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The coefficients in Symanzik's improved lattice action for (pure) SU(2) and SU(3) gauge theories are determined to one-loop 
order by requiring the absence of leading scaling violations in a set of on-shell quantities, which arise in a world where two 
dimensions are compactified in a twisted manner. 

1. Following Symanzik's analysis of scalar lattice 
field theories [1], it has been suggested [2] that the 
leading ultra-violet cutoff effects in lattice gauge 
theories can be removed by adding a few next-to- 
nearest neighbour terms to Wilson's action [3] (for an 
introduction to the improvement programme see ref. 
[4]). For SU(N) lattice gauge fields U(x, la) (Ig = O, 1, 
2, 3) living on a four-dimensional hypercubic lattice 
with sites x and spacing a, the improved action reads 
[2,51 

3 

StU] = 4  .~ci(g2) ( 3 ~ ,  "67(e) ' (1) 
g~ z=o 

where go denotes the bare coupling constant and the 
cii are sets of  closed elementary loops C on the lattice 
as described by fig. 1. Furthermore, the weight ~ ( C )  
is defined by 

Z?(C) = Re Tr [1 - U ( e ) ] ,  (2) 

U(R) being the ordered product of the link variables 
U(x, ~) along e .  Finally, the coefficients ci(g20) satis- 
fy the normalization condition 

1 Heisenberg foundation fellow. 
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Fig. 1. Elementary loops on the lattice. The set ~0 contains 
all plaquette loops (a), ~ l all planar rectangles (b), ~2 all 
parallelograms (c) and ~ 3 all bent rectangles (d). Loops Q 
that differ by orientation only are considered equal and are 
hence counted only once in eq. (1). 

c0(g 2) + 8cl (g  2) + 8C2(g 2) + 16c3(g 2) = 1,  (3) 

and are to be chosen such as to cancel O(a 2) scaling 
violation terms. 

In this note we describe a method to determine 
the coefficients ci(g 2) in weak coupling perturbation 
theory and present the results of a one-loop calcula- 
tion. As explained in ref. [5], a host of conceptual 
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and practical problems can be avoided by requiring 
the removal of  O(a 2) scaling violations from on-shell 
quantities only. Furthermore, in that case one can 
prove that one of the terms in the improved action is 
redundant, i.e. one is free to choose 

C3(g 2) = 0 ,  (4) 

for example. In view of these simplifying features, the 
scope of improvement is restricted to on-shell quanti- 
ties here too and the convention (4) is adopted. 

In perturbation theory we have 

cruZ,  _ ~(0) +_2~(1) + O(g40) (5) 
i k l ~ O )  - c t ~ O t . t  

where c! 0) can be calculated from tree amplitudes and 
c} 1) from one-loop diagrams. At both levels, one com- 
bination of the coefficients has already been deter- 
mined by evaluating the heavy quark potential at 
physical distances and requiring the absence of O(a 2) 
scaling violation terms [2,6]. To obtain a second rela- 
tion, one is probably forced to consider an on-shell 
quantity, which is proportional to the three- or four- 
point vertex function such as the (connected) four- 
quark potential. Because of the many diagrams con- 
tributing at one-loop order, this particular quantity 
does, however, not seem to be a favourable case. 
Gluon scattering matrix elements are simpler in this 
respect, but in the absence of an infrared cutoffi t  is a 
delicate matter to define the S-matrix properly be- 
yond the tree level. Lacking a really convincing choice 
for the second quantity to be calculated, we were led 
to consider the exotic world to which we now turn. 

2. The basic idea of our approach is to look for a 
situation, where gluons are massive and appear as 
asymptotic states. Scattering amplitudes can then be 
defined unambiguously so that a wealth of  relatively 
simple on-shell quantities become available for the 
calculation of the coefficients c i. 

By a mechanism familiar from Kaluza-Klein theo- 
ries, gluons become massive when 2 of the 4 space-  
time dimensions are compactified in a twisted way. 
Thus, we assume the lattice has a finite extent L ,x in 
the x 1- and x2-direction with twisted periodic bound- 
ary conditions for the gauge field [7] : 

U ( x + L ~ , l ~ ) = a v U ( x ,  la)~2~ "1 (v = 1,2) (6) 

, t  L has physical units withL]a being an integer equal to the 
number of lattice sites in the transverse directions. 

(~;: unit vector in the positive v-direction). The twist 
matrices I2 v are constant, gauge field independent ele- 
ments of  SU(N), which satisfy the algebra 

~1 ~22 = exp(i 2rr/N) ~2 ~21 • (7) 

It is well known (e.g. refs. [8,9]) that eq. (7) fixes the 
£Z v up to unitary transformations. Furthermore, they 
are irreducible, i.e. any matrix which commutes with 
~21 and ~22 is proportional to the unit matrix. Using 
these properties it is easy to show that the only zero 
action fields are pure gauge configurations: 

U(x,/a)= A(x)A(x+a[a)  - 1 ,  A(x)ESU(N) ,  (8a) 

A(x+L#)  = a v A ( x ) ~  -1 (v = 1 ,2 ) .  (8b) 

The perturbative expansion of the functional integral 
can thus be performed straightforwardly by substi- 
tuting 

U(x,/a) = exp [g0aAu(x)], (9) 

taxing the gauge and expanding all entries in powers 

o fg  0. 
For the physical interpretation of the resulting am- 

plitudes, it is useful to go to the momentum represen- 
tation. The Fourier transformation appropriate to the 
boundary conditions (6) reads 

Au(x )  = (LZN) -1 

lr/a dk 0 dk 3 
X k~£f--~la 27r 2n exp(ik'X)Fkexp(~ikua)'4"(k)'(lO) 

where the transverse momentum components k l ,  k 2 
run over the discrete values 

k v = (21r/LN)nv, n v E Z ,  - lr/a < k v <~ ~r/a. (i  1) 

The NX N matrices I" k play the role of  group genera- 
tors and are defined by ,2 

I" k = ~21n2~2~1 exp [ilr(n I +n2)(n 1 +n 2 - 1)/N]. (12) 

The basic property of  these matrices is 

~ 2 v I ' k ~  1 = e x p ( i k v L ) r  k (v = 1 ,2 ) ,  (13) 

which insures that the Fourier representation (10) re- 
spects the boundary conditions (6) [the amplitude 

,2 The phase factor is added to make r k invariant under shifts 
o f n  v by multiples of N. 
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~iu(k ) is complex valued, not a matrix]. 
An important observation now is that Au(x ) is 

traceless and that the U(1) generator lr' 0 therefore 
does not occur in the Fourier decomposition of Au(x ). 
In other words, we have 

.71u(k ) = 0 i fn l (mOdN)  =n2(modN)  = 0 ,  (14) 

in particular, there are no modes with k± = 0. In the 
complex energy plane, the physical poles of  the (free) 
gluon propagator are given by 

k 0 = +i(k 2 + k2) 1/2 + O(a2) , (15) 

and since 

k 2 = m2(n 2 + n 2) >1 m 2 , m = 2rr[LU, (16) 

it follows that there is a mass gap, at least to lowest 
order perturbation theory. Moreover, for sufficiently 
small L (i.e. if m >> A~--g) asymptotic freedom implies 
a small effective gauge coupling and perturbation 
theory is therefore expected to yield a qualitatively 
correct and asymptotically precise description of the 
model at all energies, in particular, the mass gap 
found at lowest order persists for a range of couplings. 

If  we adopt the Kaluza-Klein point of  view that 
the theory is basically two-dimensional with 2 extra 
compact dimensions, the following physical picture 
results. At go = 0 there is a tower of free particles, 
which are labelled by the quantum numbers n 1 and 
n 2 and a spin quantum number s = +1 to account for 
the vector degrees of freedom of,4u(k ). The range of 
the nv's is restricted by eqs. (11), (14) and the masses 
M(n 1, n2, s) of these particles are 

M(nl ,n2 ,  s)=m(n21+n2)l/2 +O(a2). (17) 

Thus, the lowest lying particles (A mesons) have a 
mass equal to m, the next to lowest lying (B mesons) 
equal to v~rn and all other particles have masses M/> 
2m. When the gauge coupling is turned on, most of  
the latter particles must be expected to become un- 
stable. On the other hand,'the A and B mesons remain 
stable for small coupling and their scattering matrix 
can be computed without difficulty. 

We t'mally note that although we have fixed the 
gauge for perturbation theory, the particle states de- 
scribed above can be created from the vacuum state 
by applying gauge invariant operators, which are well 
localized in x o, x 3 and extended in the transverse 
directions.(Wilson loops winding around the world, 
for example). The A and B mesons are therefore truly 

physical excitations whose dynamics could in principle 
be studied by other means such as the Monte Carlo 
simulation method. 

3. Because there are only two independent coeffi- 
cients ci, they can be determined by requiring the ab- 
sence of O(a 2) scaling violation terms in two selected 
on-shell quantities. As the first of  these, we choose 
the mass ,3 mA of an A meson with quantum num- 
bers n 1 = 0 and n 2 = 1. The spin s must also be speci- 
fied, because the degeneracy of particles with differ- 
ent spin only holds i fg  0 = 0 and a = 0. Fortunately, 
the two spin states of  the A meson can be distinguish- 
ed by a conserved quantum number, namely the parity 
under a reflection o f x  1 combined with a charge con- 
jugation (only this combined operation leaves the 
boundary conditions invariant). Choosing positive 
parity, an appropriate interpolating field is simply 
Al (k  ) wi thk  = (/CO, 0 ,m,  0) and the state of  the A 
meson is thus completely characterized in a way inde- 
pendent of  the lattice spacing. 

To lowest order, m A is easily calculated by deter- 
mining the location of the pole of the propagator of  
Al (k  ) in the complex energy plane (see refs. [2,10] 
for more details). The result is 

m~)=m[1-a2m2(ctO)-e~O) +~)+O(a4)] ,  (18) 

where eq. (3) was used to eliminate c o in favour of  
c 1 and c 2. Improvement thus requires 

1 (19) ct0 _ 
a relation, which has been derived before from the 
heavy quark potential [2]. 

The second quantity which we have chosen for the 
calculation of the coefficients c i derives from the scat- 
tering amplitude T for the process 

A(0,1) + A(0, - 1 )  -+ A(1,0) + A ( - 1 , 0 ) .  (20) 

[A(n 1 , n2) denotes an A meson with quantum num- 
bers n l ,  n 2 and positive parity as explained above.] 
This transmutation of  A mesons can happen either via 
a point interaction or by  exchanging a B meson. In the 
centre of  mass system, T is a function of the momen- 
tum -+k 3 of the incoming mesons. B exchange then 
gives rise to a pole of  Tin  the complex k 3 plane with 
a residue, which may be identified with the square of  

,3 I.e. the energy (= eigenvalue of the transfer matrix [ 11 ]) 
of a one-particle state with momentum k 3 = 0. 
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a phenomenological coupling constant X. Being pro- 
portional to the three-point vertex function, X is a 
much simpler quantity than the full scattering am- 
plitude and we have therefore decided to calculate 
to obtain a second relation for the coefficients c i. 

The precise definition of X is as follows. Let 
F3(k, lz; p, v; q, to) denote the full propagator am- 
putated three-point function of,4u, ZA(k ) and ZB(k ) 
the residues of the poles of  the A and B meson propa- 
gators, and 

f ( k , p , q )  = N  -1 Tr {Fk [r'p, I ' q ] ) ,  (21) 

the U(N) structure constants. Then, )t is defined 
through 

[Z g ( k ) Z  g (p )ZB(q)  ] 1/2 

2 

~ e j F 3 ( k ,  1;p, 2 ; q , j ) = i ) t f ( k , p , q ) ,  (22) X 
/=1 

where e I = - e  2 = 1 is the polarization of the exchang- 
ed B meson and all momenta k, p, q are on mass shell. 
Explicitly, 

k = (iEA(ir), 0, m, i r ) ,  (23 a) 

p = (--iEA(ir), m, 0, i r ) ,  (23b) 

q = (0, - m ,  - m ,  - 2 i t ) ,  (23 c) 

with EA(k3) being the energy of an (even parity) A 
meson with momentum k 3 and r the solution of 
EB(--2ir  ) = 0. Without proof we note that the com- 
plex point (23) is far away from the singularities of  
F 3 and X is thus completely well defined. 

At the tree level of  perturbation theory, the calcu- 
lation of ~just amounts to the evaluation of the three- 
point vertex functions of  ref. [6] for the momentum 
configuration (23) and one finds 

X =g0 x(0) +g03jk (1) + O(g5),  (24) 

;k (0) = - 8 m  (1 - ~ a2m 2 [9(ct °)-  c~0) + ~) + 2c~0)] 

+ O ( 4 4 ) )  . (25 )  

Taking into account eq. (19), improvement of  X thus 
implies c~ 0) = 0 so that altogether we have 

x c~0) c~ 0 ) = s ,  c ~ ° ) = - i ~ ,  = 0 .  (26) 

While these numbers have been known for some time, 
our calculation is the first one to demonstrate that 
they follow from the requirement of  on-shell im- 
provement alone [5]. 

4. At one-loop order there is a total number of 
about 20 diagrams contributing to m A and ;k. For each 
diagram the O(a 2) term must be isolated and the co- 
efficients c! 1) are then adjusted such as to cancel 
these termsin m(A 1) and h (1). Except for a few momen- 
tum integrals, most steps in this calculation could be 
done analytically, but because of the complexity of 
the tree level improved propagator and vertices [6] 
this would be an extremely tedious way to proceed. 
We therefore decided to follow a different strategy, 
which relies more heavily on the use of a computer 
and which has proved to be efficient and reliable. 
Here, the method is only sketched in a few wordsl the 
details of  the basic techniques employed being post- 
poned to a separate publication [ 10]. 

Apart from the diagrams involving c~ 1) (which are 
tree graphs and can be done analytically), the diagrams 
to be calculated essentially depend on N and L/a only. 
Thus, the contributions to (say) mtA 1) can be calculat- 
ed numerically on a computer for fixed N and a range 
of L/a, the total O(a 2) piece (excluding c! 1) terms) 
being extracted after that by comparing the result 
with the expected asymptotic form ,4 

m(A1)/m ~ a 0 +(am)2al  
a---~O 

+ (am) 4 [a 2 + b 2 In (am)] + .... (27) 

Experience shows that eq. (27) provides an accurate 
fit to the data already for small L/a, and to determine 
a 0 and a 1 to 4 or more significant places, it is suffi- 
cient to calculate the diagrams for 10 ~< L/a <<, 36 
(N = 2) and 6 <~L/a <~ 30 (N = 3). 

A difficulty in our numerical approach is that 
straightforward programming using general purpose 
integration subroutines yields slow and hence expen- 
sive programs. However, using computer made vertex 
subprograms and an adapted exponentially conver- 
gent integration method [10], we were able to reduce 
the total amount of  computer time needed to 53 
hours on an IBM 3081K. Another difficulty is that as 
we are computing just a few numbers, the probability 
that a programming or compiler error will not be de- 
tected is sizeable. We have therefore written two inde- 
pendent files of  programs (one per author) for all dia- 
grams using different integration methods and sub- 

,4  The existence of an asymptotic expansion of this kind 
can be shown rigorously [1,10]. 
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Table 1 
Oneqoop improvement coefficients as determined in the 
present work. The A-parameter ratio is taken from ref. [6]. 
The quoted digits are siguifieant with a tolerance of at most 
one unit in the last flgure. 

SU(2) 0.1352 -0.01396 -0.00295 0.208387 
SU(3) 0.2370 -0.02521 -0.00441 0.183694 

routines. In addition, quadratic and linear divergences 
must cancel in the sum o f  diagrams and the logarith- 
mic divergence of  X(1) must match with the CaUan- 
Symanzik 13-function, thus providing a global test of  
our programs. A last technical point to be mentioned 
is that the significance loss in the course of  the calcu- 
lation can be substantial, especially in the last step 
when one extracts the O(a 2) terms from the data. 
The use o f  64 bit (and occasionally 128 bit) arithme- 
tic is therefore indispensable, along with a careful ob- 
servation of  the error propagation in the fit procedure. 

The outcome of  the calculation is displayed in 
table 1. As expected, our new value for the combina- 
tion c~ 1) - c(21) matches perfectly with that obtained 
previously from the heavy quark potential [6]. The 
coefficients c} 1) are reasonably small so that the one- 
loop correction o f  c 1 , for example, is about 20 -30% 
of  the tree level value o f g  2 around 1 (i.e. in the range 
where Monte Carlo simulations are usually done). 
However, this should not lead to the conclusion that 
O(a 2) scaling violation terms at one-loop order are 
small. In eq. (27), for example, one finds for N = 2 

a 0 = - 0 . 0 1 6 8 ,  a I = - 0 . 0 1 1 0 ,  (28) 

so that for the O(a 2) term to be less than 10% o f  the 
O(1) term, L/a  must be greater than 8 (or, equivalently, 
am <<, 0.4). When the same analysis is applied to the B 
meson mass, the bound am <<, 0.2 is found, thus con- 
firming the expectation that the cutoff  affects the 
heavier particles more strongly than the lighter ones. 

5. In order to make computer simulations a precise 
tool for the investigation o f  the low energy properties 
o f  gauge theories, it is necessary to understand the 
structure and magnitude o f  scaling violations. In 
particular, it would be important to clarify whether 
indeed the O(a 2) effects in ordinary lattice gauge 
theories are organized as suggested by perturbation 

theory, i.e. such that they can be simultaneously re- 
moved by improving the action. Future Monte Carlo 
studies o f  improved lattice gauge theories, using our 
values for the coefficients c i as a first approximation, 
should help to settle this question. In addition, the re- 
duction of  scaling violations achieved by improvement 
may turn out to be substantial so that for a given 
amount o f  computer time more accurate results could 
be obtained than would be possible with Wilson's 
action. Investigations o f  O(a 2) effects are certainly 
expensive, not so much because the improved action 
is complicated, but because a set o f  on-shell quantities 
must be reliably calculated for a range o f  lattices ,s  
Clearly, supercomputers are needed for that as well as 
improved techniques to extract glueball masses and 
other spectral quantities from the generated ensemble 
o f  gauge field configurations. 

We finally remark that a twisted world including 
quarks exists [12] and that our method can therefore 
be applied to calculate the improved quark action 
[13,14].  

,s We remind the reader that our improved action does not 
imply any improved asymptotic scaling behaviour in the 
sense that the lattice #-function more rapidly approaches 
its universal two-loop form. 
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