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We investigate in detail the consequences of the supersymmetry scenario with a light (~5 GeV)
gluino and heavy (~ 100 GeV) scalar quarks, including gluino distribution and fragmentation ef-
fects, proposed to explain large-missing-pr events observed at the CERN pp collider. The effective
gluino distribution in the nucleon is evaluated using the Altarelli-Parisi equations. Ambiguities in
evaluating scalar-quark production with the effective gluino distribution are discussed. A plausible
gluino fragmentation function is deduced from heavy-quark fragmentation functions; scaling viola-
tions in the gluino fragmentation function are taken into account. Fragmentation effects drastically
reduce the missing pr in light-gluino jets. The present collider data do not rule out a light gluino
with mass in the range of 3—5 GeV even if the g lifetime, from decay into a photino and a quark

pair, is short.

I. INTRODUCTION

Recently a supersymmetry scenario with an extra heavy
scalar quark was proposed"? and its predictions for
missing-pr events observed® at the CERN pp collider
were analyzed.>* In the scenario, the heavy scalar quark,
with a mass on the order of 100 GeV, is produced in asso-
ciation with a light gluino (m;~3—5 GeV). The subse-
quent decay of the scalar quark into a quark and a pho-
tino leads naturally to monojet events with large missing
pr- A distinguishing feature of this scenario compared
with other proposals®® is that it predicts the dominance of
monojet events over multijet events.?

If there does exist a light gluino (&), then high-pr
gluinos should be copiously produced via the QCD fusion
processes

qq—’g-g‘) (la)
88—gg . (1b)

It was suspected® that the subsequent decay of the gluino
into a ¢ pair and photino would lead to a rate for large-
missing-pr events that would be incompatible with
present collider data. To avoid this problem, the authors
of Ref. 2 assumed that the gluino had a very long lifetime,
arising from nearly degenerate gluino and photino masses.
This near degeneracy of masses is unattractive from the
viewpoint of grand unification theory where the photino
mass is typically of order + of the gluino mass,’ in the ab-
sence of significant mixing in the neutral gaugino—
Higgs-fermion sector.

In this paper we reexamine the production and decay of
high-p7 gluinos taking the gluino distribution in the nu-
cleon® and gluino fragmentation effects into account. We
find that the missing-p; cross section due to light-gluino
decays is greatly reduced by the fragmentation effects.
Consequently a long gluino lifetime is not required, and
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the photino mass can be much smaller than the gluino
mass.

This paper is organized as follows. In Sec. II we dis-
cuss the evaluation of the gluino distribution in the nu-
cleon. In Sec. III the fragmentation of a gluino into a
gluino hadron is analyzed. In Sec. IV we study ambigui-
ties in the scalar-quark production cross sections obtained
via the quark-gluino fusion mechanism,"® gg&—g. Section
V presents our results and conclusions. In Appendix A,
we present the details of our method for obtaining scale-
dependent gluino distributions in a nucleon (see also Refs.
1, 8, and 9) and gluino fragmentation functions. In Ap-
pendices B and C we give parametrizations for our gluino
distribution and fragmentation functions. In Appendix D
we present a derivation of a collinear approximation for
g —7 decay used in simplifying cross-section calculations.

Near the completion of this manuscript, we received a
paper by De Rijjula and Petronzio'® in which the effects
of gluino fragmentation are also studied. Their fragmen-
tation results, which are based on different calculation
methods, are qualitatively similar to ours.

II. EFFECTIVE GLUINO DISTRIBUTION
IN A NUCLEON

In evaluating the production of high-p; gluinos, we
must also consider the contribution that arises from the
gluino distribution in a nucleon.®° High-p; gluinos can
then be produced via the excitation processes

98 —4g , (2a)
88—88 - (2b)

In order to determine the gluino distribution in a nucleon,
we make the assumption that the distribution vanishes at
values of Q below the gluino mass scale:

8(x,Q <Qo=nm;)=0. (3)
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This condition follows from the general argument'! of the
decoupling of heavy particles at low energies, but the
choice of n is rather arbitrary as long as n ~(1). We take
n =2 as our standard choice and discuss the related ambi-
guities in Sec. IV.

If we ignore bottom- and top-quark as well as scalar-
quark contributions, the Q? evolution of the parton distri-
butions is governed by the equations® '

dg; -~

B (B)"N(Ppy®qi+Py®g) , (4a)

s

98 (5) " (Pyy®q, +Pyy®8 +Pg®8) , (4b)

ds

48 _ 5)- e

e =(b)" (Pg,®g +P§§®g) , (4c)
where ¢;=¢g;(x,5) is the ith-quark distribution,

i =u,i,d,d, etc., qszsz;lq,- with f =4, g =g(x,5) and

g=g(x,5) are gluon and gluino distributions, respectively,
b=(33—2f —6)/6=-, and

T=In[In(Q/A)/In(Qy/A)] . (5)

In cross-section calculations we take Q =(5)!/2, the sub-
process c.m. energy. The value of A is determined by the
choice of the QCD scale parameter A, for four flavors
(f =4) and by requiring continuity of a, as the gluino
threshold is crossed; A=Q,(A4/Qy)*/" with A,=0.2
GeV. The various P, are the so-called splitting functions
whose explicit forms can be found in Refs. 8 and 12. The
® product is defined by

x

1
f®g=fx ‘i—y gy . (6)

We solve Egs. (4) by first integrating over § and then
using the method of successive approximations'> (see Ap-

pendix A for details) with the Eichten-Hinchliffe-Lane-
J
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FIG. 1. Effective gluino distribution in a nucleon at (a)

Q =20 GeV and (b) 100 GeV for mg=3 GeV (solid curves) and
5 GeV (dashed curves) with Q0=2m§ as the decoupling momen-
tum scale. Also shown as dotted curves are the effective

bottom-quark distribution (b+5) obtained by Hagiwara and
Jacobs (Ref. 14).

Quigg (EHLQ) set I parametrization'* for the initial
light-quark and gluon distributions. We show in Fig. 1
the gluino distributions at Q =20 and 100 GeV for
mz=3 and 5 GeV. Also shown are bottom-quark distri-
butions (b +b) obtained by using the same initial distribu-
tions'* and b,b decoupling conditions corresponding to
Eq. (3). Note that the gluino distribution for m_=5 GeV
(=m,) is more than twice as large as the sum of the b
and b distributions, due to the large color factor T,=3 in
the splitting function Pg, as compared to Tr= 5 in Py

Simple parametrizations for the gluino distributions are
presented in Appendix B. We find that the light-quark
and gluon distributions change by less than 15% by the
introduction of the gluino. Hence, we do not
reparametrize these distributions but use the EHLQ pa-
rametrizations given in Ref. 14.

Finally, we note that the differential cross sections for
the subprocesses of Egs. (2) can be obtained from the re-
sults for the fusion subprocesses given in Ref. 4 by cross-
ing:

2
dég, . . Ta" | 4 s? u? sHu?—s) u? t2+u?
—( )= - + — - , (7a)
ar BTEI="0 (W2—sP+uT?  (ur—u)? | t[(?—s)?+u’T?]  t(u’—u) 12
dé . 9mal |s24u? u s
4aé - _u_s | (7b)
4 88 88)=— 5 2 s %
T
Here p =m; and the gluino mass has been neglected; I' is Schlatter, Schmidt, and Zerwas'® suggested the form
the total scalar-quark width, estimated®* to be I'~9 GeV Nz(1—z)
for mz=100 GeV. Dy(z)=——F—" 9)

III. GLUINO FRAGMENTATION FUNCTION

The Q? evolution of the gluino fragmentation function
is determined by"’
dDg- ~

pe =(b)" 'Pgz®D; . (8)

In order to solve Eq. (8) for Dg-=Dg-(z,§), we need to

know the initial gluino fragmentation function. Peterson,

[(1—2)+€pz]?

for heavy-quark fragmentation. Here we choose
Z=pP/Pmax With p the momentum of the heavy-quark
hadron in the center-of-mass frame of the hard-scattering
process; N is a normalization constant fixed by the condi-
tion

1
fo dzD(z)=1. (10)

It was argued in Ref. 16 that the parameter €y should be
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proportional to 1 /mQZ. We use Eq. (9) as our gluino

fragmentation function at Q, and consider two choices

for €
e§=eb(mb/m§)2 Iy (lla)
eg="1€p(my/my) . (11b)

The factor 5 in Eq. (11b) assumes a string tension for a
color-octet gluino that is 5 times larger than the string
tension for a color-triplet quark. We use the value
€, =0.008 from an evolved fit to b-quark fragmentation
data (see Ref. 17 for a recent compilation of data).

With these initial fragmentation functions, we solve Eq.
(8) using the method of successive approximations.!* In
Fig. 2 we show the fragmentation functions at Q =40
GeV for m;=3 and 5 GeV. Solid curves are obtained by
the initial distributions with Eq. (1la), while dashed
curves are obtained by those with Eq. (11b). Comparison
is made with the bottom-quark fragmentation function at
the same value of Q. Note that the initial form of the
bottom-quark and the gluino fragmentation functions are
identical at m;=5 GeV (=my,) for the choice of Eq.
(11a). The difference between the b and g results at
Q =40 GeV demonstrates the striking difference in the
gluon radiation effects between the color-octet gluino
(with color factor C4=3 in the splitting function Pgp)
and the color-triplet heavy quarks (with the color factor
Cr=%in P,,). The g fragmentation is appreciably softer
than b fragmentation. We present parametrizations for
the various gluino fragmentation functions in Appendix
C.

IV. UNCERTAINTIES IN o(q)

In Refs. 2 and 4, the scalar-quark production cross sec-
tion was evaluated via the subprocess

ag—qg . (12)
In the limit
mg/mz—0 (13)
T ﬁ' T
3} €5=€,(m,/mg)
i ~~—-ea=%e
—-—-b quark

D(z,Q)

0

FIG. 2. Effective gluino fragmentation function at Q =40
GeV with the initial parametrization given by & of Eq. (11a)
(solid curves) and Eq. (11b) (dashed curves). Also shown as a
dash-dotted curve is the effective bottom-quark fragmentation
function at Q =40 GeV.

the total cross section from the subprocess (12) diverges
logarithmically. By summing over all the leading loga-
rithms, we obtain the effective gluino distribution in a nu-
cleon (see Sec. II) and the ¢ production cross section can
be evaluated via the fusion process

98—q - (14)

The latter method was chosen in Refs. 1 and 9.

In this section, we compare the scalar-quark production
cross sections obtained via the above two methods and at-
tempt to determine which to rely upon. We assume
throughout that the scalar quarks associated with left-
and right-handed quarks are degenerate. Figure 3 shows
the scalar-quark production cross section in pp collision at
Vs =540 GeV calculated by the two methods for
mg;=100 GeV and variable m;. The solid curve denotes
the cross section obtained via (12) and the dashed curves
are obtained via (14). The m; dependence of the cross
section in the gg—q calculations enters only through the
difference in the g distribution, which in turn is deter-
mined by the decoupling mass scale Qo=nm; in Eq. (3).
Results obtained with setting n =1, 2, and 4 are shown.

It is striking that the fusion process (14) gives a rather
large cross section, as previously found in Refs. 1 and 9.
The desired® cross section of order 2 nb, which corre-
sponds to a few monojet events per 100 nb~! at the
CERN collider, is obtained for mz~5 GeV in the
qg—q g calculation, whereas the same cross section
occurs for mz~20 GeV in the gg—¢ calculation with
Qo =2m§. The discrepancy between the two calculational
methods does not disappear even with the severe threshold
condition Qo=4m;. On the other hand, it is rather diffi-
cult to accept that the naive perturbation theory based on
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FIG. 3. Scalar-quark production cross section in pp collision
at Vs =540 GeV for m;=100 GeV versus m,. The solid curve
denotes the result obtained via the lowest-order gg — g g subpro-
cess and dashed curves denote those obtained via gg —g fusion
with the g distributions being determined through the matching
condition of Eq. (3) with Q0=nm?; n=1,2,and 4. The set I
parametrizations of Ref. 14 were used as the initial parton dis-
tributions.
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the gg—@ & process fails for m;> 10 GeV, because then
the logarithmic factor In( qu/m§2) is not overwhelming-
ly large.

In order to clarify the problem, we compare the two
calculational methods in more detail by making several
simplifying approximations. We ignore both scaling
violations in the running coupling constant and the parton
distribution functions. We take for definiteness
a,(Q)=a,(my), g(x)=g(x,m;), and g(x)=q(x,mz). We
further ignore the gluon radiation from the gluino. Then
the Altarelli-Parisi (AP) equation for the gluino distribu-
tion simplifies to

0L zx,0=22P_sg (15)
o0 T &8
which is readily integrated to give
~ Qs mi
g(x,mq-)= 7111@ Pg-g@g . (16)

Equation (16) allows the interpretation that the gluino dis-
tribution in a gluon is proportional to the splitting func-
tion Pg,. In this approximation, the gg —g g cross section
can be obtained by the convolution of the g distribution in
the gluon with the gg— g fusion cross section:

2
.. . o | L
Ega s Qo Q
mii2 2
+ | . (17)
S

This is an “equivalent-gluino approximation”!® (EgA) to
the exact cross section obtained by integration of the
lowest-order differential cross section (see Appendix A of
Ref. 4)

5(gg —>§ &)exacr= f,tjd |2 ] dd|f| (18)
with
te=7{s —mzt—mlx[(s —m;?—mS?)
—am2m ) (19)

We find that the coefficient of the logarithmic part in
GEexacr agrees with that of Gz, and G;, gives a reason-
able approximation well above the threshold, (12
=my +m 7

The total cross section in pp collisions is obtained by
convoluting the subprocess cross section & with the lumi-

nosity functions

(5 =sT)

o(pp—gx)= f dr ddg

o172
= [ae 24 56 0, Qo)

dr
where
d.s 1 dx T
< __ L 21
dr T X 9(x)g x @b

Here we neglect the quark distribution in p. Figures 4(a)
and 4(b) show the product of the luminosity function and
the subprocess cross sections GFgxacr and 5E§A» respec-
tively, versus (§)!/2. The normalizations are such that the
the area under each curve is the total cross section. Be-
cause the luminosity function drops very rapidly with
(8)!/2, roughly an order of magnitude or more per 50
GeV, contributions from the threshold region are very im-
portant, where the EZA is inapplicable. The difference in
the total cross section obtained with different & is striking
for sizable mg, €.g., the area under the &Ejg"A curve with
mgz=20 GeV is comparable to the area under the GEXACT
curve with my=5 GeV. Despite the fact that our EgA
picks up only a single logarithm [see Eq. (17)], whereas
the AP equations sum over all the leading logarithms, we
reproduce qualitatively the effect of the full AP equations.

The physical-threshold cutoff at (5)!/ 2=mi+ mg on
the gg —@ g subprocess cross section is not imposed in the
AP calculation. A large cross-section enhancement in the
AP calculation results from the rapid rise of the luminosi-
ty function between (§)1/2=m§+m§ and (fv\)l/z——-ma-.
Consequently we are led to conclude that the scalar-quark
production cross section calculated via gg—g fusion with
the AP-generated gluino distribution is an overestimate.
Therefore, we choose to use only the lowest-order QCD
perturbative calculation for gg-—g g with the possibility
of a radiative correction of order of a factor of 2. Simi-
larly, we do not include the contribution from subprocess
(2a) when the scalar quark can be produced as a real parti-
cle, but instead calculate gg —g g production with §—gqg
decay.

We repeated the same analysis using the modified AP
equation with threshold suppression introduced by Glick,
Hoffman, and Reya!® and employed by EHLQ (Ref. 14).
We found qualitatively similar results; the g distribution
obtained from these modified AP equations again gives an
overestimate of the § production cross section. The
threshold suppression carefully arranged!® for heavy-
quark contributions to the electroproduction structure

0.12 . 1 y : 0.12 — T T
| (@ Bypcrlvg—03) | (b)  &p,(ug—T3)
o~ /52540 Gev /3 =540 Gev
3
Q o.08f —
Fe)
G
® r T
25
%»l 0.04— m.=3Gev —
w
N

) e, o -
100 120 100 120

V3 (Gev) V3 (Gev)

FIG. 4. Product of the subprocess cross section &(ug —# g)
and the luminosity function for m_=100 GeV plotted against
(8)'? with (a) Gexacr and (b) Gy, as defined in the text. The
normalization is such that the area under each curve gives the
total # production cross section summed over two chiralities.
Solid, dash-dotted, dashed, and dotted curve represent m§=3, 5,

10, and 20 GeV, respectively.
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function does not account for the threshold suppression in
hadronic processes.

The study presented in this section is relevant more
generally to the question of when the leading-logarithmic
approximation is reliable. The success of the equivalent
W approximation?® for the production of very heavy
Higgs bosons at TeV collider energies may in part be due
to the fact that no extra massive particles are produced in
the subprocess.

V. RESULTS AND CONCLUSIONS

Figure 5 shows the missing- Py distribution from pp
collisions at Vs =540 GeV obtained from the subprocess
in Egs. (1) and (2) without fragmentation and with frag-
mentation given by Egs. (11) for m; =5 GeV with infinite
mg. For the gj, decay into ¥, we use the collinear approx-
imation presented in Appendix D. The fragmentation ef-
fect substantially decreases the pr contributions at high
pr even for the conservative parametrization of Eq. (11a).
We note that the contribution from the excitation process-
es of Egs. (2) are typically 75% of the total at p;=35
GeV, but their fraction decreases precipitously at higher
Pr-

Figure 6 shows the missing-py distribution summed
over various contributions: ¢ g production followed by
G—q7 and §—qg decay, gg production (1) and gg
scattering (2b). Here we have set mg= 100 GeV, m§=5
GeV, and m=0. The §—4q¥ decay contribution alone is
shown separately. With the §—g, fragmentation effect
included the extra contributions are significant only in the
region pr <40 GeV.

Figure 7 shows monojet and dijet event cross sections as
a function of the gluino mass obtained by summing all the
contributions. The event selection criteria are explained in

10 — T T
_ 2
- -....A. _—Ga-ﬁb(mb/ma) —
—_——— ~__9_ ~2
102 €52 € Mp/Mg)"
>
S
X ' -
L0
£
’-—
g 16
b
U —
104
N
05 20 20 60 80
7, (GeV)

FIG. 5. Missing-pr distribution from the subprocesses (1)
and (2) in pp collisions at Vs =540 GeV for my=5 GeV.
Scalar-quark masses are infinite and =0. The curves are ob-
tained using the effective fragmentation function of Eq. (11a)
(solid curves), Eq. (11b) (dashed curves), or neglecting fragmen-
tation (dotted curves).
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FIG. 6. Missing-pr distribution in pp collisions at Vs =540
GeV for my= 100 GeV, m§=5 GeV, and m7=0 summed over
the contributions from § g production (followed by §—¢¥% or
g —qg decays), g g production (1) and gg scattering (2b). The
curves are obtained by using the effective fragmentation func-
tions of Eq. (11a) (solid curve), Eq. (11b) (dashed curve), or
neglecting fragmentation (dotted curve). Also shown is the con-
tribution from §—¢¥ decay only (dash-dotted curve).

detail in Ref. 4. We require that p; > max(35 GeV,40)
with o being the UA1 p7 resolution. We further require
that the jet pr exceed 12 GeV with the highest jet above
25 GeV. The pr trigger condition is chosen in order to
avoid sensitivity to spectator-scalar-E; estimates. The
contribution in the region 15 <pr <35 GeV is found to be
rather sensitive to the spectator jet activities and may not
be used as a reliable guide to reject particular supersym-
metry contributions on a quantitative basis.

For a gluino mass greater than 5 GeV, we neglect exci-
tation contributions (2) as well as the scaling violation in
the gluino fragmentation function and evaluate the
g§—qq 7 decay exactly without using the collinear ap-
proximation. Figure 7 shows the cross sections obtained
with no §—g, fragmentation, as well as with the choices
in Egs. (11). With fragmentation included, the event rates
fall at m; <20 GeV. Hence in the scenario of Refs. 1 and
2 (mz=3—5 GeV), there is no need to require near degen-
eracy of mz and m;, to make  lifetime long.

The cross sections in Fig. 7 are obtained by setting
)\=m?/m§ to zero. It is interesting to note that the
missing-pr event rate increases with A due to the boost ef-
fect: see Fig. 9 in Appendix D. Figure 8 shows the
monojet cross section versus A at my=5 GeV. We find
that even with the soft fragmentation of Eq. (11b) (dashed
curves), the monojet cross section exceeds 0.1 nb for
A>0.75 Hence we may conclude that k=m7/ mg should
be either smaller than 0.75 or larger than 0.9 in the light-
gluino scenario of Refs. 1 and 2.

The major conclusions of our analysis are that the
light-gluino—heavy-scalar-quark scenario remains viable
when fragmentation effects are taken into account and
that Altarelli-Parisi evolution may well give a substantial
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FIG. 7. Monojet and dijet cross section in pp collisions at
Vs =540 GeV as functions of gluino mass. We set m,=0 and
my= 100 GeV; the contributions from g g production, followed
by §—qg or §—q¥ decays, g g production (1), and gg produc-
tion (2b) are summed. The curves are obtained by using the ef-
fective fragmentation function with Eq. (11a) (solid curves),
with Eq. (11b) (dashed curves), and by neglecting fragmentation
(dotted curves).

overestimate of the gluino distribution.
A potentially promising place to confirm the existence
of light gluinos would be in the radiative decay of the Y

into a light-gluino ball.?!

ACKNOWLEDGMENTS

We wish to thank W.-Y. Keung and W. F. Long for
helpful discussions. This research was supported in part
by the University of Wisconsin Research Committee with
funds granted by the Wisconsin Alumni Research Foun-
dation, and in part by the Department of Energy under
Contract No. DE-AC02-76ER00881.

APPENDIX A

In this appendix we review the method of successive ap-
proximations for solving the equations governing the Q2
evolution of the singlet, gluon, and gluino distribution
functions in a nucleon. The application of the method to
the solution of the equations governing fragmentation
functions follows straightforwardly.

To avoid singularities at the origin, we work with the
distributions multiplied by a factor of x2. Neglecting
scalar-quark contributions, the equations for x? times the
singlet, gluon, and gluino distributions become®

9 s Q
30 Gs=———(Pga%q; +2fPy (Ala)
d as(Q _

Qan = (Pgg#qs+Pog%g +Ppz%g),  (Alb)
3 . a(Q) N

50%= (Pg %8 +Pyp %) , (Alc)

10 T T T T T T T T

" b(mb/m--)

——-—€5* sz(mb/ma)

10 1 | R SR S L ]
o c.2 0.4 0.6 0.8

A= m;/ma-

FIG. 8. Monojet cross section in pp collisions at Vs =540
GeV at m§=5 GeV, my= 100 GeV as a function of 7»=m.y/m§.
The curves are obtained by using the effective fragmentation
function with Eq. (11a) (solid curves), with Eq. (11b) (dashed
curve), and by neglecting fragmentation (dotted curve).

where ¢,,g,g are the smglet gluon, and gluino distribu-
tions multiplied by x2, respectively, f is the number of
quark flavors, and the star product is defined by

Pyxf= ] d” x? Pa %f(y). (A2)
We choose*
i:%ln(g/m—%nglo(g —2m )In(Q /2m,)

—6(Q —2m)In(Q /2my) (A3)

with A=0.2444 GeV. Note that between any two thresh-
olds we can write

T —b/In(Q/As)

s

(A4)

where by and Ay are constants that can be determined
from Eq. (A3). In the following we assume that Q lies in
a region between thresholds so that Eq. (A4) is satisfied.
Defining the variable

(Q/Af)/In(Q¢/Af)]
and using Eq. (A4) in Egs. (A1) we obtain

s=In[In

g, 1

— Z](P"" *q,+2fPp *g) (A5a)

dg 1 ~

EZE(qu*qs + Py %8 +Pyp*8) (A5D)

—i_—g_- ;1—(P~ *g + Py *g) . (A5c)
S f
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Integrating over 5 and imposing the boundary conditions

qs(x,5=0)=g¢,(x) , (A6a)
g(x,5=0)=go(x), (A6b)
g(x,5=0)=g(x), (Aé6c)
we obtain
- 1 pr5,,
q,(x,s)=~b—f— fosdi (Pgg%qs+2fPyg % g)
+q.¥0(x) ’ (A7a)
- 1 p5,., ~
g(x,3)= E fo d5'(Pgg % s+ Pgg %8 + Pz %8)
+8o(x) , (A7b)
PO 1 p5,, o~
g(x,s):;f— fo ds'(Pg*g +Py2x8)+80(x) . (ATc)
These equations are of the general form
V=TV, (A8)

where V is a three-component vector function of x and §
and T is a 3X3 linear matrix operator. Equation (A8)
implies that V is a fixed point of the linear operator T.
This suggests that we solve Egs. (A7) using the method of
successive approximations.!> Starting from an initial
guess, V© we form the sequence of successive approxi-
mants v(l)=Tv(0)’ v(Z)___Tv(l)’ el v(n)=Tv(n—l))
etc. If the sequence V!V, V2 | satisfies a convergence
criterion, we take V'™ to be our approximation to the true
solution V. In practice, we use the relative-error criterion

vim _yin—1

v <0.01,

max (A9)

where the maximum is taken over the range of x and 5 of
interest.

Comparing Eq. (A8) with Egs. (A7), we see that the
operator T is given by

1 5.,
i [, d5'P+Vox) (A10)

where P is an x-dependent matrix integral operator. With
the initial guess V!© =V, and (A10), it can be shown by
induction that the nth approximant is given by

k pry,
T

S
by

n
V(n)=
k=0

(A11)

Thus, the approximate solution is obtained as a power
series in (5/by). The solution of the evolution equations
is reduced to the problem of evaluating the one-
dimensional integrals P*v, o k=1,2,...,n. We use a cu-
bic spline quadrature method?? to accomplish this. Once
the solutions are obtained they may be reparametrized in
more convenient forms as we have done in Appendices B
and C.

APPENDIX B

In this appendix we present our parametrizations for
the gluino distributions discussed in Sec. II of the text.
All the parametrizations have the form

g(x,0)=5x""(1—x)"%exp(a; +ax) .

Each g¢; (i=1,...,4) is a polynomial in the variable
5=In[In(Q/A)/In(Qy/A)]  where  Qo=2m, and
A=0,(0.2 GeV/Qy)»"".

(1) mz=3 GeV:

a;=—1.24602—0.485495 ,
a,=6.37744—0.002 465 ,
a3=—0.31532—1.819195—0.938685 2,
as=—1.70973—5.082185+2.3322352 .
(2) my=5 GeV:

a;=—1.33139-0.44925 ,
a,=6.30712—0.0455185 ,
a;=—0.55418—-2.265745 ,
a,=—2.2188—3.895325 .

These parametrizations are accurate to within 10% for
the range 0.01 <x <0.7, Qp<Q <100 GeV. For x >0.7,
the distributions are negligibly small.

APPENDIX C

In this appendix we present our parametrizations for
the gluino fragmentation functions discussed in Sec. III of
the text. All the parametrizations have the form

2
ag +(112+02?2+a323

Dy(z,0)= : ()

1+a42+0532

where Z=(20z —11)/9. Each q; (i=0,1,...,5)is a po-
lynomial in the variable S=In[In(Q/A)/In(Qy/A)]
where Qo=2my,, A=0(0.2 GeV/Q,)*"".

(1) e;=€,(my /mg ), my=3 GeV:
ap=0.86464+2.171065 —5.381 54524 3.912 6653,
a;=—0.51753—7.63745+16.112452—14.3095 * ,
a;=—0.470465+3.744 465 —3.585445 24 3.714455 3,
a3=0.13774240.991 395 —3.850 265 2+2.897255 %,
a,=—1.84552—-0.9564525+5.855755 2—7.679 555 3,
as=0.955084+0.483 7715 —2.723 055 2+ 3.252 675> .

(2) g=7€5(my/mg)?, my=3 GeV:

ay=1.07123+1.655695 —7.434 245 2
+13.982153—11.299515 ¢,

a;=—0.742998 —3.963 985 — 13.802 865 >
+75.491153—85.609415 %,
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a,=—0.5885+3.921395 +0.692 0875 2
—15.764945 3 +22.2815 %,
a3=0.227831—0.471 8175 + 10.26455 2
—42.2765°+44.056355 ¢,
as=—1.7444541.766 665 — 19.66555 2
+71.28615%—76.86515 %,
as=0.902701+0.301 1855 —1.187 535 2
—3.29743534-8.472285% .

() z=€p(m, /mg)z, mgz=>5 GeV:
ap=0.655332+2.510675—3.733995 2,
a;=—0.398226—6.556825+7.372 1652,
a,=—0.342233+3.181515—1.680715 2,
a;=0.0853938+0.8551025—1.938495 2,
a,=—1.94783—0.058 8485 +0.406 9855 % ,
a5=0.985563+0.118 3985 —0.436 5955 % .

(4) e§=%eb(m,,/m§)2, mg=5 GeV:
ay=0.824475+1.963 845 —3.175085 2 ,
a;=—0.505765—6.396515+7.361 1035 2,
a,=—0.443506+3.625455—2.114695 2 ,

a3=0.127724+0.7060235 — 1.781 545 2 ,
J

as=—1.88626—0.097914 35+0.5979525 %,
as=0.966585+0.1773335—0.6309355 2 .

These parametrizations reproduce the fragmentation func-
tions to within 10% (except for regions where the frag-
mentation functions are quite small) for the range
0.1<z<1, Qu<Q <100 GeV.

APPENDIX D

In the calculation of various cross sections, it is neces-
sary to evaluate many-dimensional integrals. These in-
tegrals can be considerably simplified by the introduction
of a collinear approximation. This approximation is valid
when Py, >>my where all the decay products of the gluino

hadron (gj,) have momenta collinear to the parent
momentum in the laboratory frame. We can therefore in-
tegrate directly over transverse momenta and replace
five-dimensional integrals over the three-body space for
the decay g§—qg7¥ by an integral over a single collinear
momentum variable. We will in the following derive the
collinear decay function used in our calculations.
We define the scaling variables as

m-
B 2 (D1)
mg
2p; D5
z=—51 (D2)
m-

The photino energy distribution arising from the gluino
decay g§—gq7 is then given in the massless-quark limit
by23

‘;—’z) =F(z,A)=2f (M)~ W22 —4A2)/[2(3—22) + 6(1 —2)A— (4 —32)A% + 6A°] (D3a)
with?
FR)=1=A)(142A—TA24+20A° —TA* 4+ 205+ 1%) +2423(1 — A+ A2)In(A) . (D3b)

The distribution (D3) is normalized such that

2
[ dzFen=1. (D4)

Averaging over the polarization of the parent gluino, the
invariant decay distribution can be expressed in terms of
F(z,A) as

EdD 1 F(z,A)

d’p 417'm§2 (z2—4A%)17%

(DS)

In the laboratory frame, we denote the g, momentum
as P and the longitudinal and transverse components of
the ¥ momentum about the P direction as p; and pr,
respectively. We define the longitudinal momentum frac-
tion and the normalized transverse momentum of the pho-
tino as

n=p./P, (D6a)

§r=pr/M , (D6b)

f

with M =mg =mg. In the collinear limit M?/P% 0,

the ¥ momentum becomes collinear to the g, momentum
for finite 7, since the ¥ transverse momentum cannot be
larger than M /2. In this limit, it is easy to obtain the re-
lation between the laboratory-frame variables (D6) and the
invariant variable z (D2),

(D7)

The kinematical region of the variables 7 and £ in this
limit reads

A<n<l, (D8a)

O<&rl<(l=m)n—2A2) . (D8b)

Now it is straightforward to obtain the collinear decay
function by integrating over pr:
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EdD M*
T’.—-fdz PZ }
(1-mn-a» . 5,  F(z,A)
:fo dér (22— 4)\2)12
M2
+0 F (D9)
The integral can be done analytically and gives
dD 2 A2
—=——|G(14+A°)— — (D10a)
dn 3f(x) +A9=G -+ l
with
G(2)=z[12A(3—2A+3AH)+9(1—A)%z —4z?] .
(D10b)
The normalization
! dD
Jadn dn = (D11)

follows directly from Egs. (D4) and (D9).
We show in Fig. 9 the function dD/d7n for various
values of A. Note that dD /d7 vanishes at the boundaries

10 T T T T T T T T
x=ms/mg x=0.9
8 . —
6 — —
4o | ]
dn
af- u
3 2=0.6 ]
2t-=0 A=0.3
0 | It | 1 1 1 T
0] 0.2 0.4 0.6 0.8 1.0

FIG. 9. Collinear decay function of Eq. (D10), with

A=m,/m,=0,0.3, 0.6, and 0.9.

n=A%and 1, and it approaches a § function as A—1. The
rather important photino-mass effect under the boost is
appropriately taken into account in the collinear approxi-
mation.
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