions including all possible operators up to 
dimension five and six respectively. 

Classical improvement  conditions are derived in sect. 3. 
In sect. 4 we construct the isospectral transformation of the action and determine 

the free parameters  of  O(a)  and O(a 2) on-shell improved lattice actions for fermions 
to all orders of  perturbation theory. 

Sect. 5 deals with the question of chirality breaking terms and species doubling 
by investigating the energy-momentum relations of  suitable O(a)  and O(a 2) on-shell 
improved actions. Throughout  sects. 2-5 we give a separate discussion of O(a)  and 
O(a 2) improvement  and compare the results for both concepts at the end of each 
section. 

In sect. 6 improvement  beyond tree level is discussed and the results of  a numerical 
calculation of the fermion contributions to the gluon self-energy are presented. 
Results for the second-order term obtained by Ukawa and Yang [15] are confirmed 
and comparison with the data for the gluon sector is made. 

A discussion of our results is given in sect. 7. 

2. General form of improved actions for Wilson fermions 

As Symanzik's  improvement  programme requires the introduction of higher- 
dimensional terms into the action we construct lattice actions for Wilson fermions 
including (up to total derivatives) all possible gauge-invariant scalar operators of  
at most dimension five for O(a)  and six for O(a  2) improvement  that are invariant 
under discrete rotations, parity and charge conjugation transformations. To this end 
we first construct the invariant operators of  the corresponding continuum effective 
lagrangians. 
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Postponing the introduction of flavour symmetry, we introduce Dirac fields ~(x)  
and 0(x)  and the gauge fields A~(x) which transform under the fundamental  and 
adjoint representation of the colour group SU(N~) respectively. 

We shall use the shorthand notation q~(x), ql(x), A~.(x) for the N~ row and column 
matrices of  the fermion fields with entries t~(x), qJ~(x) (Dirac spinors) and the 
(N~ x N~) matrix of  the gauge fields with entries A~(x)t~ where t ~ are the generators 
of  the fundamental  representation of SU(N¢). Furthermore we set D~.= 
( D .  + iA~ (x)). Accordingly (O(x)DJ~(x) will mean the product  of  the corresponding 
matrices. 

2.1, O(a)  IMPROVEMENT 

Introducing a set of  euclidean y-matrices y .  with 

{y,., %} = 26~.~11, 

* (2.1) Yu = Y~., 

we look for all operators up to dimension five that are invariant under gauge-, 
parity- and charge-conjugation transformations and discrete rotations. They are 
bilinear operators in the fermion fields and have the form ~(x)O~tp(x). As we look 
for operators of  at most dimension five the O b can contain up to two derivatives. 
I f  F denotes a member  of  the 16-dimensional space to which our y .  belong (we 

l .  choose y,~, Ys, YsY~., ~, or.. = ~[y~., yv] as a basis) discrete rotational invariance only 
allows O~'s of  the following form: 

no derivatives: 

1 derivative: 

2 derivatives: 

Oo~=/-, 

o~ = r~D~,  

o~ = r . v n ~ .  (2.2) 

We can always choose all derivatives acting to the right-hand side D~, =/J~.. Terms 
that contain left-hand side der ivat ives/3,  can always be expressed by terms contain- 
ing only D . ' s  plus a total derivative. The operators t~(x)O~q~(x) have to be invariant 
under parity and charge conjugation transformations. 

We consider the effect of ~-pari ty:  

~O(x)--, ~,'(x) = s (  ~ )q,( ~'x) , 

(~(x) -, 6 ' ( x )  : ~ ( ~ x ) S ( ~ ) - ' ,  

D~ ~ D~ = ( ~ - I ) ~ , ~ , D , , ,  (2.3) 

with 

s ( p )  = y ,  = s ( ~ ) - ' ,  

(2.4) 
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Invar iance o f  O(x)O~O(x) entails 3~F3~ = F, i.e. Y =~. For  tp(x)O~O(x) invariance 

means 3~F.3.  = - ( - 1 ) ~ " ' F .  yielding F .  = 3.. 
I f  we d e m a n d  linear independence  among  operators  o f  the same dimension we 

derive the fol lowing set* o f  F ' s  for the Ok: 

Oob: F = ~ ,  

Ol~: r .  = 3 . ,  

Oh: r . ~ = 6 . . - i o ' . ~ ,  F.~ = io-... (2.5) 

One can check that charge conjugat ion 

O(x)-~ c~'(x)  , O~(x)--. ~ ' (x)C,  

t --1 C - I  Cyu C = - y .  , = - C ,  

does not give any more  restrictions on the O~. 

To incorporate  an addit ional  flavour symmetry  with symmetry  group SU(Nt)  and 
generators  flA we have to alter our  shor thand notat ion in an obvious manner.  As we 
shall assume flavour symmetry  to be conserved the form of  the operators  bilinear 
in the fermion fields is not  changed.  We finally obtain the following set o f  indepen- 
dent invariant  operators  o f  dimension smaller than six (F.~ = [ D . ,  D~]): 

dim 3: 

dim 4: 

dim 5: 

To put these operators  on 
derivatives: 

Oo(x)-- (~(x)qJ(x). 

O,(x) = i ( x ) t ~ , ( x ) ,  

02(x) = ~(x)(D 2 - ½ i ~ . f  .~)~,(x) , 

O3(x) = lit~(x)o-~,F.~O(x). 

the lattice we define 

(2.6) 

the following covariant  lattice 

Dright--. , = 1 [  . ~,tx) U . ( x ) ¢ ( x + ~ ) - q , ( x ) ] ,  
a 

D~rt¢(x)  = l [ ~ ( x ) -  U~u(x - i~ )O(x - i~ ) ] ,  
a 

DL O(x) = 2[D~ght+ D~rt]t~(x) , 

(D2~lLt,O(x) = ! [D~gh t - -  D~rt]¢(.x:) , 
a 

a % ( x )  =E ( D ~ ) ~ ( x ) ,  (2.7) 

* The reason for this particular choice will become clear later. 
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where U~(x )  denotes the link operator, a is the lattice spacing and /2 is a times 
the unit vector in the ~th direction. 

We then choose the following representations 0 L of the operators 0~ on the lattice: 

O~l (X) = (,(x)%~D~ ~,(x) , 

- L i 
O~(x) = 4,(x)( a -~-~a~ o'.~P,.~(x))q,(x) , 

i - 
O ~ ( x )  = ~a ~ O(x)o 'u~Pu~(x) th(x)  , (2.8) 

where P , ~ ( x )  is the operator* 

P , ~ ( x )  = ~( U , ( x )  U~(x + l l)  U ~ ( x  + ~) U*~(x) 

- v ~ ( x -  ~) U ~ ( x  - ~ - ~) U ~ ( x -  ~ - ~) V . ( x  - ~)  

+ u~(x) U~(x - ~ + ~) u ; ( x -  li) U ~ ( x -  ~)  

- U , ( x )  U*~(x+l~ - ~ ) U * u ( x -  ~ ) U ~ ( x -  13)). (2.9) 

We can now write down the action suitable for O(a) improvement 

~[4 3 
s F ' =  g2 xEall i=0E a(d'm ~ ( : ' ) 4 ) b , ( g ~ , m a ) O ~ ( x )  • (2.10) 

lattice sites 

The coefficients b~(g2o, m a )  are regular at go = 0 and have to be determined;order by 
order in perturbation theory. Reality of the action furthermore requires the 

coefficients b~ of the action (2.10) to be real. 

2.2. O(a  2) IMPROVEMENT 

For O(a 2) improvement we have to extend our considerations of subsect. 2.1 to 
operators of dimension six. Then bilinear operators of the form 03 b = F,.~pD, D v D ,  

have to be considered. As a new feature also quartic fermion operators of the form 
( t~ (x )O~q , ( x ) )  2 appear, where 

O ~ =  r ,  Oq~ = F~,, o q =  F~,~. (2.11) 

The invariance considerations of subsect. 2.1 now yield 

o~: r ~  = ~ . o ~ . ~ . ,  Cvo = ~ .~p ,  r ~ p  = ~ o ,  

F~,~ o = 2 %8~. o - %,8,,p - % 8 ~  , 

Fu*'p = YuY~Yo , 

* We have chosen this combination of plaquette operators with maximal symmetry as a lattice representa- 
tion of F~,~(x) for convenience. 
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0 q: F = ~, F = 3'5, 

O'l : F = ~,. , 17. -- ~' 5 ~'. , 

02q: V.~ = o-.~. (2.12) 

Introduction of a conserved flavour symmetry with generators flA only affects the 
four fermion interactions. After making use of  the Fierz identities and completeness 
relations we end up with twice as many contact terms and eventually find all invariant 
operators of  dimension six: 

(i) bilinear operators: 

0 4 ( x )  = O(x)  y~,D~ ~b(x) , 

0 6 ( x )  = $ (x )E iD2~b(x )  , 

(ii) 

0 5 ( x )  = ~ ( x ) D 2 E ~ 6 ( x )  , 

O7(x) = t~(x)%,[D~,  F~]~b(x) ,  

O d x )  = ( ~ ( x ) t ~ 4 , ( x ) ,  

contact terms: 

O 9 ( x  ) "~- (~ff(X)ta~b(x))  2 , 

Oil(X) = ( ~ ( x ) y s t ~ O ( x )  ) 2 , 

o , 3 ( x )  = ( ~ ( x )  v . t ° ~ , ( x )  ) 2 , 

o , , ( x )  = ( ~ ( x ) v 5 % . t ° ~ , ( x )  ) ~ , 

O17(X ) = ([ff(X)O'txvla~(x)) 2 , 

OI0(X ) = ( t f f (X) [~Ata t~ (X) )2  , 

OI2(X ) = (tff(X) "ys[~Ata~b(X)) 2 , 

Ola(X ) = ( t f f ( X ) % , ~ A t a ~ ( x ) )  2 , 

OI6(X ) = ( t f f (x)ys  y . f l a to t# (x )  ) 2 , 

o , 8 ( x )  = ( ~ ( x ) o - . d 3 A t ~ ¢ , ( x  ) ) 2 . 

(2.13) 

For the lattice representations of  these six-dimensional operators we choose 

O L ( x )  = ~ ( x ) T . D ~ ( D ~ ) L ~ b ( x ) ,  O ~ ( x )  = O ( x ) y . A L o ~ b ( x ) ,  

O L ( x )  = t h ( X ) % , D L A L O ( x ) ,  O L ( x )  = f ( X ) % , [ D  L, [ D  L, DL]]~b(X), 

O ~ ( x ) = -  L L O(x)  y~ ,%yoD.  D . D p  tk(x)  . (2.14) 

As an extension of (2.10) we find the action suitable for O(a 2) improvement:  

a 4 18 
sF2= g2 x~all i=0Y~ a(dimOt;(x)-a)bi(g g, m a ) O ~ ( x ) .  (2 .15)  

lattice sites 

Reality of the action now requires 

bs(g~, ma)  =/~6(go 2, m a )  , 

b,(g~, ma)  real ,  i ~ 5, 6. (2.16) 

2.3. SUMMARY 

Comparing the actions (2.10) and (2.15) we find that the task of also removing 
the O(a 2) lattice artifacts leads to a much more complicated action. Next-to-nearest 
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neighbour interactions have to be added and fermion contact terms appear, both 
features which yield considerable difficulties for numerical calculations. If no drastic 
simplification of  (2.15) can be achieved via the introduction of suitable improvement 
conditions this action will be of little use for practical purposes. 

3. Classical improvement 

A suitable way to impose tree-level improvement conditions is the concept of 
classical improvement. It demands the vanishing of all corrections to the leading 
term -(m~b(x)q,(x)+ ~(x)~g , (x ) )  in the small a expansion of the lattice action to 
the desired order (i.e. O(a) or O(a2)). As the classical action generates the tree-level 

vertex functions these should then be improved too to order O(a)  or O(a 2) respec- 
tively. 

To obtain the classical expansions of the operators OL(x) in (2.10) and (2.15) 
we note that these expansions always start with the corresponding continuum 
operator O~(x) plus corrections of classical dimension two higher. 

To verify this we start with the expansion of our lattice derivative D L. Choosing 
a gauge with A~,(x) = 0 Vx it is easy to see that 

Furthermore 

D L t l I ( X )  : ( D t z  l 2 3 +~a D~ +O(a4))O(x) . (3.1) 

( D ~ ) % ( x )  2 , 2 = ( D , + ~ a  Du+O(a4))O(x) ,  (3.2) 

P,~(x) = a2Fu,(x)+O(a ") . (3.3) 

As only operators of dimension 3-6 appear in our actions (2.10) and (2.15) the only 
term whose expansion can give rise to combinations with a higher-dimensional 
operator of  the action is OL(x) and we find 

O ~ = - x  , 2  ~ . t~( ) 7 ~ ( D . + ~ a  D.+O(a ' ) ) t p ( x )  (3.4) 

3.1. O(a)  I M P R O V E M E N T  

Classical improvement therefore entails for O(a)  improvement 

bo(O, ma) = ma, bl(0, ma) = 1 , 

This yields the classical improved lattice action 

a 4 
s C I I  = - - - -  g~ ~Eall (mOL°(x) + O~(x)) .  

lattice sites 

b2(O,O) = b3(O, O) = 0 .  (3 .5 )  

(3.6) 
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3.2. O(a 2) IMPROVEMENT 

O( a 2) classical improvement  requires 

bo(O, ma)  = m a ,  b,(O, ma)  = 1 , 

b2(O, ma)  = b3(0, ma)  = O, 

~b,(O, ma)  + b4(O, O) = O, 

bi(0, 0) = 0,  5~<i~<18. 

This yields the O(a 2) classical improved action 

4 

S c' ,  a 2 • ( m O ~ ( x ) +  O ~ ( x ) - '  2 L . . . .  ~a 04(x)) .  
g o  x al l  

l a t t i ce  s i tes  

579 

(3.7) 

(3.8) 

3.3. SUMMARY 

At least to lowest order in perturbation theory a drastic simplification of the O(a  2) 

improved action occurs. The price to pay for also removing the O(a  2) lattice artifacts 
is the introduction of one additional operator  containing next to nearest-neighbour 
fermion interactions. We note that both actions (3.6) and (3.8) conserve chiral 
symmetry for bare mass zero and therefore show the phenomenon of "species 
doubling". In particular (3.6) is nothing but the so-called "naive"  lattice fermion 
action. One way to avoid species doubling would be to acid to the action irrelevant 
operators (i.e. of  dimension seven) that break chiral symmetry. This has been done 
by Eguchi and Kawamoto  and Wetzel for their tree-level O(a  2) improved action. 
As classical improvement  is consistent with tree-level on-shell improvement  but 
on-shell improvement  is meant to impose "minimal"  improvement  conditions we 
hope to be able to break chiral symmetry by an operator of  dimension five. 

4. Spectrum-conserving transformation of on-shell improved actions 

We first want to give a more detailed description of the concept of  on-shell 
improvement  developed by Lfischer and Weisz in ref. [14]. Following Symanzik's 
approach o f a  perturbative construction of  an improved action, suitable improvement  
conditions have to be imposed. For the ~4 theory Symanzik was able to prove that 
improvement  of  all Green functions could be achieved. In the case of  the non-linear 
o--model the situation turned out to be more complicated but Symanzik eventually 
showed that improvement  of  all Green functions is possible for a modified field 
operator. In the case of lattice gauge theory it has up to now not been proven 
that all Green functions can be improved. To this end it would be necessary to add 
gauge-dependent  terms to the action at intermediate states of  the calculation and 
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up to now no procedure has been given on how the gauge-invariant physical quantities 
can be eventually extracted. Lfischer and Weisz therefore proposed to introduce a 
minimal improvement  scheme by demanding improvement  only for low-lying (with 
momenta  small compared to the cutoff) energy states, i.e. on-shell quantities. This 
allows one to keep gauge invariance manifest at all stages of  the calculation but 
even for this case the existence of an on-shell improved action has not yet been 
proven but will nevertheless be assumed. Given one on-shell improved action other 
on-shell improved actions can be obtained by a local covariant t ransformation of 
the fields. Up to corrections of at least O(a  2) for O(a)  improvement  and O(a 3) for 
O(a 2) improvement  this will amount to a shift in a certain set of  coefficients of the 
original action. The maximal number of  coefficients that can thus be varied indepen- 
dently by our transformation is the number  of  free parameters in the sense of on-shell 
improvement.  Their values can be chosen zero or any other value which may be 
convenient for specific calculations. As has been pointed out by Liischer and Weisz 
this argument applies to all orders of  perturbation theory. 

We have to find a spectrum-conserving transformation of the fermion and gauge 
fields and study its effects on a full QCD on-shell improved lattice action: 

SL = S YMq- S~,  (4.1) 

where S T M  denotes the pure Yang-Mills part  of  the action and S F is the fermion 
action. For O(a)  improvement  SLY M can be chosen the standard one-plaquette action 
and S F has the form (2.10). For O(a 2) improvement  SL T M  is the improved Yang-Mills 

action given in ref. [14] and SL z is given by (2.15). 
Under the spectrum-conserving transformation we will have 

SL ~ S[  = SLVM'+ S F' . (4.2) 

In ref. [14] the part of  the transformation giving rise to S T M  is discussed, We must 
therefore only study the part  resulting in S F'. 

As the classical expansions of all lattice operators in the fermion part of the 
action start with their continuum analogue it is sufficient to consider the following 
transformations: 

T~: A ,  ~ A ,  + a2(½e ~ [D~, F~,] + e'~by,$), (4.3) 

where q~y. g, - a t ° = (tpiy.t~d/j) transforms as A .  under SU(N~) and 

{ ~b ~ 0 + aelt?iO + a2e2D2~ b + a2e3~2~ b 
T2: ~b ~ ~b + ae,l~bl~ + aZelt~)2 + a2 e,3tff~2 " (4.4) 

This is the most general local covariant transformation of the fields up to O(a2). 
How does the action (4.1) transform under this substitution of the fields? 



B. Sheikholeslami, R. Wohlert / Lattice action 581 

We are only interested in the lowest-order contributions (in go) to the transformed 
coefficients because for them the infinitesimal transformations can be integrated up 
yielding the redundant  parameters of the on-shell improved action to lowest order. 
Given an on-shell improved action which is improved to order g~ the same argument 
also provides the redundant  coefficients to this order of perturbation theory. We 
simply have to choose the infinitesimal parameters  e'~ proportional to g~ and the 
lowest-order part of  our transformation will produce another go 2~ on-shell improved 
action with shifted bi(go 2t, ma) 's .  The bi's that thus can be varied to lowest order 
are therefore redundant  to all orders of  perturbation theory. To lowest order in go 
we have the normalisation bl(0 , m a ) = l  and bo(0, ma)~-rna which for the 
coefficients of  the t ransformed action b'(0, ma) can be imposed by a rescaling of 
the fields and the mass. 

As shown in appendix A there is no contribution to SL F' to first order in the 
infinitesimal parameters e~ that is due to the transformation of the measure. 

4.1. O(a) IMPROVEMENT 

To this order only the fermion part of  the lagrangian is affected so we only have 
to deal with the O(a)  part  of (4.4) (i.e. the el, e'l parts). For go=0  we find 

(gO2(~SLF) lgo=0 = - - a  4 ~ [ - (E l - -  E t l ) b 0 ( 0 ,  ma)OL(x) 
x all 

lattice sites 

+ a(el  -- e'l)bl(O, ma)OL(x) + O(a2)] .  (4.5) 

Reality of  the t ransformed action demands e l -  e~ real. 
After performing the rescaling to first order in e and separating higher-order 

terms in a we end up with 

2~ F 
(go  sL)lgo~0 = - a  4 E [-a (81 , L - e ,  ) 0 2  (x)  + O(a2) ]  (4.6) 

x all 
lattice sites 

For O(a)  on-shell improvement  we thus find the parameter  b2(g02, 0) to be redundant. 
This is why we made the particular choice for the operators O b in (2.5). We may 

therefore use the operator  Ot2(x) with an arbitrary coefficient to avoid the 
phenomenon of species doubling. This is not in contradiction to the on-shell 
improvement  condition that low-lying states should not be affected because the 
low-lying energy states that are altered by the lifting of species doubling are at the 
edges of  the Brillouirl zone outside the range where improvement  should be effective. 
This will be further discussed in the next section. The remaining coefficient b3(go 2, 0) 
which is not affected by the transformation has to be calculated perturbatively by 
considering suitable spectral quantities. As classical improvement  is consistent with 
on-shell tree-level improvement  we have b3(0, 0 ) =  0. 
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4.2. O ( a  2) I M P R O V E M E N T  

Now T2 and T2 contribute to S['. We find 

2t~ F _ a  4 (go T~SL)Igo=O = E [ ( e , - e O b o ( O ,  m a ) O L ( x )  
x all 

lattice sites 

+ a ( ( e , -  e',)bl(O , m a ) +  (e2+ e'2+ E3 "q- e~)bo(O, m a ) ) O ~ ( x )  

+ a(e2+ e'2)bo(O, m a ) & i ( x ) +  a2(elb3(O, ma)  

+ e'2bl(O, m a ) ) O ~ ( x )  - a2(e~b3(O, ma) - e2b,(O, m a ) ) O ~ ( x )  

+ a2((el - e'l)(b2(O, ma)  - b3(0, ma))  

+ ( e 3 +  e~)b,(O, m a ) ) O ~ ( x )  +O(a3)]  . (4.7) 
Furthermore 

2 ~  F _ a  4 (go r, SL)]go=o =- 2 a2[½eOL(x)+e 'OL3(x )+O(a2)]  (4.8) 
x all 

lattice sites 

Whereas the Yang-Mills part of the action transforms as 

4 

S~ M_~ ~ y ~ , _  a 'JL g20 x~all a2[e 'OL(x )+O(a2 ) ]  " (4.9) 

lattice sites 

Collecting all terms, considering only the go = 0 parts of the coefficients and rescaling 
the fields as above yields 

2 F E [ a { ( ~ , - ~ )  (go6SL){go=O = _ a  4 
x all 

lattice sites 

- ma( (e l  - e',) b2(O, O) - (e2+ e~+ E3~- Et3))}oL2(x) 

- rna2((el - e~) b3(O , 0) - (e2+ e'2))O~(x) + a2(el b3(O, O) + e'z)O~f(x) 

- a2(e~b3(O, O) - e2)O~(x)  + a2(½e + e')OL7(x) 

+ a2((el - e])(b2(O, ma)  - b3(0, ma))  

+ (e3 + e'3)) OL(x)  + a2e'oL_~(x) + O(a3)], (4.10) 

reality of the transformed action demands e3+,e;Ireal.  (4.11) 

~ J 

The parameter e performs the isospectral transformation in the Yang-Mills part of 
the action. It has been used by Liischer and Weisz to consider the coefficient c3 of 
the pure Yang-Mills improved action as a free parameter in the sense of on-shell 
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improvement.  They proposed to set it to zero to all orders of  perturbation theory. 
If  we want this to persist only b7+ b~3 can be varied independently, i.e. either b7 or 
b~3 can be chosen as a free parameter  besides b2, bs, b6, b 8. We note that the 
parameter  b3 can be kept unchanged by suitably rescaling the mass parameter.  A 
possible choice for an on-shell O(a  2) improved action would be to use the parameter  
b2 as in the case of O(a)  improvement  to break chiral symmetry and to set bs, b6, 
bs, b~3 to zero to all orders of  perturbation theory. All other coefficients in particular 
those of the remaining contact terms have to be fixed by considering a suitable set 
of  spectral quantities. To tree level however classical improvement  sets them to zero. 
We have confirmed that this as expected also holds for O(a 2) on-shell tree-level 
improvement  by considering scattering amplitudes in the way proposed by Wetzel 
[12]. 

4 . 3 .  S U M M A R Y  

The considerations of  this section have been decisive on the question of what 

improvement  concept should be pursued to higher orders of  perturbation theory. 
For O(a 2) improvement  at most one of the disturbing fermion contact terms can 
be removed. Beyond tree level we are stuck with far too many operators whose 
coefficients would have to be determined by perturbative calculations. For O(a)  
improvement  the situation however looks favourable. We can use the redundant 
operator O L to break chiral symmetry and only the coefficient b3(g 2, 0) has to be 
determined perturbatively. For numerical simulations this means a modification 
of the Wilson fermion action by one additional term. According to our opinion 
this is the improvement  programme that should be pursued for QCD. By removing 
the first-order lattice artifacts in on-shell quantities considerable improvement  might 
already occur. 

5. Breaking of chiral symmetry and energy-momentum relations 

In this section we try to get a better understanding of the effect of species doubling 
and its amendment  by the introduction of chirality breaking terms into the lagrangian 
which was first proposed by Wilson [16]. Throughout  this section we deal with 
fermions of  zero bare mass. 

5 .1 .  O ( a )  I M P R O V E M E N T  

For zero bare mass the O(a)  classical improved fermion action 

a 4 

s C I  __ __ - -  F -  g~ xEal~ O~'(X) 
l a t t i ce  s i t e s  

(5.1) 
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has chiral symmetry and according to the no-go-theorem of Nielsen and Ninomiya 
[17] shows the phenomenon of species doubling. To cope with this problem of 
additional zeros of the energy-momentum relation at the edges of  the Brillouin zone 
Wilson has proposed to add an extra term of higher classical dimension to the 
action thus explicitly breaking chiral symmetry. For the case of the naive fermion 
lattice action which coincides with (5.1) Wilson chose an operator of  dimension 
five giving 

a 4 

s W = _ _  go 2 x~all [ OL(x) --½AaOL(x)] (5.2) 

l a t t i c e  s i t e s  

(with OL(x) = OL(X) + OL(x)). 
The concept of on-shell improvement  as developed in the last section however 

allows to break chiral symmetry by an operator of  dimension five, i.e. O[(x) without 
violating the O(a)  improvement  of spectral quantities. We therefore choose as an 
O(a)  tree-level on-shell improved action 

a 4 
~ v ~  I _ _ _ _  
~'v - g° 2 

x a l l  
l a t t i c e  s i t e s  

[O[ (x )  --½AaOL(x)]. (5.3) 

Both actions (5.2) and (5.3) yield the same inverse propagator:  

SF'(p) = 1~, ( iy .  sin (p~a)+ 2A sin 2 (½pua)) . (5.4) 

To get a better understanding of the relevance of the parameter  A in (5.4) we consider 
the emerging energy states. For improved actions these considerations have been 
first made by Lfischer [18] for a free scalar field. 

The one-particle energy states are related to the poles of  the time Fourier- 
t ransformed propagator.  They are given by Ei = - I n  zi where z~ are the poles inside 
the unit circle. For the O(a)  on-shell improved action (and the Wilson action which 
yields the same propagator)  this investigation can be performed analytically. Here 
we give a qualitative discussion of the arising phenomena  which for the O(a)  
improved action is shown in fig. 1 where the real parts of the resulting "energy 
states" are depicted (for unit lattice spacing). The momentum configurations chosen 
there are made for better comparison of the O(a)  and O(a  2) on-shell improved 
actions. A more detailed survey of the used formulae is given in appendix B. 

The main effect arising is the appearance of "unphysical"  energy states besides 
the "physical"  ones which approximate the continuum energy-momentum relation 
E2(p) =p2(p = (Pl, P 2 ,  P 3 ) ) -  The values of  the parameter  h should then be chosen 
in such a way as to keep these unwanted effects sufficiently far away from the 
low-energy - low-momentum regime we are interested in. For the energy-momentum 
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2.0~-energy / /  (a) _~ 2.0~-energy / / /  (b) l 

1.0 ~ ///// ~ Z~ 

O . O M ~ ,  ,,.h,..J..,N 

0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 
m o m e n t u m  m o m e n t u m  

( two components equal third z e r o  } ( t w o  c o m p o n e n t s  e q u a l  - t h i r d  z e r o  } 
X =0 X =.2 

• 2.0 ~- e n e r g y  / /  ' (d) 20F[_energy/~/ /  (c) _~ 

O.O[?J. ~ - ~ .  I . , . ~ . . , . , r , . , , unu lu ,~  O.OVm~.J,~.~ 1, - , - - . . , , d . , . . ~ L , i H r t  
0.0 1 . 5  3.0 4.5 0 . 0  1 . 5  3.0 4.5 momentum momentum 

( two components equal - third zero } ( two components equal - third zero ) 
X =.6 X = 1 

2 . 0 ~ 1 . 0  2.01.0 II ' ' ' 'elner ..... j ....... ~ ..... , , ~  

0 . 0  0.0 ~. [,.,,,.,,,,t,l..,,,.I~l 
0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 

momentum momentum 
I two components equal - third zero) I two compone~lts equal -- third zero } 

k =2 ~ -4 

Fig. 1. Energy-momentum relations for the O(a) tree-level on-shell improved fermion action (5.3) for 
values of (a) h =0, (b) A =0.2, (c) h =0.6, (d) h = 1, (e) A =2,  (f) h =4. 

re lat ion  o f  the  " p h y s i c a l "  energy  states w e  o b t a i n  a s m a l l - p  e x p a n s i o n  g iv ing  

( (8 6 E2(p)_=p2 ½a2 (p2)2+ p _Fa 4 (pz)3+92p2 2 
j = l  j ~ l  = 

[ (  4)2 3 289 / 2~.4 q_ 28 2 6 
+ a  6 24/~7 (p2)2_{_ p --2835~P ) 4 ~ P  ~, Pj 

.i=] j = ]  

3 4 /  2 ) 2 ~  4 73 ~ ] 
135[P P j  --945 p~ +O(a8).  (5.5) 

i=]  . i= t  

For h = 0 there  are t w o  e n e r g y  states,  o n e  real a n d  o n e  c o m p l e x ,  w h o s e  real parts 

c o i n c i d e .  As  o n l y  the real part o f  the  energy  is d e p i c t e d  in our f igures just  o n e  curve  

is s h o w n  (fig. l a ) .  As  a c o n s e q u e n c e  o f  the  chiral  s y m m e t r y  o f  the  l agrang ian  there  

are a d d i t i o n a l  zeros  o f  the  e n e r g y  at p = 7r(/Jl, /)2, b'3) ,  /]i = O, q'- 1. In the case  o f  A ¢ 0 
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the "unphysical"  second energy state has the small-p expansion 

l l n ( A + l "  ] 1 A2+l  2 
E(P)=~ \ , ~_ l /+~a- - -7 - -P  

l 3F1 A 6 - A 4 + 7 A 2 + l  1 A - 2  3 ] 
A 3 (p2)2 3 A s~=p~.. (5.6) 

We see that for A < 1 this solution is complex but its real part is shifted away to 
values way above the "physical"  energy values as A approaches 1 (figs. lb, c). For 
A = 1 this solution becomes infinite corresponding to a pole of  the propagator  at 
zero (fig. ld)  while for A > 1 E(p) is real and for A >> 1 again tends towards the 
physical energy-momentum relation (figs. le, f). The value of A = 1 appears as the 
"natural"  choice because the unphysical energy state is completely removed but 
also choices for A between 0.6 and 1.6 appear  reasonable. 

5.2. O(a z) IMPROVEMENT 

Also for the O(a  2) classical improved fermion action 

a 4 

s ~ 2  = -~a  04(x)]  (5.7) g2o ,~Y'all [OL(x) , 2 L 

lattice sites 

chiral symmetry has to be broken. Following the same line of argument as in subsect. 
5.1 we choose an O(a 2) tree-level on-shell improved action as 

4 

s°S2 = g2 x~"all lOlL(x) -- "~'taOL(X) --Ia2OL(x)]' (5.8) 
latt ice sites 

yielding the inverse propagator  

S~l(p)=l~( i%.s in(p ,a)( l+~sin2( lp ,a) )+4A's in2(½p,  a)). (5.9) 
a ~  

However other choices for tree-level on-shell improved actions are possible. The 
parameter  b2 could be set to zero and chirality breaking can be performed by an 
"irrelevant" operator of dimension seven. This is exactly what Eguchi and Kawamoto  
[ 11 ] and Wetzel [ 12] do for their tree-level O(a  2) improved actions. For the chirality 
breaking term they take a judiciously chosen combination of the two lattice rep- 

L L resentations of the second derivative namely D , D ,  and (D~) c so that in the classical 
expansion of this operator  the leading terms (of dimension five) cancel. 

This action yields the inverse propagator  

1 
S~(p )  = 2K-- 3~ (iy~ sin (p~a)(1 +2 sin 2 (½p~,a)) +~r sin 4 (½p~a)), (5.10) 

a ~t 

where we have used the same notation as Eguchi and Kawamoto.  
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As in the case of the O(a)  improved action we study the emerging energy states. 
In this case the poles of the propagator have to be determined numerically (see 
appendix B for details). As for the action used by Eguchi and Kawamoto with 
propagator (5.10) qualitatively the same effects arise as for the O(a 2) on-shell 
improved action (5.8) we shall only discuss the latter. The real parts of the resulting 
energy states are depicted in fig. 2. The "physical" energy state now has the small-p 
expansion 

2 I 4 2 3 6 E 2 ( p ) = p  +~sa p ) - j _  

6 F  1 (, 3 A , t' '~'~ 3 )2] 
+,, L'2'W ''='4+~,~'j)[ + ,~,J~ + [ 14~ ) L, P 4 ' + O ( a  s) ( 5 . 1 1 )  

We note that the O(a 4) corrections in (5.11) vanish along the axis. This is why we 

~_'ITT] 111 I I r ~ [ I111 1 1 r 1 ~ I T I ]  I r T ; l [ 1 4 ] l l r 1 ~  ' l i l t  [ l I T  I I I [ I  ~ITI r I [ l l  i~ l  r I T I T I T I I I I I I I T I ] '  

1.0 1.0 

O0 0.0 , , , , [  
0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 

m o m e n t u m  m o m e n t u m  
( two components equal third zero ) ( two components equal third zero } 

k ' = O  k ' =  2 

1.0 1.0 

0.0 iHil 0.0 
0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 

m o m e n t u m  m o m e n t u m  
{ two component~ equal third zero ) ( two components e q u a l  - third zero ) 

k ' =  6 X ' = l  oIene r 
0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 

m o m e n t u m  m o m e n t u m  
( two components equal third zero ) ( two components e q u a l  - third zero ) 

) , ' = 1 4  , ~ ' = 3  

Fig. 2. Energy-momentum relations for the O(a 2) tree-level on-shell improved fermion action (5.8) for 
values of  (a) A =0 ,  (b) A =0.2,  (c) k =0.6,  (d) k = 1, (e) k = 1.4, (f) ;t =3 .  
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have chosen for our figures a momentum configuration with p~ = P2 ~ P3 ---- 0 in order 
to give a realistic picture of  the small-p behaviour of  the physical energy states. 

We moreover  note that after a suitable rescaling of the parameter  r (namely 
r = 9A') the small-a behaviour of the "physical"  energy state arising from the poles 
of the propagator  (5.10) of  the action given by Eguchi and Kawamoto  coincides 
up to O(a 6) with that of  the O(a 2) on-shell improved action (5.9). 

In addition to the "physical"  energy state now three "unphysical"  energy states 
appear. For A '=  0 one of these "unphysical"  states is complex with its real part 
being smaller than the physical energy value (fig. 2a). It has the small-p expansion 

4{ 7857, 2,3  ] [Re(E(P))]2=9p2-a2321~5(PZ)2+a ~39~P -1-~5 Y, p6/+O(a6). (5.12) 
j = l  

For A' ¢ 0 the real part  of this state is shifted away from the physical energy values 
so that the physical energy state eventually becomes the lowest-lying energy state 
(figs. 2b-d).  At the same time as for the O(a)  on-shell improved action the additional 
zeros in the energy-momentum relations for p ~ 0 disappear. On the other hand 
another "unphysical"  state is shifted clown the y-axis as A' grows so no "natural"  
choice of  A' arises (figs. 2e, f). Values of  A' between 1 and 1.4 would however keep 
these unwanted effects sufficiently far away from the low-energy- low-momentum 
regime we are interested in. 

5.3. S U M M A R Y  

We have found that the concept of on-shell improvement  allows for a consistent 
introduction of the chirality breaking terms needed to avoid the phenomenon of 
species doubling, For the tree-level on-shell O(a)  and O(a 2) improved actions we 
have found that these additional terms can also be used to keep unwanted "unphy- 
sical" energy states away from the low-energy-low-momentum regime where 
improvement  is supposed to work, For the O(a)  on-shell improved action this leads 
to the natural choice of  A = 1 which does away with the "unphysical"  energy states. 
For the O(a  2) improved action this cannot be accomplished but a reasonable range 
for the parameter  A' can nevertheless be given. 

6. Improvement beyond tree level 

According to Symanzik's programme the coefficients of  the improved action have 
a perturbative expansion (in the case of  QCD they are power series in the loop 
counting parameter  go) and are to be determined by perturbative calculations. The 
concept of  on-shell improvement  simplifies the situation as only those coefficients 
have to be calculated that are not found to be free parameters by means of the 
isospectral t ransformation of the action. 
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Calculations of improvement coefficients to one-loop order have already been 
performed for the non-linear o--model [4], the Gross-Neveu model [6], for pure 
Yang-Mills theory [8] and QCD [11]. 

For pure Yang-Mills theory a complete treatment following the concept of on-shell 
improvement will be given by Lfischer and Weisz [19]. 

In the one-loop calculation for QCD by Eguchi and Kawamoto the corrections 
to the fermion propagator were calculated. Since they obtain contributions from 
the operators O~(x)+ O~(x), 07L(x) but also a small one from O~(x) and O~(x) 
which would have to be cancelled by special choices of the coefficients of these 
operators we would suspect that this quantity contains also off-shell parts because 
according to our investigations no contribution involving the operators O~(x) and 
O~(x) should occur when spectral quantities are considered. 

Here we only present a calculation of the fermion contributions to the gluon 
self-energy thus extending the work of ref. [8] to the fermion sector to get an idea 
of its quantitative effects. 

This calculation was performed using the tree-level improved action given by 
Eguchi and Kawamoto. As we wanted to confirm previous numerical results by 
Ukawa and Yang [15] for the part quadratic in the gluon momentum we used this 
O(a ~) on-shell tree-level improved action rather than the one given by (5.8). 

We write the fermionic part of the gluon self-energy Hdd as  (NI: number of 
flavours) 

[ (  2 1  ) 4+(a3+a41nk2)(k2)2+O(k6)l (6.1) Hraa= Ns 3 (47r) 21nk2+a~ k2+a2Yk° 
P 

On-shell improvement demands the absence of ~p k 4 Ink  2 terms in (6.1) which we 
indeed find to be satisfied. Moreover also the coefficient a4 is zero for this classical 
improved Wilson action. This is the same for the classical improved Yang-Mills 
part of the action but is not a consequence of on-shell improvement. This has been 
pointed out by Lfischer and Weisz in ref. [14]. Their argument also holds for the 
fermionic contribution to the gluon self-energy. On-shell improvement only demands 
improvement of the static potential V(L). For the Fourier transformed static potential 
V(k) this only means the absence of ~f, k 4 In k2/(k2) 2 terms because only they are 
the origin of a 2 In L/L 3 contributions to V(L) whereas terms like In k 2 only give 
rise to aZ/L 3 terms in V(L). Considering the contribution of (6.1) to the static 
potential 

f 2 1 [ 2(C1 _[_ ]122) ~ 3,o 4 ] V(k) f= (//ddOdd)l~=O ~ ( - - ~  1 + ~ k o _ z (ca+  c3)k 2 Fffad, (6.2) 

where k = k]~ o, Dad is the improved gluon propagator, one immediately verifies 
that only potential ~o k4 In k: terms in (6.1) yield a ~ In L/L 3 contributions to V(L) 
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Fig. 3. Diagrams for the fermion contributions to the g |uon  self-energy. 

as long as the tree-level improvement condition cl = - ~  for the Yang-Mills part of 
the action holds. 

To extract values for the coefficients ai in (6.1) we evaluated the gluon self-energy 
contributions depicted in fig. 3 numerically to high precision. We first considered 
a configuration with only one component of the gluon momentum non-vanishing 
for lattice momenta ranging between 0.01 and 0.1. By repeating this calculation 
taking two components of the gluon momentum non-zero and fitting a behaviour 
of the form (6.1) to the data we were then able to separate (k2) 2 and ~ ,  k 4 
contributions especially verifying the absence of ~p k 4 In k 2 terms. We did this for 
the three values of r=0 .5 ,  1 and 1.5 also chosen by Ukawa and Yang in [15] for 
their computations. We found the following results: 

f 0.0387357(2) r = 0.5, 

a, =]0.02702288 (3),  r =  1, 

0.0247816 (1),  r = 1.5, (6.3) 

f -0.00284 (17), r = 0 . 5 ,  

a2 = ] -0.0008-6 (5) , r = l ,  

[, -0.00043 (14), r = 1.5, (6.4) 

-0.00057 (9) r = 0.5 

a3-- ~ -0 .00080(4 ) ,  r = 1, 

-0.00174_- (9),  r = 1.5, (6.5) 

a4 = 0, r = 0.5, 1, 1.5 . (6.6) 

To compare our results (6.3) with those by Ukawa and Yang given in ref. [15] for 
their coefficients 

F 

cv 2b01n A l m p  . . . .  d 
' F 

~1  W i l s o n  

1 
b0---~-~--jT(~N-]Nj) ( N  = number of colours) ,  

we note the relation 

cv = 1 2 +½5E) . Nf(a~ + ~ (3(Yz- In 4~') - ~)  (6.7) 

Here TE denotes Euler's constant yE=0.577215664. . ,  and the constants ~ have 
been calculated by Kawai, Nakayama and Seo [20]. 
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For the values of  r chosen here they are 

591 

so we obtain 

-0 .02384,  r = 0.5, 

= 0.003107, r = 1, 

0.01293, r = 1.5, 

f 0.01153 

CF = Nf]0.01329 

[0.01596 

(0.01152 (2)), r=0.5, 
(0.01330(2)), r = l ,  
(0.01596(2)), r=1.5, 

(6.8) 

(6.9) 

the values in brackets are those given in ref. [15]. The number  of  digits quoted for 
our results are limited by the accuracy of the constants ~ ( r )  in ref. [20]. 

I f  we insert these results into the revised data for the Yang-Mills sector [8] (where 
NNra2 ( N  = number  of  colours) and NNj-a3 would have to be subtracted from the 
right-hand side of eqs. (4.34) and (4.33) of  ref. [8] respectively) we find that the 
contributions from both sectors are of  the same order of  magnitude. 

7. Conclusions 

The concept of  on-shell improvement  has been found to be useful not only in 
the context of  pure Yang-Mills  theory but also for full QCD with Wilson fermions. 
It reduces the number  of  coefficients in the improved action whose perturbative 
expansions have to be calculated. Moreover it allows a somewhat "natura l"  incorpor- 
ation of chirality breaking terms into the lagrangian needed to avoid the problem 

of species doubling. 
Although the construction of an on-shell improved action removing in addition 

to the O(a)  also the O(a 2) lattice artifacts in spectral quantities can be performed 
we do not see any possibility to exclude the arising fermion contact terms beyond 
tree level. 

It should therefore be favourable to constrain improvement  to O(a)  on-shell 
improvement.  Then the fermion part of the action is drastically simplified. The result 
is a slightly modified Wilson fermion action which still can be formulated with only 
nearest-neighbour fermion interactions: 

a4 
sO(a) imp . . . .  d =--g2 x•all -2[ m(mR, g~, a ) a  + d]~p(x)4J(x) 

lattice sites 

+ E 4J(x)[(1 - ~,~) u,,(x)q,(x + 2)  + (1 + %~) u*~(x - ~ ) e , ( x -  2)]  
# 

1. 2 } -~tc(go) ~ ~(x)o-.~P.~(x)O(x) , (7.1) 
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c(g 2) = 1 + O(g2) ,  (7.2) 

re(mR, 0, a) = mR(1 +½taRa +O(a2)). (7.3) 

Here P~(x) is the operator given in (2.9) but any other lattice representation of 
F~(x) can be chosen for convenience. The mass parameter  is a function of the 
renormalized quark mass mR, the bare coupling go and the lattice spacing a. The 
new constant c(g2o) has been introduced for 2(b3(g~)-  b2(g~))= 1 +2b3(g~). 

For the Yang-Mills part  of  the action the standard one-plaquette Wilson action 
can be used. This action should therefore be the improved action for lattice QCD 
most suitable for numerical calculations. Moreover the O(a)  chirality breaking term 
is one of the most disturbing lattice artifacts and its absence can be expected to 
produce considerably improved behaviour of  the lattice simulation. 

The discussion of the spectrum gives hints for a suitable choice of the parameters 
of  the chirality breaking terms in the tree-level improved actions. Besides the 
well-known additional zeros in the energy-momentum relation at the edges of  the 
Brillouin zone for lattice fermion lagrangians with chiral symmetry we also observed 
low-lying even complex energy states which have to be shifted away from the 
physical states by "finetuning" the parameters of the chirality breaking terms. For 
the O(a)  on-shell tree improved action this leads to the "natural"  choice of  A -- 1. 
This corresponds to the value of A originally chosen by Wilson. For the O(a 2) 

on-shell tree-level improved action no natural choice of  the parameter  3,' exists 
however values of A' between 1 and 1.4 appear  reasonable. 

We would like to thank P. Weisz for numerous discussions and constant encourage- 
ment and M. Lfischer for substantial advice. 

Appendix A 

Here we study the contributions to the action arising from the variation of 
the measure under the fermion part of  the transformation 7"1 in (4.3) and the 
transformations T2 in (4.4). 

In a concise notation the action on the lattice has the form 

SL = ~, [t~hx(U)q~+Trf~(U)]. (A.1) 
x all  

l a t t i ce  si tes 

The action is a polynomial  in the quark variables q ~ ( x )  and ~0¢~(x) and the gluon 
fields A~(x) where i, f and c~ indicate Nc colour, N l flavour and 4-spinor indices. 
The path integral is defined as 

f D~D~bDU exp [ -SL[~,  ~O, U ] ] ,  (A.2) 
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where 
D ~ =  [[ d~¢~(x) ,  

x,i,f,a 

D ~ =  l~ d~b¢~(x), 
x,i,f,o~ 

D U - -  H d U . ( x ) ,  (A.3) 

is the invariant Haar  measure on SU(N,,). 
We first study the transformation T~. The effect of  the gauge part  of  T~ has been 

studied in ref. [14]. When considering the transformation of the gauge field it is 
obvious to use the properties of  the Haar  measure for which the following relation 
holds: 

I dUF(U)= I dUF(UoU), (A.4) 

where Uo is an arbitrary but fixed group element. We choose U0 = exp (s 'ot ~) where 
e '~ is an infinitesimal real number  and the t ° are the generators of  the group SU(Ne). 

Then it is easy to see that if 

f dU~,(x) exp [Ohm(UoU.(x))t) + Tr f~( UoU~,(x))] 

= f dU.(x) exp[~hx(U~(x))O+TrZ(U.(x))] (A.5) 

to first order in e 'a the following relation must hold: 

QO(q" qJ) = I d Uu(x) exp [ q~hx( U.(x))O + T r f . (  U,.(x))] 

OI~(U.(x))] x ~t~U.(x) ah~(V"(x))o+Tr t~V.(x) =0.  (A.6) 
oUr(x) oUr(x) J 

I f  we now set 

Uo(x)=exp 3 , - a a (a e (qJ~(x)yMo4Jj(x))t ), (A.7) 

it is not a priori clear that this argument applies since Grassmann variables are 
involved and Uo(x) is not an element of  the group. But when we insert (A.7) into 
the path integral (A.2) we immediately verify that to first order in e '  we have 

f dq~(x) d4~(x) d U~(x) exp [ q~hx (Uo(x) U~ (x))~0 + Tr f~(Uo(x) U. (x))] 

= f dq~(x) d 0 ( x )  dUu(x)  exp [~hx(U~,(x))qJ+Trf~(U.(x))] 

+ a3e' f dqT(x) dq~(x)( O(x)yut"qJ(x))Oa( f, tp) . (A.8) 
3 
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From (A.6) we see that the second term on the r ight-hand side o f  this equat ion 
vanishes. So we come to the conclusion that the functional  integral (A.2) is invariant 

under  the t ransformat ion (A.7). 

Now we consider  the t ransformat ion T> Using the lattice derivatives given in 
(2.7) we find (writing qJ(x)= ~Ox) 

~t x ~- (1] d- M ) xyt[t y , (A.9) 

where the (Ns × N~) matrix M (with entries Mxy) is given by 

Mxy = [ae, yp`( U p ` ( X ) a ( x + ~ ) y  - -  U~(y)6(x_;,)y) 

t 
-I-" 0 2 6 2 (  Up, (x)~(x+12)y  "Jr" U.(y)a(x 12)y - -  2 t~xy)  

+ a2 3,,7~e3(U~,(x) U,(x + 12)a~x+~+~y - Up`(x) U~(y)a~x+~_~y 

u* . ( x -~ )C . ( x -~ )a~_~+~+U. (x  ~) * - - U~(y)6(~_;,_~)y)]. (A.10) 

Using det A = exp Tr In A we find to first order  in the infinitesimal parameters  e~ 

det (~ + M )  = 1 - 8 N,.NyNsa2e2. (A. 11) 

As Grassmann  variables are considered this contributes a factor  det (~ + M )  ~ which 
however  only effects the normalisat ion of  the measure and therefore can be neglected. 
In complete  analogy we can conclude that the t ransformat ion of  q~(x) does not  
effect the measure  to leading order. 

Appendix B 

In the case o f  the act ion (5.3) for the O(a )  tree-level on-shell improved fermion 

action the task o f  finding the poles of  the p ropaga to r  (5.4) inside the unit  circle can 

be done analytically. 
Denot ing  (with a = 1 for convenience) 

3 

R I ( p ) = I +  • ( 1 - c o s 2 p ] ) ~ > I ,  P=(PbP2 ,  P3), 
j 1 

3 
g 2 ( p ) = - l +  ~ ( l - c o s p ~ ) ~ > l ,  (B.1) 

j = l  

we have to find the roots o f  the polynomial  

2 

P(z)= E a~(z 2+~+z2 ~), 
u - o  

ao = X 2 _ 1 + 2 R , ( p )  + 23. 2R~(p) ,  

al = - 4 A 2 R 2 ( P ) ,  a2 = X z - 1. (B.2) 

We shall constrain ourselves to X >/0 because all formulae depend only on ]X I. For  
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A2761 we find with 

the roots 

~2 

a(P)=~--i~_IR2(P), 

/{R2(p)A~ 2 R,(p) (B.3) 

c±(p)=a(p)±b(p) ,  

zL2: c+(p) +~/c+(p) 2- 1, 

z3,4 = c (p)+',/c-(p) 2- 1, (B.4) 

while for A 2= 1 the degree o f  the polynomial  in (B.2) is reduced by one order  now 

yielding the roots 

zo(p) = 0 ,  zt,2(p) = a'(p)+x/a'(p) 2 - 1,  (B.5) 

where 

R,(p)+ R2(p) 
a'(p) = (B.6) 

2R2(p) 

For all values o f  A the "phys ica l"  energy state is E ( p )  physical: - l n  z2(p) yielding 

the small-p expansion (5.5). For A < 0  the "unphys ica l "  energy state is given by 
- l n  Z3(p) which is complex  due to the fact that z3(p)<0. While for A = 1 there is 
no "unphys ica l "  energy state it is given by - l n  z4(p) for A > 1 taking real values. 

For  A # 0 this "unphys ica l "  state has the small-p expansion given by (5.6). 
In the case o f  the O(a  2) tree-level on-shell improved fermion action (5.8) the 

poles of  the p ropaga tor  (5.9) can in general only be determined numerically. I f  we 
denote  by 

3 

Rl (p )  = ~, sin2pj(l+~sin21pj) 2, 
j = l  

3 

R2(p) = 2 3~ sin 2 ½pj, (B.7) 
j l 

the roots o f  the polynomial  

4 
P ( z ) =  E a.(z4+'+z'4-~), 

v = 0  

ao = - ( 2 1 6 a  2(2R~(p) + 4R2(p)  + 3) + 72R, (p )  + 65) ,  

al = 1 6 ( 5 4 A 2 ( R 2 ( p ) + l ) + l ) ,  a2 = - 8 ( 2 7 A 2 - 8 ) ,  

a3 = - 1 6 ,  a 4 = 1 , (B.8) 

have to be found.  
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