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Non-local charges [1, 2] are studied in the general setting of local quantum field theory. It is 
shown, that these charges can be represented as polynomials in the incoming respectively outgoing 
fields with coefficients (kernels) which are subject to specific constraints. For the restricted class 
of models of a scalar, massive, self-interacting particle in four dimensions, a more detailed analysis 
shows that all non-local charges of the generic type (genus 2) are products of generators of the 
Poincar6 group. This analysis, which is based on the macroscopic causality properties of the 
S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two 
dimensions. 

I. Introduction 

We present  in this article a systematic invest igat ion of non- local  charges in the 

general setting of local q u a n t u m  field theory. It was argued in [2] that a few basic 

properties of field-theoretic models,  such as locality, covariance and the existence 

of non-tr ivial  scattering should be sufficient to determine these charges explicitly 

(similar  to the case of the s tandard  charges, cf. [3-5]).  Our  present  results are only 

another  step towards a solut ion of this problem. But they reveal the strong constraints  

imposed on non- loca l  charges by the fundamen ta l  principles of qua n t um field theory. 

The prototypes of non- loca l  charges have been discovered in the q u a n t u m  non-  

l inear  ~r-model in two d imens ions  [1]. They can formally be represented by 

Q,b ~c d x  dy  e ( x  . . . . . . .  b 

where .ab J , ,  a , b = l , . . . , n  are the Noether  currents cor responding  to the O(n)  

symmetry of the model ,  and  Z is a renormal iza t ion  constant.  The operators Q~b 

are dis t inguished by the fact that they commute  with the hami l ton ian ,  i.e. they are 
constants  of  motion.  

As this example  illustrates, the non- local  charges are typically ob ta ined  by mult iple  

in tegrat ion of expressions involving products  of local fields. As a consequence,  they 

have propert ies  which are not  shared by the s tandard  charges. One can show, for 

example,  that QO~ does not  commute  with the S-matrix.  In fact, the restrictions 
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arising from the existence of Q~b essentially fix the S-matrix of  the o--model [1]. 
In view of this result it is an important question whether non-local charges can also 
exist in physical space-time. 

In a general analysis of  non-local charges one is, at the very beginning, faced 
with the problem of giving a proper definition of these quantities. As a matter of  
fact, in the concrete example given above one must go through a detailed analysis 
of the short-distance behaviour of the currents j i  b in order to see that the charges 
Q~b are well defined [1]. Therefore it seems hopeless to base a general analysis of  
non-local charges on an explicit representation of these quantities in terms of local 
fields, such as in (1.1). 

It has therefore been proposed in [2] to characterize the non-local charges by a 
few general properties which can be extracted from the known examples. We recall 
these properties in sect. 2. We will then discuss (sect. 3) how the non-local charges 
act on collision states. Our main result in this context, which was already quoted 
in [2], says that these charges can always be expanded in terms of a finite number 
of  asymptotic creation and annihilation operators. The remaining problem is then 
to determine the form of the kernels in this expansion. Since there exists an 
abundance of non-local charges in free field theories we will concentrate in this 
part of  our analysis on theories with non-trivial scattering. 

In order to avoid complications arising in the presence of internal symmetries we 
consider only models of a single, scalar self interacting particle. Moreover, we 
restrict our attention to the simplest non-trivial types o f  non-local charges (the 
charges of  genus 1 and 2 according to the terminology of sect. 2). We will show in 
sects. 4 and 5 that, in four space-t ime dimensions, the only charges of  genus 1 are 
the generators P~ and M ~" of the Poincar6 transformations, and that the charges 
of  genus 2 are bilinear in these operators. Similar results hold also in two dimensions 
if there is non-trivial multi-particle scattering and particle-production in the model 

(cf. sect. 6). 
Although we have studied only a very restricted class of models, our results seem 

to indicate that non-local charges are polynomials in the generators of the space-time 
and internal symmetries also in general. As will become clear, the obstruction to 
more interesting examples are the clustering properties of the S-matrix. It is only 
in two dimensions, where these clustering properties need not hold, that non-local 
charges of  the type found in the G-'model can exist. 

2. Assumptions and notations 

We are dealing with the Wightman theory of a single massive, scalar particle 
subject to the standard assumptions, such as locality, covariance, and relativistic 
spectrum condition. In particular, we assume that the mass shell of  the particle is 
isolated from the rest of  the spectrum, and that there is a Wightman field (b(f), 
f ~  5e([~ 4) connecting the vacuum /2 and the single particle states. The collision 
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states can then be constructed in the usual manner  (cf., for example,  [6]), and we 
assume that  they form a dense set of  vectors in the physical  Hilbert space (asymptot ic  

completeness) .  
Let us now turn to the characterization of  the non-local  charges Q (cf. [2]). These 

charges are in general u n b o u n d e d  operators;  the informat ion about  their domain  

which is needed here is conta ined in our  first postulate. 
(i) Q is a closed, hermit ian operator  whose domain  @(Q) contains the Wightman 

domain  @o, i.e. the set o f  vectors which are generated from the vacuum /2 by 

applying polynomials  in the Wightman fields. 
In view of  the difficulties arising in the explicit construct ion of  non-local  charges 

(cf. the remarks in the introduct ion)  one might  wish to consider  also situations in 
which Q is only defined in the sense o f  sesquilinear forms on @o × @o. But then it 

is unclear  whether  there exists an unambiguous  extension of  Q to the collision states. 
Our second assumpt ion  imposes certain continui ty properties on Q. 

(ii) Given n c ~ there exists a Schwartz-norm I1" ]], on 5e(R 4) such that 

]]Q~b(f,) - - - (5(f .)~[[  ~< c i i f , [ ] , . . .  ][f,l[~ 

for all f , , . . .  ,fn c ~ ( R  4) and some constant  c. 
Finally, we come to the most  important  property o f  non-local  charges, which 

reflects the fact that  they are obtained by integrating products  o f  local fields over 
some space-like plane (compare  e.g. (1.1)). Due to this construct ion and locality, 
all multiple commuta tors  involving a non-local  charge Q and sufficiently many local 
field operators  have to vanish if the fields are localized at different points o f  that  
plane. Moreover ,  since Q is a constant  of  motion,  these commutators  also vanish 
if one replaces Q by Q ( x )  = U ( x ) Q U ( x )  l, where U ( x )  is any space- t ime transla- 

tion. In fact, we will only use these commuta t ion  properties of  Q(x) ,  thereby allowing 

also for charges Q which are not invariant under  space- t ime translations (as, e.g., 
the generators  o f  the Poincar6 transformations) .  Hence our  last postulate reads as 
follows: 

(iii) There exists a number  N such that (in the weak sense on ~o × @o) 

[- • - [Q(x) ,  &(f~)], - • • ~b(fN+,)] = 0  

for all translations x and test functions f ,  i = 1 , . . . ,  N + 1 having support  in N + 1 
disjoint double-cones  with compact  base in some fixed space-like plane. The minimal 
number  N for which this relation holds is called the genus  of  Q. 

It is clear that  this characterizat ion o f  non-local  charges extends to theories in 
any number  of  space- t ime dimensions with an arbitrary particle spectrum. It also 
applies to spinorial (super-) charges. However ,  there one must admit  in postulate 
(iii) commuta tors  as well as ant icommutators ,  depending  on the Bose or Fermi 

character  o f  the quantities involved. 
Charges o f  genus 0 are clearly multiples of  the identity. The s tandard charges, 

which are obtained by integrating current densities over all space, are o f  genus 1 
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and trivial examples of non-local charges of arbitrary genus N can be obtained by 

taking N-fold products of charges of genus 1. The non-local charges (1.1) in the 
o,-model provide non-trivial examples of charges of genus 2 in two dimensions. 

As we will demonstrate in the subsequent sections, the characteristic properties 
of non-local charges summarized in the above postulates contain sufficient informa- 
tion for their detailed analysis. 

3. Action of  non-local charges on coll ision states 

In this section we shall show how postulates (i) to (iii) can be used to determine 
the action of non-local charges on collision states. We begin by recalling some basic 
facts from collision theory. 

Given n single-particle wave functions f c 5e(R 3) one obtains the corresponding 
incoming respectively outgoing n-particle collision state by the Haag-Ruelle con- 
struction [6], taking the limits 

s -  lim 6(f~.,) " " " ~b(f~ ,)O = 1Fex(/ l , ' . .  , fn)- 
t ~  t e x  

(3.1) 

Here "ex" stands for "outgoing" or "incoming" and t eX for +0o or -00, respectively. 
The functions f.,  c 5e(E 4) are given in momentum space by 

f,.,(P) = e i'(p° % ) f ( p ) 6 ) ( p ° ) h ( p 2 ) ,  (3.2) 

where top = (p2+ m2)1/2, p2= (p0)2 p2 h is a smooth function with support about 

the isolated point p2= m 2 in the mass-spectrum and h (m 2) = 1. Because of technical 

reasons we will only work with configurations of wave functions f l , . . . , f n  which 
have compact and mutually disjoint supports. We denote the linear span of the 
corresponding collision states and the vacuum O by @gx; this space is dense in the 
Fock space Y~0 x of all collision states. As is well known, one can introduce on )Uo x 
asymptotic creation and annihilation operators a * , ( f )  and aex(f), respectively, 
satisfying canonical commutation relations. It is our aim to expand the non-local 
charges in terms of these operators. 

In a first step we shall demonstrate that the non-local charges Q are defined on 
@gx. Although the argument is standard we sketch it here, since similar methods 
have to be applied at various points of our analysis, where the details will then be 
omitted. We make use of the fact that the test functions* f in the definition (3.1) 
of the collision states can be approximated by functions ft which have compact 
support in configuration space. Namely, let F be the set of four-velocities 

/ '  = {(1, p / w v ) ;  p c supp f } ,  (3.3) 

and let /~ be any open bounded neighbourhood of F. Then there exist smooth 

* To simplify notation we omit the index i for a moment. 
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functions X which are equal to 1 on F and have support in /~. Setting 

f~(x)  = X ( x /  t ) f~(x)  (3.4) 

it is obvious that f,  has support in the region t./~. Moreover, the difference between 
f, and f ,  tends to 0 as t--~ +~ .  For later reference some relevant properties off~ and 
f~ are listed in the following lemma (cf. for example [6]). 

LEMMA 3.1. Letf~ and f,  be defined as above and let I] " I1~ be any Schwartz norm 

o n  o,G¢(~4). If  It I ~> 1 then 

(a) f~, f, c ~(R4),  
Ilf~]]~ +IIf, ll~ <~ C~ It] ~' for some constant Ca and some n ~ c N ,  

II f~ - f ~  I1~ <~ C~]t[ -~ for all n c N and certain constants c~. 

(b) s u p p f t ~  t/~. 
(c) the ~(R4)-valued functions t-~f~ and t->f~ are smooth in the topology of 

5~(R4), and the properties given in (a) and (b) hold analogously for the derivatives 

d f t / d t  and d f t / d t .  
Now given single-particle wave functions f b - . .  ,f~ with compact and mutually 

disjoint supports, then the corresponding velocity sets F I , . . . ,  F~ are disjoint, hence 
there exist open neighbourhoods / ~ , . . . , / ~  of F b . . . ,  F~, respectively, which are 
mutually spacelike separated. Using approximating functions f~.t,.-. ,f~., of  
fL , ,  . . .  ,f,,* which have support in the sets t •/~ . . . . .  t . / ~  as well as the space-like 

commutation properties of the field 4) we can prove 
PROPOSITION 3.2. ~ ×  is contained in the domain ~ ( Q )  of any non-local 

charge Q. 
Proof: Since Q is closed and the vectors d~(fl,,)""" d~(f~,,)/2 are elements of 

@(Q) we must only verify that the vectors Qcb(fl , t)  • • • c~(f~,~)f2 converge strongly 
as t ~ t ~x. To this end we apply the familiar trick and take the derivative of these 
vectors with respect to t. That this may be done follows from the smoothness of the 
functions t->f~, and the continuity properties of Q given in postulate (ii). Taking 
into account that (d/dt)&(f~,,)~2 = 0 we get 

d t  Q4)(fl,,) [ ( d ) ] 4 ,(f~,)~ d Q&(f l , , ) " '&( f , , , ) f2  ~,~k~,~,, "'" ~ ~ f k ,  ,~b(f~,) . . .  , 

and using postulate (ii) as well as the above lemma it is clear that we can replace 
the test functions dfk, t / a t  and ftj in the commutators by dfk. t /d /and ft, t, respectively, 
the difference being rapidly decreasing in Ill. Yet since the functions d fk . t / d l  and 
fl,, have support in the space-like separated regions t. /~k and t. Fi, all commutators 
[c~(dfk, J d t ) ,  &(f~,,)] are equal to 0. So we get the bound 

d Q&(f,,,) - .- 6( f , , , )~2  ~ cjlt I J 

for any j c N. The desired result then follows by integration. 
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Let us r emark  that  the matr ix  e lements  o f  

( ~ e X ( g , , . . . ,  gin) ,  Q a F e × ( f ,  . . . .  , f , ) )  (3.5) 

r ega rded  as l inear  func t iona ls  on the test funct ions  ~ ,  . . . ,  gm, f ,  • . .  , f ,  are (restric- 

t ions of) d i s t r ibu t ions  in 6e'(~3("+")) *. We call  these d is t r ibu t ions  kernels  and  denote  
them by** 

" ( q ,  . . . .  , q m l Q l p ,  . . . , ,o,) °x • (3.6) 

For  the expans ion  o f  the  non- loca l  charges  in terms o f  a sympto t i c  c rea t ion  and  

ann ih i l a t ion  opera to r s  it is more  convenien t  to work  with the t runca ted  kernels  

eX(qb- - . ,  q , , l Q I p ~  . . . .  p ~ ) ~  (3.7) 

which are given by  the recursive relati, on 

°~(ql . . . .  , qmlQIp,..., p°)ex 

E eX(q, , , . . . ,  q ,~ lQIp j  . . . . .  , pj,)~r×. ~X(q, . . . .  . . . ,  q,,,,IP, . . . . . . .  , p~,,)ex. (3.8) 
l . J  

Here the sum extends  over  all o rdered  subsets  I = ( i l  . . . .  , ik)C_ ( 1 , . . . ,  m) and  

J = ( J b - -  . , j r )  c (1, . . . ,  n) as well as / = Q and  J = 0 ,  where  we a d o p t  the conven-  
t ion that  Q labels  the vacuum.  It is a s imple  consequence  o f  the above  p ropos i t i on  

that  one can represen t  Q in terms o f  a sympto t i c  c rea t ion  and ann ih i l a t ion  opera to r s  
accord ing  to 

~ l f d 3 q l . . . f d 3 q , n l d 3 p l  . . . f d3p"  Q 
,,,,,,-o m ! n ! 2wq~ J 2o)q., d 2wp, 2w~,. 

x a*x(qO • • • a * x ( q , , ) e ~ ( q ~ , . . . ,  q , , , l Q I p l , . . .  , P , ) e r × a ~ x ( P , ) ' ' "  ae,,(p,,) 

(3.9) 

in the sense of  sesqui l inear  forms on @gx × @~)x. 

Up  to this po in t  we d id  not  make  use o f  the  charac ter i s t ic  p roper t i e s  o f  non- loca l  

charges,  given in pos tu la te  (iii). Using this input ,  we will now es tabl ish  certain 

specific s u p p o r t  p roper t i e s  o f  the co r r e spond ing  t runca ted  kernels  (3.7). 

PROPOSITION 3.3. Let  Q be a non- loca l  charge  of  genus N. Then 

eX(ql, • • •, q , , I Q l P , , . . . ,  p,)~:" = 0 

in the sense of  d i s t r ibu t ions  on the (open)  set o f  conf igurat ions  

{ql . . . .  , qm, Pl . . . .  , p ,}  consis t ing of  more  than  N different  momenta .  If, in pa r t i cu la r  

m > N or  n > N, then the t runca ted  kernels  vanish  ident ical ly .  

• To verify this one has to evaluate the dependence of the functions f,  and f ,  on the underlying 
single-particle wave functions f, see for example [7]. 

• * Note that these kernels are unambiguously  defined only for non-coinciding momenta  ql . . . .  , qm and 
p ~ , . . . ,  p,,, respectively. We will therefore restrict our attention to such configurations. 
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Proof:  Let f ~ , . . .  , f ,  and  g ~ , . . . ,  gm be two sets o f  smoo th  s ingle-par t ic le  wave 

funct ions  with compac t  and  (for  each set separa te ly)  mutua l ly  d is jo in t  suppor ts .  It 

is ac tua l ly  sufficient here to cons ide r  funct ions  whose  suppor t s  are con ta ined  in 

small  bal ls  such that  the suppor t  of  any func t ion  f i = 1 , . . . ,  n has a tr ivial  intersec-  

t ion with the  suppor t  o f  at most  one of  the funct ions  gj, j = 1 , . . . ,  m. Using eq. (3.9) 

and  the fact  tha t  the ope ra to r s  ~b(f)  and  oh(g,)* converge  for  t ~  t ~x to a sympto t i c  

c rea t ion  and  ann ih i l a t ion  opera to r s ,  respect ively ,  it fol lows by  an a rgument  as in 
the p r o o f  o f  the p reced ing  p r o p o s i t i o n  that  the smeared  t runca ted  kernels  can be 

r ep resen ted  in the form 

OX(g, . . . . .  g~lQIf,,... ,A>~ x 

= }im x ( - 1 )  ~. (12, [ . . .  [Q, 6(f~. , )] ,  • • •, 6(f~. , )] ,  6 (g l . t )* ]  . . . . .  6 ( g m , , ) * ] O )  

in an obv ious  nota t ion .  Moreover ,  one can pe rmute  on the r igh t -hand  side of  this 

equa t ion  the t e s t func t ions f . t  i = 1 , . . . ,  n, respect ive ly  gj.tj  = 1 , . . . ,  m, without  chang-  

ing the limit.  Now in o rde r  to prove  the s ta tement  we must  show that  this l imit  is 

zero if  there  are N + 1 func t ions  amongs t  f~, . . . ,  fn, g~, . . . ,  gm with mutua l ly  d is jo in t  

suppor t s ;  wi thout  res t r ic t ion  of  genera l i ty  we may  assume that  

f ~ , . . .  ,fn, g~ . . . . .  gN+~ n ( i f  n-< N )  are these funct ions.  Accord ing  to l emma  3.1 

we can a p p r o x i m a t e  the co r r e spond ing  tes t func t ions  f ~ , , , . . . ,  gu+~ n., by  funct ions  

fl. , ,  • • •, gN÷l- , . ,  having suppor t  in N + 1 d i s jo in t  doub le  cones with c ompa c t  base  

in the space- l ike  p lane  x0 = t, x c R 3. It then fol lows f rom pos tu la te  (iii) that  the 

above  mul t ip le  c o m m u t a t o r  vanishes  in the  l imit  o f  a sympto t i c  t imes t. I f  n or  m 

are larger  than  N, then the same a rgument  shows that  the regular ized  t runca ted  

kernels  van ish  for  any poss ib le  choice  of  the s ingle-par t ic le  wave funct ions  f ~ , . . . ,  f ,  

and  g ~ , . . . ,  g,,, respect ively.  

It is an immed ia t e  consequence  of  this p ropos i t i on  that  the expans ion  (3.9) o f  Q 

in terms o f  incoming  as well  as ou tgoing  fields te rmina tes  at a finite sum. Using the 

p reced ing  results  we now can give more  expl ic i t  r epresen ta t ions  o f  the kernels  o f  

charges  Q o f  genus  1 and  2. 

G e n u s  1 : I f  Q is a charge  of  genus 1 it is comple t e ly  de t e rmined  on @i x by  the 

kernels  

(121Q112), (121QIp), (qlQI12), (qlQlp)~ 

involving on ly  the v a c u u m  and  s ingle-par t ic le  states (cf. eq. (3.9) and  p ropos i t i on  

3.3). It thus fol lows that  Q commutes  with the S -mat r ix  (weakly  on @ ~ x x ~ x ) .  

Since Q is a he rmi t ian  o p e r a t o r  and  since 12 is in the d o m a i n  of  Q it is c lear  that  

<121QI12> is a real  n u m b e r  and  that  (12]Qqp) = ~ is a square - in tegrab le  funct ion 

with respec t  to d3p/2top. The remain ing  d i s t r ibu t ion  (qlQlp)~ vanishes  if  q ~ p (cf. 

p r o p o s i t i o n  3.3). Moreover ,  tak ing  into accoun t  that  this d i s t r ibu t ion  is the kernel  

o f  an o p e r a t o r  which  conta ins  in its d o m a i n  the  one-par t i c le  subspace  of  @i x we 
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M 

( q [ Q I P ) T  = 2 A ( ~ ) ( q ) O ( q m ) 6 ( q - P ) ,  (3.10) 
m = O  

where A(,.) are locally square- integrable  funct ions.  From the hermitici ty of Q there 

follow further  obvious properties of these funct ions,  which we do not  need to give 

here. 

G e n u s  2 :  Similarly to the case considered above one can see that a charge of 

genus 2 is de termined on @~× by the kernels 

(alQln),  (q lQla)  , 

¢X(q,, q2IQIp)T, 

and their complex conjugates.  

e×(qb q2lQlY2), (qIQIP)T, 

eX(ql, q2lQ]P. P2)~ x 

Besides the obvious properties of these kernels which follow from the fact that 

~ x  is in the doma in  of Q we have further in format ion  from proposi t ion  3.3 on the 

last two kernels. Namely,  

M 

"(q, ,  q ~ l Q l p ) f :  
trl~O 

[ C ~ ) ( q t ,  q 2 ) O ~ q ' ~ ) 6 ( q 2 - p ) + ( q ~ - - ~ q 2 ) ] ,  (3.11) 

~×(qb q2lQlP,, p2)~ ~ = 2 
M 
~., [B~ , . )~m. ) (q l ,  ~m) ~m') ex __pl)Oq 2 t ~ ( q 2  __ p 2  ) q2)Oq, 6 ( q l  

m+m'~O 

+ (q, ~ q2)], (3.12) 

where B~)(m,)(ql, q2) = B ~ , ) ( m ) ( q 2 ,  q~) because of the symmetry propert ies of two- 

particle states. 

In the case of a free field theory every operator  Q of the above form is of finite 

genus,  s imply because free fields have c -number  commuta t ion  relations. So the 

general  results ob ta ined  so far are in a certain sense optimal.  Yet, if there is non-tr ivial  

scattering in the model  much more can be said. This will be exemplified in the case 

of charges of genus 1 and  2 in the subsequent  sections. 

4. Charges of genus 1 

In this section we study charges Q of genus 1 in interact ing theories. Assuming 

that there is non-tr ivial  elastic scattering and particle product ion  we will arrive at 

the result that the set of  these charges consists of the generators of the Poincar6 

t ransformat ions  (proposi t ion 4.1). 

* We use the notation (m) for any multiindex of the form (il, - - -, i,,,) with i k - 1, 2, 3. The symbol 
a t '), where a is a vector, stands for a,,,.., a~,,, = (-1)"a ~, • . • a i,,,. The following summation convention 
is used for symmetric tensors of rank m: a ~'') T~,,)= ~ . ~,,_ ~ a~ . . . a~, T~,. .~m. 
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From sect. 3 we already know the general form of Q on ~ x .  We want to show 
now that Q cannot change the asymptotic particle number, i.e. that 

(q[Q[~2) = 0. (4.1) 

Recalling the fact that Q commutes with the S-matrix, it is clear that the vectors 
U(a, A ) Q ~ ( f ) ,  where q t ( f )  is any single-particle state and (a, A) any Poincar6 
transformation,  describe states which do not scatter. Now, if the component  of  any 
one of these vectors in the two-particle subspace of ~o × would be different from 
zero, we would obtain, by varying f and (a, A), a total set of  two-particle collision 
states which do not scatter. Since this would be in contradiction to our assumptions, 
eq. (4.1) follows. 

In order to obtain more information about (¢]Q]p)r we apply Q to collision states 
having a large spatial separation from the origin. On these states the terms with the 

highest number  of derivatives in the representation (3.10) of  (q]QIp)-c give the 
dominant contributions. This fact will simplify the analysis of  the corresponding 
coefficients A(M). More specifically, let gl, g2 and fl ,  f2 be smooth functions with 
compact  and mutually disjoint supports and let 

gk.A(q) =eiA"'qgk(q), k = l, 2,  (4.2) 

where A > 0 and a is a unit vector. The functionsfk,~, k = 1, 2 are defined analogously. 
Then 

1 
• _ _  o u t  i n  

l i r a  (iA) M ( ~  (gl,a, g2.a), Q ~  (f,.~,f2,A)) 

= (kP'°Ut(gb g2), tFin(a(M)A(M)f,,f2)) 

+ (llO'°Ut(gl, g2), 1/'rin(fl, a(M)A(M).f2)) 

and a similar relation holds if " in"  and "out"  are interchanged. Therefore, using 
the hermiticity of  Q and the fact that a is arbitrary we arrive at the relation 

(~ttout(g,, g2), ~ i n ( A ( , ) f b f 2 ) ) +  (grout(g,, g2), a/~in(fl, A(M)f2)) 

= (~°ut(5,~M)gl, g2), qrin(fbf2))+(qt°Ut(g,,A(M)g2), g'i"(f~,f2)).  (4.3) 

Hence A(M ) satisfies the functional equation 

A(M)(Pl) + A(M)(p2) = A(M)(q,) + A(M~(q2) (4.4) 

whenever ql ¢ q2, Iol #P2 and (ql, q2, Pl,P2) belongs to the support of 
out(q~, q2]P~, P2) ~n- We note that in order to make the step from (4.3) to (4.4) rigorous 

one must actually regularize A(M) by averaging A(M~(A • p) over the Lorentz trans- 
formations A. The resulting function, for which eq. (4.4) still holds, is then smooth in p. 

It is well known that the only solutions of  (4.4) are (apart from constants) linear 
combinations of  energy and momentum. The weakest condition under which this 
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result has been derived is the assumption that eq. (4.4) holds in all Lorentz-systems 

for at least one non-trivial elastic two-particle scattering configuration [8]. Because 
of the Lorentz invariance of the S-matrix, this condition is given, whenever there 

is non-trivial elastic two-particle scattering in the model, i.e. scattering in some 

non-forward direction. 
Arguing now as in [3] (cf. also the proof of proposition 5.4) one can show that 

A~M~=0 if M~>2 and that the remaining terms in (3.10) are proportional to the 
kernels of the generators of the Poincar6 transformations. We remark that a term 
of the form 6 ( q - p )  cannot appear in (3.10) because it would correspond to the 
kernel of the particle number operator, which does not commute with the S-matrix 

since there is particle production [9]. So we arrive at 
PROPOSITION 1. Let Q be a non-local charge of genus 1 in a theory with non-trivial 

elastic two-particle scattering. Then 

Q =  a . ~+ a~PU + a u . M  "" on @~×, 

where a, a . ,  a . .  are real numbers. 

5. Charges of genus 2 

We turn now to the more interesting charges Q of genus 2, where the analysis is 
much more complicated. We proceed as follows. In a first step we decompose Q 

into a sum of operators with definite energy-momentum transfer. Then, using the 
non-triviality of the S-matrix and its clustering properties, we will find that charge 

operators with non-zero energy-momentum transfer do not exist (lemma 5.1, 5.2 
and 5.3). With this information at hand we shall finally show that non-local charges 
of genus 2 can only be polynomials of second degree in the generators of the 

Poincar6 transformations (proposition 5.4). 
So let Q be any non-local charge of genus 2 and let X c 5f(E 4) be any real-valued 

smooth function. Then the expression 

Q ( X )  = f d 4 a x ( a ) U ( a ) Q U ( a )  
1 

is a well-defined hermitian operator on 90, and it is straightforward to show that 
its operator closure, which we also denote by Q ( X ) ,  is again a non-local charge of 

genus 2. Its kernels are 

( 2 z r ) 2 . ~ ( q , + ' ' ' + q m - P l  . . . . .  Pn)" eX(ql . . . . .  q.,IQIp, . . . . .  p,,)ex, (5.1) 

o p°=we~ f o r j = l  .. m, i = 1 , . ,  n;)~ denotes the Fourier where we set qj = t%j, , . , . , 

transform of X- 
Now we choose X in a particular way. Namely we assume that )~ has compact 

support and satisfies one of the following conditions: 

(1) supp)~ ~ {q c ~4; e < q 2 < 4 m 2 - e } ,  



(2) 

(3) 
(4) 
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supp )~ c {q c R4; rn2+ s < q2}, 

supp)~c  {qc~4;  q2< m 2_ s}\{0}, 

supp )~ ~ {q ~ ~[~4 [q[ < e}, 
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whereq2 (qO)2_q2,[ql2=(qO)2+q2andO<s , 2 = <sin . Since the sets in (1)-(4) form 
an open covering of R 4, it is clear that by varying X in QO¢) one can rediscover Q 
on @gx. Moreover, recalling the general form of Q on @gx (cf. sect. 3), it is easy to 
check, that only the following kernels of Q(x) (and their complex conjugates) can 
be different from zero if X satisfies one of the conditions (1)-(4). 

(1) (qlO(x)ln), eX(q,, q2l Q(X)I V)~ , 

(2) eX(q,, q~lQ(x)ln), 
(3) (q]O(x)lP)z, 
(4) (n[Q(x)ln), (qIQ(x)Ip)T, eX(q,, q2IQ(x)IP,, p:)~x. 

We denote the corresponding operators by Ql, Q2, Q3 and Q4, respectively. Assuming 
that there is non-trivial elastic two-particle scattering, we obtain the following 

lemmas. 
L E M M A  5 . 1 .  Q~ =0. 
Proof: Let us first assume that M ~> 1 in (3.11) and calculate matrix elements of 

Q * between suitable one- and two-particle states with large angular momentum. 
(Compare the argument leading to proposition 4.1.) Due to the M-fold derivatives 
in the kernel (3.11) we get for large A the asymptotic expansion 

out q Q a ) + O  , (iA)M (qt (g,,gz.~),Qt~(f~))=(~Om(g,,g2,A) ' ~n 

where g2,A, fA are defined as in (4.2), and T ~ ,  is an incoming two-particle state 

with wave function 

sym [a~M)ei~'h~(p,, P2)f(P2) eiA" ":] - 

Here "sym" denotes symmetrization with respect to the momenta. Now, using the 
clustering properties of the S-matrix** (see [6]) we obtain from the above expansion 
in the limit A --, +o0, 

1 
,li+m, ( / ~  (qt°U¢(gl, g2,A), Qqt(fa)) 

= f  d3q~f  d3q2g,(ql)g2(q2)a(M)C~,'~,(q,,q2)f(q2). 
26% 20%~ 

* To s impl i fy  n o t a t i o n  we o m i t  in the p r o o f  the index  1. 
*'~ H e p p ' s  c lus te r  t h e o r e m  d o e s  no t  on ly  ho ld  for  test  f u n c t i o n s  bu t  for  a r b i t r a r y  s q u a r e - i n t e g r a b l e  wave  
func t ions .  This  fo l lows  f r o m  the  f ac t  tha t  the  S - m a t r i x  is a b o u n d e d  o p e r a t o r  a n d  tha t  the  t r a n s l a t i o n  

o p e r a t o r s  are  u n i f o r m l y  b o u n d e d .  We have  to use  this  fact ,  b e c a u s e  n o n - l o c a l  c h a r g e s  m a y  t r a n s f o r m  

s m o o t h  wave  f u n c t i o n s  in to  f u n c t i o n s  w h i c h  do  no t  b e l o n g  to the s p a c e  o f  test  f unc t ions .  
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On the other hand, using (3.11), we have the asymptotic expansion 

(iA)M (Q~°U'(g,,g2.,), ~ ( L ) )  = (~ l .~ ,  ~ ( £ ) ) + 0  . 

where ~ , ~  is a single-particle state with the wave function 

2 J - -  d3ql sym [gl(ql)gz(q2) eiA" " q:l a(~)~°~tc(M)tq~,̀  q2) 
2o9q~ 

Hence, by the Riemann-Lebesgue lemma, we get 

1 
lim ~ (Q~.O~t(g,, g:.A), ~(fA)) 

A~+~ (iA) 

= f d3q---"! f d3q: glfq,)g2(qe)a(M)c~)(q,, q2)ffq2) 
J 2wq, J 2o~q~ 

Because of the hermiticity of Q, this limit coincides with the limit obtained above. 
So we arrive at the conclusion that the coefficients C ~ )  in (3.11) are independent 
of "ex".  The same result can be derived for M = 0 if one takes into account that 
the kernel (qlQIO) is independent of "ex".  Using the identity 

1 1 
AM (a/z°Ut(g,, g2, g3,A), Q~lzin(f,,f2,x)) -- -~--~ (Q~°"t(gl ,  g2, g3,A), ktzin(fl,f2,x)) 

we obtain in a similar way the following relations: 
(i) If MI> 1, then 

(°/t°Ut(g,, g2), t l t in(c(M), f , ) )  = ( k O ' ° u t ( g , ,  g2), l I f °u t (¢(M) , f , ) ) ,  (5.2) 

where 

f d3q C<M)(p, q)f2(q)g3(q) C(M)(p) = 2tOq 

is a square integrable function with respect to d3p/2wp. This result means that the 
states ~e×(c<M),f~) do not scatter. Hence we can proceed along the lines of the 
proof of eq. (4.1) in sect. 4 with the result C(M)=0. 

(ii) If M = 0, then 

(lx/f°Ut(gl, g2), ~ )  = ( x / f ° U t ( g l ,  g2), 1/f~ut) , ( 5 . 3 )  

where ~ x  is an asymptotic two-particle state with the wave function 

2 sym [((q, lQ]O)+ C<o)(ql, q2))(g3,f2)+ C(o)(ql)]f,(q2). 

Here C(o)(p) is defined as in (i), and (g3,f2) denotes the scalar product of the wave 
functions g3 and .1:2. 

Now from the fact that the states ~ x  and Q~(f l )  do not scatter, it follows that 
~e*(C(o),f~) does not scatter either. Therefore, by a similar argument as in sect. 4 
we obtain C(o)= 0 and (q[Q]T2)= 0, which proves the lemma. 

LEMMA 5.2. Q2 = O. 
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Proof: Let us consider  the operator* Aa = i [Q(a ) ,  Q], where a ~ •4 and Q(a)  = 

U ( a ) Q U ( a )  ~. (Note  that  this operator  is well defined on @~× because o f  the 
square-integrabili ty o f  the kernel eX(qt, q2lQ[.O).) If  we can show that A = 0 for all 
a c R 4 the statement o f  the lemma follows, as can be seen as follows: the relation 

Aa = 0 implies that 

(QO, U ( a ) Q O ) =  (QI2, U ( - a ) Q O ) ,  

hence by the spectrum condi t ion and the uniqueness o f  the vacuum we obtain 

(QI2, U(a)QS"2) = 1(£2, QI2)I2 = 0 

for all a ~ ~4. But this means that QI2 = 0 or, equivalently, that eX(ql, q2[Q[g2) = O. 

NOW, using the explicit form of  Q, it is easy to see that 

Aa = (~'~[Aal~a'~)" "~+ I 63/9 I d3q a:x(q)(q]Aa[P)T(lex(P) 
2cop 2w~ 

ex @o , moreover,  if (qlA~lp)T =0  then in the sense o f  sesquilinear forms on @o × ex. 
(12lza,[12)=0. Therefore,  in order  to show that A a = 0  we must  only verify that 
(qlA,Ip)T vanishes. But this is an immediate  consequence o f  the following facts: 

first, (qlAalp)T is a square-integrable funct ion with respect to (d3q/2wq) • (d3p/2wp) 
(because o f  the square-integrabili ty of  eX(ql, q2lQl.O) ) and, second, the support  of  
(qlA, lp)v is confined to the plane q = p .  The latter statement is a consequence  o f  

the subsequent  lemma, if one takes into account  that the opera tor  A, has, after 

integration with a funct ion X of  type (3), the same structure as the charges Q3. 

LEMMA 5.3. Q3 = 0. 
A p roo f  o f  this lemma can be found in the literature (cf. for example [4]). We 
ment ion as an aside that  the existence o f  elastic two-particle scattering in some 
non- forward  direction is sufficient for the derivation o f  this result. Now we can 

prove the main result o f  this section. 
PROPOSITION 5.4. Let Q be a non-local  charge of  genus 2 in a theory with 

non-trivial elastic two-particle scattering. Then 

Q = a~ + a~P ~" + a~,,M ~" + fl,~.P~'P~ + a~.,.p(P'~M "p + M ' v P  '~) 

+ c e ~ o ~ ( M ~ " M P ~ + M P ~ M ~ )  on ~ x ,  

where a, a,,, a,~, /3,~, a. ,p,  a~,~p(are real numbers.  
Proof: Summing  up the results obtained so far, we see that Q has zero energy- 

m o m e n t u m  transfer. Hence the only non-vanishing kernels of  Q can be 

(olQIo), (q lQlP)T ,  ex(ql, q~lQlp,, p~)~x . 

* We omit the index 2 of Q2 in the following. 



168 D. Buchholz et al. / Non-local charges in LQFT 

Moreover ,  for the latter two kernels the representations (3.10) and (3.12), respec- 

tively, are valid. For  our  subsequent  analysis of  these kernels the following identities 
are basic (in the limit A--,+o0): 

1 1 out 1/~ (f~,A, f2 , , ) ) ,  Qqt (f,,a, f 2 , ~ ) ) = ~ ( Q ~  (g,,A, g2,A), in ,~ M ( 1/.r (gl.X, g2,x ), i . . . .  

(5.4) 

1 
Q~ (fl,;~,f2,x,f3,x)) A M (~°Ot(gl,a, g2,z, g3,x), in 

1 
= out 1/~ (f,,., f2.x, f3.A)) • (5.5) A M ( Q ~  (gla, g2.x, g3.~,), in 

Here 

gk,~(q) = e  'A"k qgk(q), k =  1 , 2 , 3 ,  

where gk, k =  1, 2, 3 are smooth  functions with compact  and mutual ly  disjoint 
supports,  ak, k = 1, 2, 3 are unit vectors, and A > 0. The functions fk.a, k = 1, 2, 3 are 
analogously  defined. 

We proceed  now in the following five steps. (Since the arguments  are very similar 
to those given in Lemma 4.1 we can be very brief.) 

(i) F rom (5.4) with a l ¢  a2 we obtain in the limit A -~ +co (due to the clustering 
properties o f  the S-matrix) that  B~,)(m.) in eq. (3.12) is independent  o f  "ex"  if 
m + m ' = M .  

(ii) Similarly, we get f rom (5.5) with al = a2 ~ as and (5.4) with al = a2 in the 
limit A + + ~ ,  

( 1]r°Ut(gb g2), lI t in(b(m)(m')fl ,  f2))  + (1/r°ut(gl, g2), 1/tin(A, b(m)(m')f2)) 

= ( lI]°Ut(b(m)(rn')gl, g2), 1//in(fl, f2))  -I- ( 1F°Ut(gl, /9(m)(rn')g2), lpin(f l ,  f2))  
(5.6) 

if m + m' = M. Here 

Id 
btm)(m,)(p) = ~ B(m)(m,)(p, q)g3(q)f3(q). 

ZtOq 

Thus, it follows by the arguments  of  sect. 4 (cf. eq. (4.3)) that 

B(m)(m,)(p, q) = a(m)(m').~p"q ~ + b(,,,)(m').p" + b(,,,,)(m).q ~ + C(m)(m') (5.7) 

if m + m'  = M ;  here a<m)(.,,).~, b(m>(m,~,., c(~<,.,) are constants and pO = %, qO = tOq. 

(iii) Combin ing  (5.4) (a~ = a2) and (5.7) we conclude that 

(~/p°Ut(gl, g2), gr~n( A~M)f~,f2) ) + ( tF°Ut(gl, g2), ~n( f~ ,  Ai~)f2))  

=( t !1°u t ( , ' ~M)g l ,  g2), 1 ] x ' i n ( f b f 2 ) ) + ( q / ° u t ( g , , , ~ M ) g 2 ) ,  t l y i n ( f b f 2 ) ) ,  (5.8) 
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where 

A ~ ) ( p ) = A ( M ) ( p ) -  " ~ a(Ml.~p p , 

a(M)~ v = ~ a(m)(m').~, • 
m + m ' = M  

So again we can apply the arguments  o f  sect.-4, giving 

A ( ~ ) ( p )  = a ( ~ ) . ~ p " p "  + d ( ~ ) . p  ~ + e(M) , (5.9) 

where d(M). ,  e(M) are constants.  I f  in eqs. (3.10) and (3.12) M = 0 ,  then the 

informat ion on the kernels obtained so far implies that 

Q = a . ~ + a . P " + a ~ . P " P "  on ~ x ,  

so there is nothing more  to prove. (Note  that b(o)(o). = e(ol = 0 due to the presence 
o f  inelastic scattering [9].) 

(iv) I f  M ~  > 1 we define on ~ ×  the opera tor  t ~ = i [ Q ,  pO], and similarly Q =  
i[t~, pO] if M ~> 2. It is obvious that 0 (Q) is a hermitian opera tor  with kernels of  

the form (3.10) and (3.12); but  now there appear  at most  M -  1, ( M - 2 )  derivatives 
in these expressions. By applying the results o f  the previous ~eps  to Q and Q it 

5 * 2  

follows that the cor responding  coefficients A(M-1),  B(m)(m') and A(M_2) , B ( m ) ( m , )  have 
the form given in eqs. (5.9) and (5.7), respectively. 

(v) F rom the very definition of  () in the previous step we obtain the following 

equations*: 

i p ° A ( M _ , ) ( p ) = p ( ' ) A ( I , M  , ) ( p ) ,  (5.10) 

ip ° q ° B~m)l,,,,)( p, q) = ( m + 1)q° p(~) B(),m)(m,)( p, q ) +  ( m'  + 1)p°q(t) B(m)(~,,,,)( p, q) , 

i f  m + m ' = M - 1 ,  M > ~ l .  

Clearly, analogous  equat ions hold also for AIM 2), /~(M-~) and B(m~(,~,), Bi~,m)im, I, 
^ 

B(,,)(~,~,) if m + m ' =  M -  2, M >~ 2. 

The p roof  is now accomplished^ by solving, these ec~uationsl taking into account  

the constraints on A(M), B(mi(m,), A(M 1), B(m)~m') and A(M 2), B(m)(m') resulting from 
eqs. (5.7) and (5.9). It turns out that  A(M) = B(m)(,,,)=O if m + m ' =  M > 2 .  This 
means that the number  of  derivatives appear ing in the kernels (3.10) and (3.12) is 

less or equal to 2. If  M <~ 2 then the above equations do have non-zero solutions, 
and it is s t raightforward to show that the cor responding  charge-operators  are of  the 
form given in the statement o f  the proposi t ion.  

These results have been obtained by a rather tedious computat ion.  A simpler 
solution o f  this problem would be impor tant  for the analysis o f  non-local  charges 
o f  higher genus and of  theories with several particles. 

* We use the notation (k) 3 a T(k.i)--~i,...,~.= I ai'''ai~Tw..ik.j,...j~ for contractions. Here Ttk.i ) is any 
symmetric tensor of rank k + l and a any vector (cf. also footnote on page 162). 
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6. Conclusions 

From the "axiomatic" point of view adopted in this paper, the non-local charges 

appear as a quite natural generalization of the standard charges. It is another virtue 
of this general approach that it is based only on a few intrinsic properties of non-local 

charges, thereby avoiding all difficulties arising in an explicit construction of these 
quantities in terms of local fields. 

Although we have confined our attention to a restricted class of models, it is clear 
that many of our arguments carry over to more general situations. For example, the 
analysis in sect. 3 can be performed in models with an arbitrary number of massive 
particles and in any number of space-time dimensions. Up to some minor notational 
complications, the results are the same. 

Only a little more effort than in sect. 4 is needed for the analysis of non-local 
charges of genus 1 in models with an arbitrary particle spectrum. Using the methods 
outlined in [4] one finds that the set of these charges consists of the generators of 

space-time and internal symmetries. In the case of spinorial charges it follows from 
the arguments in [10] that such charges are generators of supersymmetries. 

The calculation of non-local charges of higher genus is, however, fairly compli- 

cated. As was demonstrated in sect. 5, an important tool for the analysis of these 
charges are the clustering properties of the S-matrix. For the class of models 
considered here, it is this property of "macroscopic causality" which admits as 
non-local charges of genus 2 only polynomials of second degree in the generators 
of the Poincar6 transformations. 

The clustering properties of the S-matrix are also useful in the analysis of non-local 
charges of  arbitrary genus in models with any number of particles. They lead to a 
set of constraint equations for the kernels of these charges, similar to eqs. (5.2), 

(5.3), (5.6), (5.8) and (5.10). Unfortunately, we have not been able to find the general 
solution of these equations. Our partial results seem to indicate that there cannot 
exist solutions other than those corresponding to polynomials in the generators of 
space-time, internal and supersymmetries. But since we cannot definitely exclude 
solutions which are more interesting, this matter should be settled completely. 

Let us finally comment on the particular situation in two space-time dimensions, 
where the arguments of  sects. 4 and 5 are not sufficient. Here again we restrict our 
attention to models of a single massive particle. 

First, in two dimensions the functional equation 

A(p,)  + A(p2) = A(q,) + A(q2) 

on the two-particle scattering manifold (compare eq. (4.4)) does not impose any 

constraints on the function A, because on the scattering manifold Pl = q~, P2 = q2 or 
P l  = q2,  P2  = q l -  But if, for example, 

A( pl) + a (  p2) + A(p3) = A( ql) + a(  q2) + a(q3) 

on the three-particle scattering manifold, then one can show that A must be linear 
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in energy and momentum.  Taking this fact into account one obtains for the charges 
of  genus 1 the same results as in sect. 4, provided there is particle production and 
non-trivial three- (or many-) particle scattering in the model, i.e. scattering for an 
open set of  momenta  on the scattering manifold. (This is for example the case in 
the P(~b)2-models. ) 

The second peculiarity in two dimensions is the lack of clustering properties of 
the S-matrix. So the methods of sect. 5 cannot be used for the analysis of  non-local 
charges of  genus 2. But there is a more direct approach to this problem. 

If, for example,  Q is a constant of motion it follows from the analysis of sect. 3 
that Q cannot change the asymptotic particle number. So the only non-trivial kernels 
of Q are of  the form given in eqs. (3.10) and (3.12). It is obvious then that the 
( M +  1)-fold commutator  of  Q with P~" vanishes. Now, in contrast to the situation 
in four dimensions, there cannot appear  any derivatives in the kernels of non-local 
charges which commute with P". Using this fact, the general analysis of Q essentially 
boils down to the study of the special cases, where M = 0  in eqs. (3.10) and (3.12). 

Now, if one evaluates matrix-elements of  such a charge Q between incoming and 
outgoing three-particle collision states, say, one obtains for the kernels of Q a 
functional equation of the form 

B°°t(pl, P2) + B°Ut(p2, P3) + B°Ut(p3, Pl) = Bin(q1, q2) + Bin(q2, q3) + Bin(q3, q~) 

for all momenta  on the three-particle scattering manifold, for which non-trivial 
scattering occurs. It follows that B °ut= B ~n which implies that Q commutes with 

the S-matrix. If  there is only elastic two-particle scattering in the model nothing 
more can be said. But if there occur also three- (or many-) body collisions, then 
one can show that the only solutions of  the above equation are polynomials of 
second degree in energy and momentum (cf. eq. (5.7)). With this information at 
hand it is easy to show that Q has the form given in proposition 5.4. 

In models with more than one type of particles the S-matrix elements do not 
simply factor out of the constraint-equations for the kernels of Q, and consequently 
the evaluation of these equations is more complicated. As the example of  the tr-model 
shows, one can in general no longer conclude that non-local charges of  genus 2 
must commute with the S-matrix, in contrast to the restricted class of models 
considered above. But, it is clear from the discussion of these special models that 
the existence of multi-particle scattering and particle production imposes strong 
constraints on the kernels of  non-local charges, lnfering from these partial results 
it seems that interesting examples of  non-local charges can only exist in models 
where such collision-processes do not occur. 
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U n i v e r s i t y  o f  Wroc{aw (D.B.  a n d  Sz.R.) .  W i t h o u t  the  h e l p  o f  t h e s e  i n s t i t u t i o n s  th is  

c o l l a b o r a t i o n  w o u l d  n o t  h a v e  b e e n  pos s ib l e .  
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