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We consider in detail a chiral SU(N) gauge theory which undergoes multiple tumbling. An 
extension of the notion of complementarity is used which allows us to deduce the set of massless 
fermions, in the confining phase of the theory, which we needed for anomaly matching, The 
likelihood of this confining phase ever being realized in practice is discussed. 

An important  and very interesting question has emerged in composite models of 
quarks and leptons, namely, do there exist confining theories with massless spin-½ 
fermions in the bound state spectrum? In models which possess a chiral symmetry at 

the preon level such massless composite fermions can arise whenever the chiral 
symmetry remains unbroken at the bound state level. ' t  Hooft  [1] has given a precise 
necessary condition for the preservation of chiral symmetry in the binding: there 
must  be a matching of the value of the chiral anomaly, computed at the preon level, 
with the value obtained at the bound state level by computing this anomaly in terms 
of all the spin-½ massless states. To be more precise consider a set of conserved 
chiral currents 

J ;  = E ~/iy~(1 - y s ) t , ~ j ,  (1) 
i , j  

where i, j run over the color and flavor indices of the fermions. The 't Hooft  
matching condition can then be written as 

( T r t a ( t b ,  tC})preons-~(Trta{ tb ,  tC})masslesscompositefermion s . (2) 

This condition is only a necessary condition for chirality to be preserved in the 
binding. Actually massless Goldstone bosons can also reproduce the anomalies at 
the composite  level, thus signalling spontaneous breakdown of the chiral symmetry. 
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This latter possibility is realized in QCD and probably in most vector gauge theories 
(i.e. theories with vector couplings of gauge fields to fermions) as can be argued by 
considering mass inequalities between bound states [2] or by using large-N consider- 
ations [3], for example. The behavior of chiral gauge theories, i.e. gauge theories 
with fermions transforming in such a way under the gauge group that no mass terms 
can be formed at the preon level, should, on the other hand, be quite different. For 
some special chiral gauge theories, formally allowing a large-N limit, it actually can 
be shown that massless spin-½ bound states must be present in the spectrum at 
N = ~ [4], provided some mild assumptions about the behavior of the large-N limit 
hold. Chiral gauge theories therefore hold some promise of being candidates for 
bound state models of quarks and leptons, and therefore deserve continuing investi- 
gation. 

In general the algebraic constraints imposed by eq. (2) are difficult to satisfy: one 
has to solve Diophantine equations which become particularly intricate when the 
subgroup H that the flavor group G at the preon level is broken to has to be 
determined at the same time. However, there exists a way to systematically generate 
solutions in a large number of chiral gauge theories [5]. It is based on complementar- 
ity, i.e. the hypothesis that a gauge theory spontaneously broken by a scalar 
condensate in the fundamental representation of the gauge group is in a phase which 
analytically continues into the confining phase of the theory [6]. In particular, one 
expects the spectrum of massless states to be identical in the Higgs and the 
confinement phase of the theory [5]. 

In this paper we shall investigate an interesting, but rather intricate, chiral SU(N) 
gauge theory with three species of left-handed ferrnions: 

S{i,j } , A [~'jl, F i", i, j = 1 . . . . .  N ;  a = 1, . . . , 8 .  (3) 

These fields transform, respectively, under the conjugate of the second-rank symmet- 
ric, the second-rank antisymmetric and the fundamental representation of SU(N). 
The number 8 of chiral fermions F ~" is chosen so that the model is anomaly-free in 
the gauge sector. It is an easy matter to check that this theory is asymptotically free. 
This model has been investigated previously by Eichten and Preskill [7], in their 
general analysis of chiral gauge theories. Some features of this model, notably the 
fact that it admits a repetition of states (families?) at the bound state level, have been 
reported by Preskill [8]. Two of us, in collaboration with Eichten and Preskill [4] 
have also studied some aspects of the model for large N. Here we would like to 
examine the model in a tumbling version of complementarity, which will be more 
precisely defined below. 

At the classical level the flavor symmetry of the model is 

Go, = SV(8) × U(1) X U(1) x U(1), (4) 

where the U(1) generators can be taken as the fermion number operators n A, n s and 
n F. Each of these U(1) symmetries has however a gauge anomaly, so that at the 
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quantum level only two overall U(1) symmetries survive: 

Gq. = su (8 )  x u (a) x u2(a) .  
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(5) 

The linear combinations of the fermion number operators which are anomaly-free 
are easily determined and a convenient choice for their generators is: 

Q1 = 2hA -- 2ns + nF, 

Q 2 = ( N - - 2 ) n s - - ( N + 2 ) n A  . (6) 

The generator Q1 has a direct physical meaning in the confining phase of the theory. 
Obviously, from its definition, Q, counts the difference between the number of 
upper and lower SU(N) indices. Hence it counts N times the number of SU(N) 
e-tensors in any singlet state. 

We want to examine this model, to begin with, in the Higgs phase where 
condensate formation forces the breakdown of the gauge group. For N finite, the 
most attractive channel (MAC) [9], is one where the fermions S and F condense 
yielding an effective Higgs field in the fundamental representation of SU(N): 

(SqFJ"> = (~?> ¢ O. (7) 

Because ot = 1 . . . . .  8 only, the condensate (7) can break in general the gauge 
symmetry only partially down, to SU(N - 8). Depending on the explicit form of (7) 
the global symmetry (5) will suffer some breakdown. If we demand that the end 
result of the breakdown yield as large a global symmetry as possible, then it follows 
that the condensate (7) must take the form 

< a , 7 >  = +' -8  (8) 

For non-vanishing A, the condensate (8) forces a breakdown of the gauge × global 
symmetry of the model: [SU(N)]gaug e × [SU(8) × Ut(1 ) × U2(1)]global, to 

[SU(N - 8)] gauge × [SU(8) >< U;(1) × U~(1)] g,obal, (9) 

that is, the global symmetry is as large as that before the breakdown. Only the gauge 
symmetry has been reduced to SU(N - 8). The new global symmetry SU(8) is easily 
seen to be the diagonal part of the old global SU(8) and the SU(8) in SU(N)gaug e 

encompassing the last 8 indices. The new U(1)'s are linear combinations of U,(1) 
and 152(1 ) and the SU(N) generator*, 

IN-8 0 ) 
O N =  0 1 ( 8 - N ) I  8 " (9) 

* Here I k is the k-dimensional unit matrix. 
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It is clear that (8) leaves both 

. 8 [  8 ] 
Q~ = N Q1 + N -  8 Qlv , (10a) 

1 
Q ~ = ~ [ 1 2 ( N -  4)Q t + N Q 2 -  8 ( N -  6)QN] (10b) 

invariant. The complicated combination chosen for Q2, will be explained below. 
After the breakdown (8) the theory will contain a number of massless states. These 

can be easily identified, following the method of Dimopoulos, Raby and Susskind 
[5]. Namely, one looks at which states in the theory cannot acquire mass from 
effective SU(N)  x Gq~-invariant four-fermion interactions, 

1 
- - - F  +c+jke F l~ (11) eff - -  A 2 ja ~" ~'~kl , 

once the condensate (8) forms. It is clear that among the massless fermions one will 
have all the A ij states, as well as the S u states for i, j = 1 . . . .  , N - 8. Furthermore, it 
is easy to see that the antisymmetric combination of F j~ with j = N - 7 . . . .  , N also 
acquires no mass. Table 1 summarizes the massless fermions in the theory following 
the breakdown (8), classified according to their SU(N - 8)gau~e X [SU(8) X UI'(1) X 
U~(1)]glob~a transformation properties. As can be seen from the table, there are two 
gauge singlet states which transform according to the second-rank antisymmetric 
representation of SU(8) and three states which under S U ( N -  8)ga,g e X [SU(8)X 
U{(1) X U~(1)]glob~ have precisely the same transformation properties that S u, A u 

and F ie had under SU(N)gaug e X [SU(8) X UI(1 ) X U2 (1)] global, except that N --+ 
N -  8. This was the reason for choosing the somewhat complicated form of Q2 in 
eq. (10b). It guarantees that the eigenvalues of the massless fermions, with gauge 
quantum numbers, after the breakdown (8) correspond precisely to those of the 
massless fermions before the breakdown. 

TABLE 1 
Massless fermions after the breakdown [SU(N)] x [SU(8) x O1(1 ) x U2(1)] 

--* [SU(N - 8)1 x [SO(8) x U/(1) X O2'(1)] 

States S U ( N -  8) SU(8) U{(1) U2'(1) 

Vf~21 ( F J . " - F " + u - 8 , J - u + 8 ) ~  j = N - 7  . . . . .  N 1 ~ 0 N - 2  

Aj.a+N-8 J Ot = 1, . . .  ,8 1 B 0 N -  6 
AO i =  I , . . . , N -  8; j =  N -  7 . . . . .  N [] [] 1 0 

AUi ,  j = l  . . . . .  N - 8  [] 1 2 - [ ( N -  8)+ 2] 

S u i ,  j = l  . . . . .  N - 8  r-l-q ] - 2  + [ (N  8 ) - 2 ]  
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TABLE 2 
Massless fermions after the breakdown [SU(8n + k)] × [SU(8) × U 1 (1) × U 2 (1)] 

---, [SU(k)] × [SU(8) × Ul(1) ~") × I22(1) (") ] 
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States SU(k)  SU(8) U 1 (1)l ") U 2 (1)(°) 

N - 2 - 4 s  
gauge singlets 1 [] 0 (s=O,1 ..... 2n -1 )  
fundamenta l  F [] [] 1 0 
ant isymmetr ic  #, [] 1 2 - ( k  + 2) 

symmetr ic  S ~ 1 - 2 + (k  - 2) 

The Higgs phase of the model which we have just discussed arose from a 
condensate ( ~ 7 )  which transforms according to the fundamental representation of 
the gauge group. Thus an application of complementarity would have been war- 
ranted. Alas, the situation here is more complicated than that discussed by 
Dimopoulos, Raby and Susskind [5]. In the examples discussed in ref. [5], after the 
spontaneous breakdown, the massless fermions left in the theory were either gauge 
singlets or could be paired under the gauge group, thereby breaking the global 
symmetry further. In our example, however, the fermions which are non-singlet 
under S U ( N -  8) are chiral. Dimopoulos, Raby and Susskind [5] make use of 
complementarity in the following way. They argue that the fermionic bound states of 
zero mass, found in the confining phase of the theory, should agree precisely with 
the gauge singlet states found in the Higgs phase. Indeed, to support their conten- 
tion, they show that, in the examples they consider, precisely the set of these 
massless bound states suffices for anomaly matching. In our case, however, we have 
additional chiral states which in the Higgs phase have non-trivial gauge quantum 
numbers. How are we to apply complementarity? 

The solution we have found to this conundrum is the following. The spectrum of 
the SU(N - 8) gauge theory is precisely the same as that of the SU(N)  gauge theory. 
Hence it is logical that also the S U ( N - 8 )  gauge group will be broken by a 
condensate analogous to (8). In this way the gauge theory, in the Higgs phase, goes 
through a tumbling sequence [9], from SU(N),  to SU(N - 8), to SU(N - 16), etc. To 
be precise, let us write N = 8n + k, k = 0 . . . . .  7. Then after n steps the remaining 
symmetry is [SU(k)]gaug e X [SU(8) X UI(1) (") × Uz(1)tn)]*. Similar considerations to 
those that led us to table I yield, for the fermionic massless states at this stage, those 
indicated in table 2. The (SU(k))g~u~e group finally is totally broken down by the 
condensate 

(~j f fJ~)  = A'8 7 . (12) 

* The cases k = 0,1 are slightly more special. They are discussed in some detail in the appendix. 
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TABLE 3 
Massless fermions after tumbling and their transformation properties under Gfina I 

SU(k) SU(8 - k) U 1 (1) U2 (1) Number of states 

1 2(8-k) N - 2 - 4 s  s=0,1 ..... 2n+ 1 

[] [] 8 - 2 k  N - 2 - 4 s  s = 0,1,...,2n 

1 [q - 2 k  N - 2 - 4 s  s=0,1 ..... 2n -  1 

This condensate also breaks down the global group to 

Gfi.. 1 = SU(k)  x SU(8 - k)  X UI(1 ) X U2(1 ) . (13) 

Here the two remaining conserved U(1)'s are linear combinations of Ut(1) (n), 
U2(1)(") and the SU(8) generator 

( k - 8 ) I  k 0 ) (14) 
Q8 = 0 k l s -  k " 

A simple calculation shows that the generators Q1 and Q2 are given by 

Qt = ( 8 -  k ) Q ~  " ) -  Qs ,  

Q2 = (k - 2)Q~ ") + Q(2 ") . (15) 

The spectrum of massless fermions resulting at the end of the tumbling sequence is 
given in table 3. 

At each stage, the successive breakdowns are caused by condensates which are in 
the fundamental representation of the surviving gauge group. Hence one may hope 
that there should be no phase boundary between the Higgs phase and the confining 
stage. If this is so, then we may apply complementarity to the final spectrum of 
ferrnions since these states, although chiral, carry no gauge quantum numbers. 
Hence our considerations suggest that a set of massless fermionic bound states with 
the quantum numbers under Gfinm shown in table 3 should match the Gfin~ a 
anomalies at the preon level. We remark that this tumbling complementarity,  al- 
though intuitively appealing, is far from obvious if one thinks only of the overall 
breakdown. One has a theory with an [SU(8n+k)]gaug e X[SU(8)XUI(1 )X  
U__z(1)]~oba I symmetry, broken down to a pure [ S U ( k ) x S U ( 8 - k ) × U I ( 1 ) x  
U2(1)] ~ob,l symmetry. Such a breakdown necessitates condensates which are both in 
the fundamental and the adjoint of the gauge group. From this point of view, there 
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is no reason why the set of fermions in table 3, viewed as bound states of the 
confining phase, should match anomalies. 

To show that tumbling complementarity really works, we must first identify the 
generators of the global symmetry group Gfi~ in terms of the generators written at 
the preon level. This is trivial for the non-abelian SU(k)× SU(8 -  k) symmetries, 
but is far from obvious for the UI(1) and U2(1 ) symmetries. What happened in the 
tumbling Higgs phase must be reinterpreted entirely in the confining phase, which is 
difficult. Fortunately, one can bypass these complications by the following observa- 
tion. The U(1) generators Q1 and Q2 in the confining phase must be a linear 
combination of Q1 and Q2 given in eq. (6) and of the SU(8) generator Qs: 

Q1 = allQ1 q- ot12Q2 -i- a18Q8, 

02 = a21Q1 q- ot22Q2 + a28Q8" (16) 

The six coefficients a~j "_m eqs. (16) can be determined by requiring that the chiral 
anomalies Q1SU(k) 2, Q1SU(8- k) 2, Q2SU(k) 2, Q2SU(8- k) 2 as well as the 
gravitational anomalies Tr Q1, Tr Q2 [10] be matched at the preon and bound state 
levels. These anomalies are linear in the coefficients u,j and the solution of the six 
linear equations is immediate. 

One finds, using table 3 and doing a little algebra, at the bound state level: 

Tr 01SU(k) 2 = ½(8 - k ) ( N  + k ) ,  (17a) 

Tr ~91SU(8 - k) 2 = ½k(8 - k - N) ,  078) 

TrQ, = 6k(8 - k) ,  (17c) 

Tr 02SU(k) 2 -- 3N2 - ~k(8 - k) ,  (18a) 

TrQ2SU(8-  k) 2= 3 N 2 -  ~ k ( 8 -  k) ,  (18b) 

Tr~92 - 7  2 - ~ N  - 3 k ( 8 - k ) .  (a8c) 

On the other hand, at the preon level one has (i-- 1, 2) 

T r - O i S U ( k ) 2 = ~ N [ a a  + a i s ( k - 8 ) ] ,  (19a) 

T r Q , S U ( 8 - k )  2 ~ a,sk ] 
= 2N[ail  + (19b) 

Tr-Qi = N [6alx - Naiz ]. (19c) 
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TABLE 4 
Transformation of preons under G f i n a l  

Preon SU(N) SU(k) SU(8 - k) 0,(1) U2(1) 

( 8 - k ) ( k  + U) k ( 8 - k )  
3 F [] D 1 iN 

N 4N 
k ( 8 - k - N )  k ( g - k )  

3 F [] 1 [] ,iN 
N 4N 

2 k ( 8 -  k) k ( S - k )  
l A ~] 1 1 ~ N - 2  

N 2N 
2k(8- k) k(8-k) 

- -  1 _ _  
S EI3 1 1 N - ~ N - 2 +  2N 

Thus the charges Q1 and 02 are seen to be 

k ( 8 - k )  
01 = N Q 1 -  Q8, 

-02=[JN _k(8-k) ] 
-4N Q1 + Q2. (20) 

In table 4, we summarize the preon assignments under Gftna ~, following from the 
above identification. 

Having fixed all the charges and multiplets both at the preon and bound state 
level, one still has 6 non-trivial anomaly equations to check, namely SU(k)  3, 
SU(8 - k)  3, ~3 3, 0?02, QIQ 2 and ~3. All these conditions are in fact fulfilled. We 
list the results of the calculation for the preon level, after some simplification, and as 
an illustration show how the Q1Q2 z anomaly is matched. One finds 

Tr SU(k)3 = N Tr rq~, (21a) 

T r S U ( 8 - k )  3 = N T r [ 2 3  k, (21b) 

Tr0~ = 8k(8 - k ) [3k(8  - k)  + N(8 - 2k ) ] ,  (21c) 

Tr Lg~Q: = 6k(8 - k ) [ N  2 -  k(8 - k ) ] ,  (21d) 

TrQ1QZz = 2 k ( 8 -  k ) [ k ( 8 -  k ) - 4 ] ,  (21e) 

__7 2 N z _ TrQ3-IN ( - 8 )  ¼k(g-k)[k(8-k)-8]. (2af) 
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The anomaly Q1Q2 z at the bound state level is given by 
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2 n + l  

TrQ1Q 2 = = ~k(k - 1)2(8 - k)  ~ (N - 2 - 4 s )  2 

s = 0  

2n 

+ k ( 8 -  k ) ( 8 -  2k)  • ( N -  2 -  4s) 2 
s = 0  

2n- -1  

+ ½ ( 8 - k l ( V - k l ( - 2 k )  ~., ( N - 2 - 4 s )  2. (22 / 
s = 0  

'g"2n-ll  M 2 - -  4 S )  2 have in fact It is easy to check that the terms proportional to ,--s=0 ~1, - 
zero coefficient. Hence 

TrQx{92 z=  k ( 8 -  k ) ( 8 -  2 k ) ( N -  2 -  8n) 2 

+ k ( k - 1 ) ( 8 - k ) [ ( N - 2 - 8 n ) Z + ( N - 6 - 8 n ) 2 ] .  (23) 

Since N - 8n = k, a little algebra reduces the above equation to (21e). In a similar 
way one can check that all the other anomalies in eq. (21) are matched at the bound 
state level. Hence the set of fermions inferred from the tumbling complementarity 
are precisely the set needed to match the Gtinn a anomalies. 

Several remarks are in order. The rnassless bound states given in table 3, when 
constructed in the confining phase, will contain up to O(N) preons. This is easily 
seen from the following example. The combination (FSF) carries Q2 charge equal to 
N - 2 and Q1 charge equal to 2(8 - k), 8 - 2k, or - 2 k ,  depending on the flavor 
index of F. On the other hand the combination (AS) carries Q2 charge equal to - 4  
and no Q1 charge. Hence the simplest representation [7, 8] of the massless bound 
states in table 3 is given by the SU(N) color singlet combination of (FSF)(AS) s, 
s = 0,1 . . . .  2n + 1. This is a surprising result, because it leads to self-interactions of 
the bound states growing with N also [11]. We suspect, therefore, that above a 
certain Nc~mc~a the model has really no confining phase at all. Indeed [4] for large 
enough N the adjoint condensate (S, jA U) is as attractive as the fundamental 
condensate (7) and the theory may tumble down in a way totally different from the 
one considered here. 

A second remark in the same vein concerns the breakdown of the original U(1) 
symmetry Q1 connected with the number of e-tensors in any singlet state of SU(N). 
Because in G~i~ 1 Q1 is not a good symmetry, the breakdown SU(8) x UI(1 ) x U2(1 ) 

SU(k) x SU(8 - k) × UI(1 ) x U2(1 ) must be caused by condensates which carry 
e-number, an example being 



104 J. Goity et a L /  Tumbling and complementarity 

These condensates will again contain O(N)  fields and it is difficult to see how they 
would dynamically form. 

Notwithstanding these remarks it is worth reemphasizing that tumbling com- 
plementarity allows the deduction of the states which match anomalies in a very neat 
way. Without the guide obtained by these considerations, the deduction of the set of 
states to use to match the chiral anomalies is much more open and one has to try to 
use other dynamical guides [7]. From this point of view, the considerations presented 
in this model may prove useful elsewhere. 

Appendix 

In this appendix we consider the case N mod 8 + k = 0,1 which requires special 
care because in the last step of the tumbling sequence one is formally left with the 
"gauge group" SU(0) or SU(1). Even though an "analytic continuation" of the 
results derived for k = 2 . . . . .  7 to k = 0,1 leads to a consistent anomaly matching, a 
more careful treatment is worthwhile because it leads to a larger surviving symmetry 
and correspondingly to a larger number of massless composite fermions. 

In order to see this let us write N = 8 n ' +  k '  with k ' =  8,9. After n' tumbling 
steps we are left with exactly the massless fermions of table 2 (with (n, k) replaced 
by (n',  k')).  For  the last step of the tumbling sequence we again assume the 
condensate 

( S i j F  ja) = A'8 7, i, a = 1 . . . . .  8 (A.1) 

to form, which breaks SU(k')lo¢ ~ × [SU(8)× U(1)× U(1)]globa I to Gfina 1 ---[SU(8)× 
U(1)]glob~ for k '  = 8 and to Gfina I = [SU(8) × U(1) × U(1)]glob~ for k '  = 9. The new 
SU(8) generators are a sum of the old SU(8) and the old SU(k ' )  generators. Out of 
the original U(1)'s only one is respected by the condensate (A.1). Its generator can 
be chosen as 

02 = ( k ' - 2 ) Q ~ " ' )  + Q~"') (A.2) 

in terms of the charge assignment of table 2. For k ' =  8 this is the only U(1) 
generator commuting with the condensate (A.1), while for k ' =  9 the remaining 
diagonal SU(9) generator 

(: 0) tA , 
0 9  ----- _ 811 

combines with Q~"'~ to form the generator 

01 --- ~ (Q[" ' ) -  Q9) (A.4) 

of another conserved U(1). 
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TABLE 5 
Massless fermions after tumbling and their transformation properties 

under  Gfina I for k = 0 and k = 1 
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SU(8) O 1(1) 02 (1) Number  of states 

k = 0  [3 N - 2 - 4 s  s = 0 , 1  . . . .  , 2 n - 1  

k = l  [~ 0 N - 2 - 4 s  s = 0 , 1  . . . . .  2 n - 1  

[] 1 3 1 
1 - 2  - 7  1 

When the condensate (A.1) forms, most of the SU(k')  non-singlet fermions obtain 
masses due to residual four-fermion interactions analogous to eq. (11). For k '  = 8, 
only the .~J and the antisymmetric combination ~ - ( f f i ,  _ if , i)  (i, j ,  a --- 1 . . . . .  8) 
remain massless while the case k '  = 9 does not allow mass terms for ~79 (i = 1 , . . . ,  8) 
and $99 either. The resulting spectrum of massless fermions and their charge 
assignment is given in table 5. 

When turning to the confinement phase, tumbling complementarity works exactly 
like in the case of general k. Matching the "linear" anomalies Tr Q SU(8)z and Tr Q 
via the massless fermion multiplets of table 5, now being interpreted as massless 
bound states, identifies the charge assignment of the preons. We find (k = 0,1) 

1 1 
Q1 = ~ Q 1  = ~ ( 2 n A  + nF - -  2ns),  

3 N 2 + 3 k  
Q2--- 4 N 01 + Q2- (A.5) 

The remaining anomalies, namely SU(8) 3, Q23 and, for k = 1, -3Q1,QxQ2,QIQ2,-2- - - - - 2  

again constitute a non-trivial consistency check on tumbling complementarity. As 
expected, they all match. 

While the k = 0 solution can be considered a simple extension of the k = 2 . . . . .  7 
cases, the k = 1 spectrum is qualitatively different: 

(i) the original global symmetry remains unbroken, 
(ii) it contains massless states of non-zero SU(N) e-number, 
(iii) fundamental and singlet representations of SU(8) occur. 
It is a simple exercise to find color singlet operators which create the bound states 

of table 5. For the antisymmetric representation of SU(8) they are again the 
( F S F ) ( A S )  s operators encountered previously. The ~91 = - 2  state can be repre- 
sented by S[(A+F)3(SF)SA+4] ~ and (for n even) the Qx = +1 state is created by 
operators like F[(S+F+)3(AF+)5.44] n/2. Even though these operators possess the 
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correct quantum numbers, the dynamical question whether they actually do create 
massless bound state fermions out of the vacuum remains open. 
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