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On a four-dimensional periodic lattice, we construct an SU(2) gauge field configuration which is analogous to the classical 
instanton. This is shown to have topological charge equal to one. We calculate the eigenvalue spectrum of the fermion matrix 
and demonstrate the existence of an approximate zero mode. 

In a previous paper [1], some of us carried out a 
Monte Carlo study of the topological charge Q in 
SU(2) lattice gauge theory using the construction of 
Q given by Lilscher [2]. It was found that, on a period- 
ic lattice of  volume V, the topological susceptibility 
×t := ( Q 2 ) / V  followed asymptotic scaling, from which 
we concluded that our present values of/~ (and lattice 
sizes) are relevant for continuum physics. 

In order to understand the structure of the QCD 
vacuum, it is important to find an interpretation of 
topology and, in particular, to see if it can be attri- 
buted to the presence of  instantons. 

Moreover, it is well known that in the continuum 
theory with fermions, to each instanton, there corre- 
sponds one fermion zero mode [3]. On a finite lattice, 
with staggered fermions, these zero modes translate 
into small eigenvalues of  the fermion matrix. (These 
go to zero as V ~ oo.) Since small eigenvalues are 
known to be related to chiral symmetry breaking on 
the lattice [4], it is not inconceivable that instantons 
may play a role in this phenomenon [5]. 

In order to study such connections, one needs a 
meaningful definition of a classical instanton on a pc- 
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riodic lattice (four-toms). At first sight this seems dif- 
ficult. Indeed, if one simply takes the naive discretiz- 
ed version of  the instanton and, using some damping 
function (which is one in the interior of  the lattice), 
make the gauge potential vanish at the boundary in 
accordance with periodicity, one obtains Q = 0 (irre- 
spective of whether the regular or singular gauge is 
used). 

An analytic expression which is periodic in the 
time direction only has been given by Gilrsey and Tze 
[6]. It is even possible to make the solution periodic 
in all four directions but, since no closed form exists, 
it is impractical from a numerical point of view. 

In this paper, we propose a lattice definition of the 
instanton solution which we show leads to non-trivial 
topology (Q = 1). The essential points of the con- 
struction are as follows. 

We start from the continuum instanton potential 
which in the regular and singular gauges may be 
written respectively as 

A u ( x )  = [i/(x 2 +R2)] ½ (su-i v - sv-i~)x v , (1 a) 

and 
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A.(x) = [iR2/(x 2 +R2)] ~ (-sisSy --svst~)xv/x2 , ( lb)  

where s 4 =s4 = 1, sl = -~ /=  io 1 (] = 1,2, 3) and R is 
the "size" of the instanton. Except at the origin x = 0, 
the two gauge potentials are related by a singular 
gauge transformation ~ (x) = x~ su/Ixl. 

We then map the real line into the interval (0, L) 
by means of the coordinate transformation x -~y 
where 

x/~ = L 3  [(L - yu) -2  _ y~2] . (2) 

We identify L with the length of a four-dimensional, 
hypercubic, periodic lattice T. (L is taken to be an 
even multiple of the lattice spacing). The points x u 
_+oo where the behaviour of the potential (la) leads to 
a non-vanishing topological charge, correspond to Yu 
= 0 and Yu = L, i.e. they are mapped onto the bound- 
ary of the lattice. 

Under the transformation (2), Au(x) and .4u(x) 
are mapped to Buo" ) and/~u(y) respectively. Except 
at Yx = L/2 (h = 1, 2, 3, 4), the transformed gauge 
potentials are also related by a singular gauge trans- 
formation g0,). Note that while Buo ' )  ~ 0 fo ry  -~ 0 
orL  (for any h E { l ,  2, 3, 4}), Buo') is  singular on the 
lattice boundary. 

Although Bu(y) does have the correct behaviour at 
the boundary, if we simply considered it on the whole 
lattice, this of course would still lead to Q = 0. How- 
ever, if we interpolate between the two solutions, 
Bu(y) given on some interior domain T i of  the lattice 
and Bu(y) on an outer domain To, then it is indeed 
possible to get out of the Q = 0 sector. 

Explicitly, setting the lattice spacing to one, 

T i ={y E TILl2 - M  <<.y~ <<. L/2 +M, h =1,2, 3,4},  

To=(yETIO<<.yx <<.L/2-M or L/2+M<<.yx <~L, 

for any h E ( l ,  2, 3, 4}},  (3) 

whereME{1,  2, ..., L/2 - 1}. 
If the link (7, y + ~) lies completely within Ti, we 

set 

1 

Uu(y)=Pexp (i fo dtBu(Y+(l- t )12))  , (4a) 

while if it lies completely within T o , we set 

1 

U#(y) = Pexp ( i f  d tBu(y  + ( l -  t ) / J ) ) ,  (4b) 

where P denotes path ordering. For links O', y +fi) 
contained in the intersection T i n To, we have Uu(y ) 
as well as Uuo') and they are related by the gauge 
transformation gO'). Therefore, we replace Uuo') on 
links completely within T i by 

O (y) = O' + (5) 

where 

go ' )  = gO,) for y E T i A To,  

= 1 for y E Ti\(T i N T o ) .  (6) 

In this way, we achieve that 0~O') = b'u(y) on links 
contained in T i N T O and get a well-def'med gauge 
field configuration on the whole lattice. Note that 
Uu(y ) is the unit matrix if o ' , y  +/1) lies on the 
boundary. For the actual calculation the path ordered 
exponentials in (4a), (4b) are approximated by 
exp [iBu(y + ½/~)] and exp [iJ~uO , + ½ ~)]. 

We then checked numerically that this configura- 
tion does indeed have Q = 1. All measurements were 
carried out for L = 6. Using our program for measur- 
ing the topological charge [ 1 ], we calculated Q for 
the above configuration for various values of the in- 
stanton size parameter R (=0.5, 1.0, 1.5, 2.0). In all 
cases we found Q = 1. 

In addition, we calculated the eigenvalues h i (i = 1, 
.... 2L 4) of the fermion matrix iM using staggered fer- 
mions. These eigenvalues were calculated using the 
Lanczos algorithm [4]. In the continuum, iM corre- 
sponds to the inverse propagator at zero quark mass. 

In fig. 1 we plot the density of eigenvalues p(h) 
for the above instanton solution. We clearly observe a 
small, isolated eigenvalue which we can then associate 
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Fig. 1. The density of eigenvalues p (h) of  the fermion matrix 
for a classical instanton solution. 
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with a zero mode,  as expected from the index theorem 
[7]. 

The form of  the distr ibution,  which consists o f  
five peaks, reflects the fact that the instanton intro- 
duces a small per turbat ion into the vacuum. For  a 
gauge field configuration in equilibrium, the distribu- 
tion looks completely different,  namely it extends 
smoothly to ~ = 0. 

Having constructed a classical instanton on the 
four-torus, we are now in a posit ion to investigate the 
topological properties o f  the vacuum in detail and 
confront  these with the usual instanton interpretat ion.  
This question will be addressed in a forthcoming paper 
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