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Non-local charges [1, 2] are studied in the general setting of local quantum field theory. It is
shown, that these charges can be represented as polynomials in the incoming respectively outgoing
fields with coefficients (kernels) which are subject to specific constraints. For the restricted class
of models of a scalar, massive, self-interacting particle in four dimensions, a more detailed analysis
shows that all non-local charges of the generic type (genus 2) are products of generators of the
Poincaré group. This analysis, which is based on the macroscopic causality properties of the
S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two
dimensions.

1. Introduction

We present in this article a systematic investigation of non-local charges in the
general setting of local quantum field theory. It was argued in [2] that a few basic
properties of field-theoretic models, such as locality, covariance and the existence
of non-trivial scattering should be sufficient to determine these charges explicitly
(similar to the case of the standard charges, cf. [3-5]). Our present results are only
another step towards a solution of this problem. But they reveal the strong constraints
imposed on non-local charges by the fundamental principles of quantum field theory.

The prototypes of non-local charges have been discovered in the quantum non-
linear o-model in two dimensions [1]. They can formally be represented by

Q=% J dx I dy e(x—y)js(x)js’(y) = Z J dxji"(x), (1.1)

where jff’, a,b=1,...,n are the Noether currents corresponding to the O(n)
symmetry of the model, and Z is a renormalization constant. The operators Q“°
are distinguished by the fact that they commute with the hamiltonian, i.e. they are
constants of motion.

As this example illustrates, the non-local charges are typically obtained by multiple
integration of expressions involving products of local fields. As a consequence, they
have properties which are not shared by the standard charges. One can show, for
example, that Q* does not commute with the S-matrix. In fact, the restrictions
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arising from the existence of Q°® essentially fix the S-matrix of the o-model [1].
In view of this result it is an important question whether non-local charges can also
exist in physical space-time.

In a general analysis of non-local charges one is, at the very beginning, faced
with the problem of giving a proper definition of these quantities. As a matter of
fact, in the concrete example given above one must go through a detailed analysis
of the short-distance behaviour of the currents j&” in order to see that the charges
Q® are well defined [1]. Therefore it seems hopeless to base a general analysis of
non-local charges on an explicit representation of these quantities in terms of local
fields, such as in (1.1).

It has therefore been proposed in [2] to characterize the non-local charges by a
few general properties which can be extracted from the known examples. We recall
these properties in sect. 2. We will then discuss (sect. 3) how the non-local charges
act on collision states. Our main result in this context, which was already quoted
in [2], says that these charges can always be expanded in terms of a finite number
of asymptotic creation and annihilation operators. The remaining problem is then
to determine the form of the kernels in this expansion. Since there exists an
abundance of non-local charges in free field theories we will concentrate in this
part of our analysis on theories with non-trivial scattering.

In order to avoid complications arising in the presence of internal symmetries we
consider only models of a single, scalar self interacting particle. Moreover, we
restrict our attention to the simplest non-trivial types of non-local charges (the
charges of genus 1 and 2 according to the terminology of sect. 2). We will show in
sects. 4 and 5 that, in four space-time dimensions, the only charges of genus 1 are
the generators P* and M*" of the Poincaré transformations, and that the charges
of genus 2 are bilinear in these operators. Similar results hold also in two dimensions
if there is non-trivial multi-particle scattering and particle-production in the model
(cf. sect. 6).

Although we have studied only a very restricted class of models, our results seem
to indicate that non-local charges are polynomials in the generators of the space-time
and internal symmetries also in general. As will become clear, the obstruction to
more interesSting examples are the clustering properties of the S-matrix. It is only
in two dimensions, where these clustering properties need not hold, that non-local
charges of the type found in the o-model can exist.

2. Assumptions and notations

We are dealing with the Wightman theory of a single massive, scalar particle
subject to the standard assumptions, such as locality, covariance, and relativistic
spectrum condition. In particular, we assume that the mass shell of the particle is
isolated from the rest of the spectrum, and that there is a Wightman field &(f),
fe #(R*) connecting the vacuum 2 and the single particle states. The collision
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states can then be constructed in the usual manner (cf., for example, [6]), and we
assume that they form a dense set of vectors in the physical Hilbert space (asymptotic
completeness).

Let us now turn to the characterization of the non-local charges Q (cf. [2]). These
charges are in general unbounded operators; the information about their domain
which is needed here is contained in our first postulate.

(i) Qs a closed, hermitian operator whose domain Z(Q) contains the Wightman
domain 9,, i.e. the set of vectors which are generated from the vacuum (2 by
applying polynomials in the Wightman fields.

In view of the difficulties arising in the explicit construction of non-local charges
(cf. the remarks in the introduction) one might wish to consider also situations in
which Q is only defined in the sense of sesquilinear forms on %, x %,. But then it
is unclear whether there exists an unambiguous extension of Q to the collision states.

Our second assumption imposes certain continuity properties on Q.

(ii) Given neN there exists a Schwartz-norm || - ||, on #(R*) such that
1Qe(f1) - - - o2 =<clfilla- - I fulla
forall f,,...,f.€ $(R*) and some constant c.

Finally, we come to the most important property of non-local charges, which
reflects the fact that they are obtained by integrating products of local fields over
some space-like plane (compare e.g. (1.1)). Due to this construction and locality,
all multiple commutators involving a non-local charge Q and sufficiently many local
field operators have to vanish if the fields are localized at different points of that
plane. Moreover, since Q is a constant of motion, these commutators also vanish
if one replaces Q by Q(x) = U(x)QU(x)™', where U(x) is any space-time transla-
tion. In fact, we will only use these commutation properties of Q(x), thereby allowing
also for charges Q which are not invariant under space-time translations (as, e.g.,
the generators of the Poincaré transformations). Hence our last postulate reads as
follows:

(iii) There exists a number N such that (in the weak sense on @y x %)

[ [Q(x), (S)], - - - ¢(fni1)]=0

for all translations x and test functions f,, i=1,..., N+1 having support in N+1
disjoint double-cones with compact base in some fixed space-like plane. The minimal
number N for which this relation holds is called the genus of Q.

It is clear that this characterization of non-local charges extends to theories in
any number of space-time dimensions with an arbitrary particle spectrum. It also
applies to spinorial (super-) charges. However, there one must admit in postulate
(iil) commutators as well as anticommutators, depending on the Bose or Fermi
character of the quantities involved.

Charges of genus 0 are clearly multiples of the identity. The standard charges,
which are obtained by integrating current densities over all space, are of genus 1
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and trivial examples of non-local charges of arbitrary genus N can be obtained by
taking N-fold products of charges of genus 1. The non-local charges (1.1) in the
o-model provide non-trivial examples of charges of genus 2 in two dimensions.

As we will demonstrate in the subsequent sections, the characteristic properties
of non-local charges summarized in the above postulates contain sufficient informa-
tion for their detailed analysis.

3. Action of non-local charges on collision states

In this section we shall show how postulates (i) to (iii) can be used to determine
the action of non-local charges on collision states. We begin by recalling some basic
facts from collision theory.

Given n single-particle wave functions f; € #(R*) one obtains the corresponding
incoming respectively outgoing n-particle collision state by the Haag-Ruelle con-
struction [6], taking the limits

s=lim &(fi) - d(AIQ=T(fi- L 1) (3.1)

Here “‘ex” stands for “outgoing” or “incoming” and ¢** for +c0 or —0, respectively.
The functions f;, € #(R*) are given in momentum space by

Filp)=e" """ (p)O(p)h(p?), (3.2)

where w, = (p*+m?)"/?, p>=(p°)*—p* h is a smooth function with support about
the isolated point p* = m? in the mass-spectrum and h(m?) = 1. Because of technical
reasons we will only work with configurations of wave functions f,, ..., f, which
have compact and mutually disjoint supports. We denote the linear span of the
corresponding collision states and the vacuum (2 by @§%; this space is dense in the
Fock space #3" of all collision states. As is well known, one can introduce on ¥
asymptotic creation and annihilation operators aX(f) and a.(f), respectively,
satisfying canonical commutation relations. It is our aim to expand the non-local
charges in terms of these operators.

In a first step we shall demonstrate that the non-local charges Q are defined on
95". Although the argument is standard we sketch it here, since similar methods
have to be applied at various points of our analysis, where the details will then be
omitted. We make use of the fact that the test functions* f, in the definition (3.1)
of the collision states can be approximated by functions f, which have compact
support in configuration space. Namely, let I" be the set of four-velocities

I'={(1, p/w,); pesupp f}, (3.3)

and let I" be any open bounded neighbourhood of I Then there exist smooth

* To simplify notation we omit the index i for a moment.
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functions y which are equal to 1 on I" and have support in I Setting

fix)=x(x/0fi(x) (3.4)

it is obvious that f, has support in the region ¢ - I’ Moreover, the difference between
f; and f, tends to 0 as t - +00. For later reference some relevant properties of f; and
f, are listed in the following lemma (cf. for example [6]).

LEMMA 3.1. Let £, and f, be defined as above and let | - || be any Schwartz norm
on F(R*). If |t|=1 then

(@) S fieS®),

Ifille 1 Fille<Calt]™ for some constant C, and some n, €N,
IS =Filla < Calt]™ for all n €N and certain constants c,.

(b) suppf, il

(¢) the #(R*)-valued functions - f, and t—>fA, are smooth in the topology of
F(R*), and the properties given in (a) and (b) hold analogously for the derivatives
df,/dt and df,/dt.

Now given single-particle wave functions f,, ..., f, with compact and mutually
disjoint supports, then the corresponding velocity sets Fl, ..., I', are disjoint, hence
there exist open neighbourhoods f,, .., of Ty, ... respectwely, which are
mutually spacelike separated. Using approx1mat1ng functlons f1 R f,,, of
Sfis -5 fu. which have support in the sets ¢ - Fl, RV & F as well as the space-like
commutation properties of the field ¢ we can prove

PROPOSITION 3.2. @5 is contained in the domain 2(Q) of any non-local
charge Q.

Proof: Since Q is closed and the vectors ¢ (f;,) - ¢(f.,){2 are elements of
%(Q) we must only verify that the vectors Q¢ (f,,) - * - ¢(f.,){2 converge strongly
as t— t°*. To this end we apply the familiar trick and take the derivative of these
vectors with respect to . That this may be done follows from the smoothness of the
functions - f;, and the continuity properties of Q given in postulate (ii). Taking
into account that (d/d¢)¢(f;, )42 =0 we get

d d
“a Qod(fi:): d>(fn,,)QH = Y |Qélfi): - [Qﬁ(aﬂ,,), ¢(ﬁ,r)] e d>(fn,,)0’

t=k=l=n

and using postulate (ii) as well as the above lemma it 1s clear that we can replace
the test functions df, ,/dt and f;, in the commutators by dfk Jdt andf, o respectlvely,
the difference being rapidly decreasing in |t|. Yet since the functlons dfk,/dt and
f,, have support in the space-like separated regions ¢- Fk and ¢t- I,, all commutators
[qﬁ(dfk,,/dt), d)(f,‘,)] are equal to 0. So we get the bound

gld™

d
a Qo (fi.) - d(fo)2)| =

for any jeN. The desired result then follows by integration.
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Let us remark that the matrix elements of

(P81, 8m)s Q¥ (S, 1) (3.5)

regarded as linear functionals on the test functions g, ..., &, fi, . . ., f, are (restric-
tions of) distributions in ¥'(R*™*™)* We call these distributions kernels and denote
them by**

sy 4| QPry - - P) . (3.6)

For the expansion of the non-local charges in terms of asymptotic creation and
annihilation operators it is more convenient to work with the truncated kernels

qi, -, 4| Qlpr1s - PIT (3.7)

which are given by the recursive relation

ex<ql’ ey ‘Im|Q|P1, e ’pn>ex

Z ex<qi| LI Y qik|Q|Pj1, MR ] Pj, ?I‘x ) eX<qu1, L] qi,,,

IJ

Piy---> 0. (3.8)

Here the sum extends over all ordered subsets I=(i,...,i)<(1,..., m) and
J=0--nj)s(,...,n)aswellas I = & and J = &, where we adopt the conven-
tion that (J labels the vacuum. It is a simple consequence of the above proposition
that one can represent Q in terms of asymptotic creation and annihilation operators
according to
_ v J’qu'dqud_de_p_
Q= ,,,,,12:0 min! ) 20, 20, ) 2w, 20,

qm

X a::kx(ql) tU a::kx(qm)ex<ql5 R} qm’Q|p1a e sPn)eTxaex(Pl) e aex(pn)
(3.9)

in the sense of sesquilinear forms on 9§* x P&

Up to this point we did not make use of the characteristic properties of non-local
charges, given in postulate (iii). Using this input, we will now establish certain
specific support properties of the corresponding truncated kernels (3.7).

PROPOSITION 3.3. Let Q be a non-local charge of genus N. Then

Cx<q1’ rey qlelPl, e ’pn>'e[‘x =

in the sense of distributions on the (open) set of configurations

{41, -, @m P1, - - ., P} cOnsisting of more than N different momenta. If, in particular

m=> N or n> N, then the truncated kernels vanish identically.

* To verify this one has to evaluate the dependence of the functions f, and f, on the underlying
single-particle wave functions f, see for example [7].

** Note that these kernels are unambiguously defined only for non-coinciding momenta ¢, , ..., g, and
P1»- -, Py, respectively. We will therefore restrict our attention to such configurations.
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Proof: Let fi,...,f, and g, ..., g, be two sets of smooth single-particle wave
functions with compact and (for each set separately) mutually disjoint supports. It
is actually sufficient here to consider functions whose supports are contained in
small balls such that the support of any function f;i=1, ..., n has a trivial intersec-
tion with the support of at most one of the functions g, j=1,..., m. Using eq. (3.9)
and the fact that the operators ¢{(f;) and ¢(g,)* converge for t - t°* to asymptotic
creation and annihilation operators, respectively, it follows by an argument as in
the proof of the preceding proposition that the smeared truncated kernels can be
represented in the form

g1y 8l Qlfis - S
= lim (=17 (2,1 - [Q $ (AL, )], S(21) ), $(gm)*1R)

in an obvious notation. Moreover, one can permute on the right-hand side of this
equation the testfunctions f;,i =1, ..., n,respectively g;,j =1, ..., m, without chang-
ing the limit. Now in order to prove the statement we must show that this limit is
zero if there are N + 1 functions amongst f1, . . ., f,, &1, - - - » &= With mutually disjoint
supports;  without restriction of generality we may assume that
fioo- s S &1y s 8nr1_n (if n=N) are these functions. According to lemma 3.1
we can approximate the corresponding testfunctions f, ,, ..., gv+i1-n. by functions
fl,,, .+ En+1-n. having support in N +1 disjoint double cones with compact base
in the space-like plane x,=1t, x€R’. It then follows from postulate (iii) that the
above multiple commutator vanishes in the limit of asymptotic times ¢ If n or m
are larger than N, then the same argument shows that the regularized truncated
kernels vanish for any possible choice of the single-particle wave functions f3, ..., f,
and gy, ..., g&., respectively.

It is an immediate consequence of this proposition that the expansion (3.9) of Q
in terms of incoming as well as outgoing fields terminates at a finite sum. Using the
preceding results we now can give more explicit representations of the kernels of
charges Q of genus 1 and 2.

Genus 1: If Q is a charge of genus 1 it is completely determined on %3* by the
kernels

(Q1Ql2y,  (2Qlp), (4lQl2),  (g|Qlp)r

involving only the vacuum and single-particle states (cf. eq. (3.9) and proposition
3.3). It thus follows that Q commutes with the S-matrix (weakly on 2§ x @¢%).
Since Q is a hermitian operator and since {2 is in the domain of Q it is clear that
(2|Q|#2) is a real number and that (2|Q] p) = (p[Q[12) is a square-integrable function
with respect to d’p/2w,. The remaining distribution (g|Q|p)r vanishes if g # p (cf.
proposition 3.3). Moreover, taking into account that this distribution is the kernel
of an operator which contains in its domain the one-particle subspace of 95* we
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find that*

(4|Qlp)r= Z=0A<m)(q)65,'"’8(q—p), (3.10)

where A, are locally square-integrable functions. From the hermiticity of Q there
follow further obvious properties of these functions, which we do not need to give
here.

Genus 2: Similarly to the case considered above one can see that a charge of
genus 2 is determined on &§* by the kernels

(Q[0l2),  (@lol?), a,4lQ2), (4lQlp)r,

a1, 4:|Qlp)r,  Nai, 4:|Ql s, PT

and their complex conjugates.
Besides the obvious properties of these kernels which follow from the fact that
o 1is in the domain of Q we have further information from proposition 3.3 on the
last two kernels. Namely,

M
g, 4:|Qlp)r= Y [Cir(dy, 4200 8(q,—p)+ (g1 q,)], (3.11)
m=0

M
ex(‘lh‘b'Q'Pl,Pz)'erx:z ) O[B?fn)(m')(‘lb42)351:")5(41_1’1)35{;)5(412_172)

m+m'=

+(gieq)], (3.12)

where B{,.)m) (41, 42) = Bl (m)(42, 4,) because of the symmetry properties of two-
particle states.

In the case of a free field theory every operator Q of the above form is of finite
genus, simply because free fields have c-number commutation relations. So the
general results obtained so far are in a certain sense optimal. Yet, if there is non-trivial
scattering in the model much more can be said. This will be exemplified in the case
of charges of genus 1 and 2 in the subsequent sections.

4, Charges of genus 1

In this section we study charges Q of genus 1 in interacting theories. Assuming
that there is non-trivial elastic scattering and particle production we will arrive at
the result that the set of these charges consists of the generators of the Poincaré
transformations (proposition 4.1).

* We use the notation (m) for any multiindex of the form (i, ..., i,,) with iy =1,2,3. The symbol
a'™, where a is a vector, stands for a,,...aq, =(-1)"a"- - a‘n. The following summation convention
. . m 3
is used for symmetric tensors of rank m: a" )T(,,,) =Zil___i e T
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From sect. 3 we already know the general form of Q on 2§". We want to show
now that QQ cannot change the asymptotic particle number, i.e. that

(q|Ql2)y=0. (4.1)

Recalling the fact that Q commutes with the S-matrix, it is clear that the vectors
U(a, A)Q¥(f), where ¥(f) is any single-particle state and (a, A) any Poincaré
transformation, describe states which do not scatter. Now, if the component of any
one of these vectors in the two-particle subspace of #5* would be different from
zerd, we would obtain, by varying f and (a, A), a total set of two-particle collision
states which do not scatter. Since this would be in contradiction to our assumptions,
eq. (4.1) follows.

In order to obtain more information about {g|Q| p)r we apply Q to collision states
having a large spatial separation from the origin. On these states the terms with the
highest number of derivatives in the representation (3.10) of (q|Qlp)r give the
dominant contributions. This fact will simplify the analysis of the corresponding
coefficients A(ysy. More specifically, let g,, g- and f}, f> be smooth functions with

compact and mutually disjoint supports and let
g (@)=e™""g(q), k=12, (4.2)

where A > 0 and a is a unit vector. The functions fi ,, k = 1, 2 are defined analogously.
Then
i 1
im —;
A—>—+00 (zA)M
=(¥"(g1, 8), lI’m(a“\/”A(M)fl,fz))
+(q’0u'(81’ 2), 1I’in(fl, a(M)A(M)fz))

and a similar relation holds if “in” and ““out’ are interchanged. Therefore, using
the hermiticity of Q and the fact that a is arbitrary we arrive at the relation

(qlom(gl,)\, gz,,\), lein(fl,)‘,fz,)\))

(Wom(gla 2), 1Pin(A(M)fl,fz)) + (lpom(gl, g2), 1I’in(fl, A(M)fz))
= (V" (A& 82), (S, L) H(P (8 Anga), ¥ (1 o). (43)

Hence A, satisfies the functional equation

A(M)(P1)+A(M)(P2):A(M)(ql)+A(M)(q2) (4.4)

whenever q,#¢q,, p;#p, and (qy, 4, p,, p.) belongs to the support of
°“Yq,, 42| p1, P-)"". We note that in order to make the step from (4.3) to (4.4) rigorous
one must actually regularize A(ns) by averaging A(a (A - p) over the Lorentz trans-
formations A. The resulting function, for which eq. (4.4) still holds, is then smooth in p.

It is well known that the only solutions of (4.4) are (apart from constants) linear
combinations of energy and momentum. The weakest condition under which this
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result has been derived is the assumption that eq. (4.4) holds in all Lorentz-systems
for at least one non-trivial elastic two-particle scattering configuration {8]. Because
of the Lorentz invariance of the S-matrix, this condition is given, whenever there
is non-trivial elastic two-particle scattering in the model, i.e. scattering in some
non-forward direction.

Arguing now as in [3] (cf. also the proof of proposition 5.4) one can show that
Ay =0 if M =2 and that the remaining terms in (3.10) are proportional to the
kernels of the generators of the Poincaré transformations. We remark that a term
of the form 8(g—p) cannot appear in (3.10) because it would correspond to the
kernel of the particle number operator, which does not commute with the S-matrix
since there is particle production [9]. So we arrive at

PROPOSITION 1. Let Q be a non-local charge of genus 1 in a theory with non-trivial
elastic two-particle scattering. Then

Q=a 1+a,P*+a, M*" on 95°,

where a, a,, a,, are real numbers.

5. Charges of genus 2

We turn now to the more interesting charges Q of genus 2, where the analysis is
much more complicated. We proceed as follows. In a first step we decompose Q
into a sum of operators with definite energy-momentum transfer. Then, using the
non-triviality of the S-matrix and its clustering properties, we will find that charge
operators with non-zero energy-momentum transfer do not exist (lemma 5.1, 5.2
and 5.3). With this information at hand we shall finally show that non-local charges
of genus 2 can only be polynomials of second degree in the generators of the
Poincaré transformations (proposition 5.4).

So let Q be any non-local charge of genus 2 and let x € (R*) be any real-valued
smooth function. Then the expression

Q(x) =J d*ax(a)U(a)QU(a)™

is a well-defined hermitian operator on %,, and it is straightforward to show that
its operator closure, which we also denote by Q(x), is again a non-local charge of
genus 2. Its kernels are

QaYX (it +Gu—pi— =) sy @l Qlprs P, (51)

where we set g} = wg, p?zwpi forj=1,...,m, i=1,...,n; x denotes the Fourier
transform of y.

Now we choose y in a particular way. Namely we assume that ¥ has compact
support and satisfies one of the following conditions:

(n supp xc{geR* e <qg’<d4m’—¢},
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(2) supp x < {geR*; m’+e<q°},
(3)  suppxcigeR’ g'<m’—e}\{0},
(4)  suppx<={qeR%|ql<e},
where ¢>=(4°)>—¢° |g)*=(¢°)*+ ¢ and 0< e <im”. Since the sets in (1)-(4) form
an open covering of R?, it is clear that by varying x in Q(x) one can rediscover Q
on @¢*. Moreover, recalling the general form of Q on @g* (cf. sect. 3), it is easy to

check, that only the following kernels of Q(x) (and their complex conjugates) can
be different from zero if x satisfies one of the conditions (1)-(4).

1) @I,  Nai, 40X p)r,
(2) (g1, .| Q(x)| 2},
3)  @lowlpr,

4)  (QeWI),  WoWlpr, 41, Q00| PT -

We denote the corresponding operators by Q,, Q», Q; and Q,, respectively. Assuming
that there is non-trivial elastic two-particle scattering, we obtain the following
lemmas.

LEMMA 5.1. Q,=0.

Proof: Let us first assume that M =1 in (3.11) and calculate matrix elements of
Q * between suitable one- and two-particle states with large angular momentum.
(Compare the argument leading to proposition 4.1.) Due to the M-fold derivatives
in the kernel (3.11) we get for large A the asymptotic expansion

1
(ir)™

where g, ,, fi are defined as in (4.2), and ¥}, is an incoming two-particle state

. 1
(¥°"(g1, 824), Q¥ (L)) = (¥°*(g1, &200), ‘1"2",A)+0<X> ;

with wave function

sym [a'™ Ci (pr, p2)f(p2) €™ 7]

Here “sym” denotes symmetrization with respect to the momenta. Now, using the
clustering properties of the S-matrix** (see [6]) we obtain from the above expansion
in the limit A - +00,

(¥"(g, 2:2), Q¥ ()

lim
A =+ (iA)M

qu d3 - .
- J- Yow J‘ 2 (@248 ™ e (41, 4201 (42) -

2w, ) 2w,

* To simplify notation we omit in the proof the index 1.
** Hepp’s cluster theorem does not only hold for test functions but for arbitrary square-integrable wave
functions. This follows from the fact that the S-matrix is a bounded operator and that the translation
operators are uniformly bounded. We have to use this fact, because non-local charges may transform
smooth wave functions into functions which do not belong to the space of test functions.
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On the other hand, using (3.11), we have the asymptotic expansion
1
™

where ¥, , is a single-particle state with the wave function

(¥ (g1, £2.), ¥ (1) = (W1, WD +O(5).

d’ ira -  ~out ;. .
2 f i sym[g.(q,)g.(q.) e A qz]a(M)C(zv;)(‘h, q).

2w,

Hence, by the Riemann-Lebesgue lemma, we get

. 1 out
)\l—l}IlooW (Q¥ (g, 2.), Y(A))

I [ —
:J‘—IJ‘ 2gl(q,)gz(qz)a(M)CfK})(lh, 9.)f(q2) .
%

2w,) 20

Because of the hermiticity of Q, this limit coincides with the limit obtained above.
So we arrive at the conclusion that the coefficients C{}4y in (3.11) are independent
of “ex”. The same result can be derived for M =0 if one takes into account that
the kernel (q|Q|2) is independent of “ex”. Using the identity

1 . 1 .
™ (¥"(81, &2, 83.1), Q¥ (f1, fo1)) =3 (Q¥°"(g1, 82, 832) ¥"(f1, fo.1))

we obtain in a similar way the following relations:
(i) If M =1, then

(7" (g1, 82), ¥ (cimn, 1)) = (F°(21, £2), ¥ (coan /1)) (5.2)

where
3

d
con(p)= J St Con . @)@

is a square integrable function with respect to d’p/2w,. This result means that the
states ¥**(c(ary, f1) do not scatter. Hence we can proceed along the lines of the
proof of eq. (4.1) in sect. 4 with the result C(»;,=0.

(ii) If M =0, then

(T (g1, 82), ¥5) = (T™(g1, £2), ¥3), (5.3)
where ¥3* is an asymptotic two-particle state with the wave function

2 sym [({q.|Q|2)+ Cio)(q1, 42)) (g3, /) + c0)(41) 111 (q2) -

Here c¢)(p) is defined as in (i), and (gs, f,) denotes the scalar product of the wave
functions g, and f.

Now from the fact that the states ¥5* and Q¥ (f,) do not scatter, it follows that
¥*(cy, f1) does not scatter either. Therefore, by a similar argument as in sect. 4
we obtain C,=0 and (g|Q|Q2) =0, which proves the lemma.

LEMMA 5.2. Q,=0.
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Proof: Let us consider the operator* A, = i[Q(a), Q], where a¢€ R* and Q(a) =
U(a)QU(a)'. (Note that this operator is well defined on 97 because of the
square-integrability of the kernel “*(q,, 4.|Q|2).) If we can show that 4, =0 for all
a cR* the statement of the lemma follows, as can be seen as follows: the relation
A, =0 implies that

(QQ, U(a)Q2)=(Q02, U(-a)QN),
hence by the spectrum condition and the uniqueness of the vacuum we obtain
(QQ, U(a)Q2) =|(2, Q0)|*=0
for all a € R*. But this means that Q2 =0 or, equivalently, that **(¢,, .|Q}|2)=0.

Now, using the explicit form of Q, it is easy to see that

4’ d3
4, =(0|4,)0) - 1+ j <P J 27‘] a%(9)(q]8a| PYracx(p)

2w, B

ex

in the sense of sesquilinear forms on 2§ x @g°; moreover, if (qlA.lp)r=0 then
(2]|4,/02)=0. Therefore, in order to show that 4, =0 we must only verify that
(ql4,|p)+ vanishes. But this is an immediate consequence of the following facts:
first, (q|4,|p)r is a square-integrable function with respect to (d°q/2w,) - (d°p/2w,)
(because of the square-integrability of “*(g,, g,/Q|{2)) and, second, the support of
(ql4.] p)+ is confined to the plane g =p. The latter statement is a consequence of
the subsequent lemma, if one takes into account that the operator 4, has, after
integration with a function x of type (3), the same structure as the charges Q.

LEMMA 5.3. Q;=0.
A proof of this lemma can be found in the literature (cf. for example [4]). We
mention as an aside that the existence of elastic two-particie scattering in some
non-forward direction is sufficient for the derivation of this result. Now we can
prove the main result of this section.

PROPOSITION 5.4. Let Q be a non-local charge of genus 2 in a theory with
non-trivial elastic two-particle scattering. Then

Q=al+a,P*+a, M* +B,,P*P'+a,, (P*M"” + M"P*)

nvp
+ 0, (MMM + M M*)  on 35,

where a, a,, @upm Buw Qpups Au,p-are real numbers.

Proof: Summing up the results obtained so far, we see that Q has zero energy-
momentum transfer. Hence the only non-vanishing kernels of Q can be

21012y,  @lQlp)r, a1, ¢:|Qlp1, )T .

* We omit the index 2 of Q, in the following.
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Moreover, for the latter two kernels the representations (3.10) and (3.12), respec-
tively, are valid. For our subsequent analysis of these kernels the following identities
are basic (in the limit A - +00):

% ( qfom(gl,)\, gz,)\), Q‘Pin(fl,)\, sz)) = /\I_M (Qtpom(gl,)\, gz,A), Win(ﬁ,Aaﬁ,A)) s
(5.4)

1 )
/\—M (‘Pom(gl,/\, 82,25 g3,/\), len(ﬁ,/\’ fz,,\,f3,)\))

1 )
= /\_M (leom(gl,)u 8225 g3,)\)s lPm(fl,)\, fz,)\,f3,1\)) . (5.5)

Here

M ig(e),  k=1,2,3,

where g, k=1, 2, 3 are smooth functions with compact and mutually disjoint
supports, a,, k=1, 2, 3 are unit vectors, and A > 0. The functions f, ,, k=1, 2, 3 are
analogously defined.

We proceed now in the following five steps. (Since the arguments are very similar
to those given in Lemma 4.1 we can be very brief.)

(i) From (5.4) with a, # a, we obtain in the limit A - +co (due to the clustering
properties of the S-matrix) that B, in eq. (3.12) is independent of “ex” if
m+m'= M.

(ii) Similarly, we get from (5.5) with a, = a,# a; and (5.4) with a,=a, in the
limit A » +00,

(781, 82)s V™ (bimyimn f1 L)) (¥ (81, 82), ¥ ™ (s, Bimymnf2)

= (O Bimymn 815 82)> O f1, )+ (T (81, Bimymn82)s TN f1, 1))
(5.6)

ga(q)=¢e

if m+m’'= M. Here

d? .
b(mym)(P)= J -4 Bym (P, 4)8:(q)f3(q) .

2w,
Thus, it follows by the arguments of sect. 4 (cf. eq. (4.3)) that

Brym (P, @) = Q(onymy i PHG”F Bimyimn PP+ Blonyimyud™ + Comyim) (5.7)

if m+m'= M; here amyimuvs Oimymu> Cmym are constants and p°=w,, ¢° = w,.
(iii) Combining (5.4) (a, = a,) and (5.7) we conclude that

(T (81, 82), ¥ (Al 1, )+ (T (g1, £2), (frr Alanf2))
= (V" (Al g1, 82), VUi, L)+ (T (81, Al ga), Y71, 1)), (5.8)
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where
Am(P)=Ann(P)—am) . pp”,

Arue = 2 Amyimrpr-
M

m+m'=
So again we can apply the arguments of sect.. 4, giving
A(M)(P)=a(M)wP‘LPV‘*'d(MmP“WLe(M), (5.9)

where dary,, € are constants. If in eqs. (3.10) and (3.12) M =0, then the
information on the kernels obtained so far implies that

Q=a 1+a,P*+a,P*P" on ,
so there is nothing more to prove. (Note that b, = €, =0 due to the presence
of inelastic scattering [9].)

(1v) If M=1 we define on @ the gperator Q—z[Q P°], and similarly Q—
1[Q P°1if M =2. It is obvious that Q (Q) is a hermitian operator with kernels of
the form (3.10) and (3.12); but now there appear at most M —1, (M —2) derlvatlves
in these expressions. By applying the results of the previous steps to Q and Q it
follows that the corresponding coeflicients A(M 1y B(m)(m »and A(M —2) B(m,(,,, - have
the form given in eqgs. (5.9) and (5.7), respectively.

(v) From the very definition of é in the previous step we obtain the following
equations™:

iPOA(M—l)(P):P“)A(l,M—n(l’), (5.10)

ipoqoé(m)(m')(l’, q)=(m+ I)QOP(I)B(l,m)(m’)(P, q)+(m'+ 1)PO‘I(I)B(m)u,m')(l’, q),
ifm+m'=M-1, M=1.

Clearly, analogous equations hold also for K(M,z), A(M_” and é(m)(mf), ]§(1~m)(mr,,
Bimyrmy it m+m'=M—2, M=2.

The proof is now accomplisheq by sol\A/ing these e%uationsi taking into account
the constraints on A¢ary, Bpyimns Acvr—1ys Bimymn and A2y, Bmym) resulting from
egs. (5.7) and (5.9). It turns out that Ay = Bmym, =0 if m+m’'= M >2. This
means that the number of derivatives appearing in the kernels (3.10) and (3.12) is
less or equal to 2. If M <2 then the above equations do have non-zero solutions,
and it is stfaightforward to show that the corresponding charge-operators are of the
form given in the statement of the proposition.

These results have been obtained by a rather tedious computation. A simpler
solution of this problem would be important for the analysis of non-local charges
of higher genus and of theories with several particles.

. 3 . .
* We use the notation a(k)T(k.l):Zil,.,,k,—l a, - a,T,. . ;..; for contractions. Here T, , is any

symmetric tensor of rank k+1/ and a any vector (cf. also footnote on page162).
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6. Conclusions

From the “‘axiomatic” point of view adopted in this paper, the non-local charges
appear as a quite natural generalization of the standard charges. It is another virtue
of this general approach that it is based only on a few intrinsic properties of non-local
charges, thereby avoiding all difficulties arising in an explicit construction of these
quantities in terms of local fields.

Although we have confined our attention to a restricted class of models, it is clear
that many of our arguments carry over to more general situations. For example, the
analysis in sect. 3 can be performed in models with an arbitrary number of massive
particles and in any number of space-time dimensions. Up to some minor notational
complications, the results are the same.

Only a little more effort than in sect. 4 is needed for the analysis of non-local
charges of genus 1 in models with an arbitrary particle spectrum. Using the methods
outlined in [4] one finds that the set of these charges consists of the generators of
space-time and internal symmetries. In the case of spinorial charges it follows from
the arguments in [10] that such charges are generators of supersymmetries.

The calculation of non-local charges of higher genus is, however, fairly compli-
cated. As was demonstrated in sect. 5, an important tool for the analysis of these
charges are the clustering properties of the S-matrix. For the class of models
considered here, it is this property of “macroscopic causality” which admits as
non-local charges of genus 2 only polynomials of second degree in the generators
of the Poincaré transformations.

The clustering properties of the S-matrix are also useful in the analysis of non-local
charges of arbitrary genus in models with any number of particles. They lead to a
set of constraint equations for the kernels of these charges, similar to egs. (5.2),
(5.3),(5.6), (5.8) and (5.10). Unfortunately, we have not been able to find the general
solution of these equations. Our partial results seem to indicate that there cannot
exist solutions other than those corresponding to polynomials in the generators of
space-time, internal and supersymmetries. But since we cannot definitely exclude
solutions which are more interesting, this matter should be settled completely.

Let us finally comment on the particular situation in two space-time dimensions,
where the arguments of sects. 4 and 5 are not sufficient. Here again we restrict our
attention to models of a single massive particle.

First, in two dimensions the functional equation

A(p)+A(p,)=A(q,)+A(qg)

on the two-particle scattering manifold (compare eq. (4.4)) does not impose any
constraints on the function A, because on the scattering manifold p, = q,, p,= g, or
P1= 42, p>= q,- But if, for example,

A(p1)+A(p)) + A(ps) = A(q))+ A(q,) + A(gs)

on the three-particle scattering manifold, then one can show that A must be linear
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in energy and momentum. Taking this fact into account one obtains for the charges
of genus 1 the same results as in sect. 4, provided there is particle production and
non-trivial three- (or many-) particle scattering in the model, i.e. scattering for an
open set of momenta on the scattering manifold. (This is for example the case in
the P(¢),-models.)

The second peculiarity in two dimensions is the lack of clustering properties of
the S-matrix. So the methods of sect. 5 cannot be used for the analysis of non-local
charges of genus 2. But there is a more direct approach to this problem.

If, for example, Q is a constant of motion it follows from the analysis of sect. 3
that Q cannot change the asymptotic particle number. So the only non-trivial kernels
of Q are of the form given in egs. (3.10) and (3.12). It is obvious then that the
(M +1)-fold commutator of Q with P* vanishes. Now, in contrast to the situation
in four dimensions, there cannot appear any derivatives in the kernels of non-local
charges which commute with P*. Using this fact, the general analysis of Q essentially
boils down to the study of the special cases, where M =0 in eqs. (3.10) and (3.12).

Now, if one evaluates matrix-elements of such a charge Q between incoming and
outgoing three-particle collision states, say, one obtains for the kernels of Q a
functional equation of the form

B"(p,, p2)+ B°M( ps, p3)+ B™(ps, p)) = Bin(‘]n, qz)+ Bin(‘ha q;)+ Bin(%, q1)

for all momenta on the three-particle scattering manifold, for which non-trivial
scattering occurs. It follows that B°**= B™ which implies that Q commutes with
the S-matrix. If there is only elastic two-particle scattering in the model nothing
more can be said. But if there occur also three- (or many-) body collisions, then
one can show that the only solutions of the above equation are polynomials of
second degree in energy and momentum (cf. eq. (5.7)). With this information at
hand it is easy to show that Q has the form given in proposition 5.4.

In models with more than one type of particles the S-matrix elements do not
simply factor out of the constraint-equations for the kernels of Q, and consequently
the evaluation of these equations is more complicated. As the example of the o-model
shows, one can in general no longer conclude that non-local charges of genus 2
must commute with the S-matrix, in contrast to the restricted class of models
considered above. But, it is clear from the discussion of these special models that
the existence of multi-particle scattering and particle production imposes strong
constraints on the kernels of non-local charges. Infering from these partial results
it seems that interesting examples of non-local charges can only exist in models
where such collision-processes do not occur.
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