
Letters m Mathematical Physics 11 (1986) 51-58. 
�9 1986 by D. Reidel Publishing Company, 

51 

Local Properties of Equilibrium States and the 
Particle Spectrum in Quantum Field Theory 

D. B U C H H O L Z  andP .  J U N G L A S  
11. lnstitut )~r Theoretische Physik der UniversitiJt Hamburg, D-2000 Hamburg 50, 
Federal Republic of Germany 

(Received. 19 June 1985) 

Abstract. It is shown that in a quantum field theory describing free, scalar particles with masses m,, i ~ ~q 
there exist locally normal equilibrium states with finite energy density for all temperatures fl > 0 if and only 
if Z ~  1 e-  ~ '  < o0. This result lends support to the conjecture that the nuclearity criterion proposed by 
Buchholz and Wichmann is sensitive to the thermodynamical properties of field-theoretic models. 

1. The general framework of local quantum field theory includes many models which 
do not have a reasonable particle interpretation. Therefore, it has been proposed by 
Haag and Swieca to amend the fundamental postulates by another condition which is 
based on the idea that the number of states occupying a finite volume of 'phase space' 
should be finite [2]. 

Following Licht [3], one may identify the states which are, at a given time, strictly 
localized within a bounded region (9 of Minkowski space with the set of vectors 

{Ufll U~I((9) ,  U*U = 1} (1) 

in the physical Hilbert space ~ .  Here ~((9) denotes the algebra of fields (respectively, 
observables) which are localized in (9, and f~ is the vacuum vector. By cutting off the 
total energy of these vectors, e.g., with the help of the exponential function e - pH,/~ > 0 
of the Hamiltonian, one then obtains a set of states 

Jl*((9,/~): = {e-anUf~ I U~ 9~((9), U*U = 1} (2) 

which, roughly speaking, occupies a finite volume in configuration as well as momentum 
space. Haag and Swieca argue that the sets vt*((9,/~), although not f'mite-dimensional, 
should be relatively compact in the norm topology in physically acceptable models. 

In a recent article [ 1 ], it has been pointed out that under quite general conditions the 
sets X((9,/~) should even be nuclear, i.e., Y((9,/~) should be contained in the image of 
the unit ball ~ in Jeg under the action of some trace class operator T, 

Y((9,/~) c T- ~ .  (3) 

(For a slightly more general definition of nuclearity due to Grothendieck cf. [ 1 ].) The 
argument is based on the following heuristic consideration: disregarding long-range 
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correlations, one can compare the set of vectors (1) with the unit sphere -'~v, 1 in the 
Hilbert space J/t~ of the theory for finite volume V. On the same heuristic basis one can 
compare Jff((9, fl) with the set of vectors e-  a/tv. ~v,x where Hv is the finite volume 
Hamiltonian. Now the crucial input is the assumption that the operators e -pHV, 
describing the Gibbs ensemble, have a t'mite trace for all fl > 0. This should be true in 
most models of physical interest, one of the few exceptions being the Hagedorn 
model [4], for which a maximal temperature exists. It then follows that the sets 
e-  az-/v, jt~v. ~ are nuclear, so according to the above picture the same should be true for 
the sets jtr(O, fl) in the infinite volume theory. A measure for the size of the sets Jff((9, fl) 
is provided by the nuclear index ]1 .H((9, fl)II1 given by [1] 

IlY((9, fl)lll = inf T r [TI .  (4) 
T 

Here the infimum is to be taken over all trace class operators T for which relation (3) 
holds. So the nuclear index is the analogue of the partition function 

Z(V, fl) = Tr e -a"v . (5) 

The condition that the partition function (5) exists is equivalent to the requirement that 
the equilibrium (Gibbs) states in the finite volume theory are normal states on the algebra 
of all bounded operators on APv. Proceeding to the thermodynamic limit (if it exists) one 
may therefore expect that the equilibrium states o)a of the infinite volume theory are 
locally normal, i.e., the restrictions of o)ato the local algebras 9~((9) should be represented 
by density matrices on the Hilbert space 9a(d?)f} = Ad. 

A significant test for the existence of the thermodynamic limit is based on the analysis 
of thermodynamical quantities, such as the pressure (Vfl)-1 In Z(V, fl), in the limit of 
large volume V. In view of the similarity of the nuclear index 11Y((9, fl)II 1 t o  the partition 
function Z(V, fl) it should be possible to express these quantities also in terms of 
II X ( ~ ,  fl)lll. From a fundamental point of view, this possibility appears to be very 
attractive. It would allow one to distinguish, within the general setting of quantum field 
theory, all models with a reasonable thermodynamic behaviour. This input could then 
be used to derive more specific properties of these models (cf. [ 1 ]). 

It is the aim of the present note to substantiate this qualitative picture for the simple 
class of models of a countable number of free, scalar particles with masses m e, i t  N. 
In order to abbreviate the subsequent discussion we will restrict our attention to models 
with a mass gap, i.e., we assume that m,. i> mo> 0 for all i t  N. A more significant 
restriction on the mass spectrum derives from the assumption that the sets X((9, fl), 
fl > 0 are nuclear. It is easy to verify that in this case 

e - ~ '  < oo for f l>  0.  (6) 
i = 1  

Note that the sum in (6) provides a lower bound for the partition function (5). That (5) 
is also a sufficient condition for the nuclearity of JV'((9,/7) can be taken from the 
appendix in [ 1 ]. 
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As to the thermodynamic properties of these models, we will show that there exist 
locally normal equilibrium states for all fl > 0 if and only if condition (6) is satisfied. 
Moreover, we will see that the energy density of these states is fmite. In contrast, the 
energy density of the equilibrium states is inf'mite for large temperatures whenever the 
mass spectrum does not comply with (6). These results are in perfect agreement with 
the above heuristic considerations. We therefore presume that the nuclearity criterion 
proposed in [1] serves its purposes also in general [5]. 

2. We begin with a brief description of the model and of our notation. It will be 
convenient to work with the CCR algebra generated by the 'fields' ~b at time t = 0 and 
their canonical conjugate 'momenta' n; the respective testfunctions are elements of the 
complex Hilbert spaces 

K~= ~ L2(~ 3) and K . =  @) L2(R3). (7) 
i = 1  t = l  

To simplify the notation we also introduce the space K = K~G K~ and set, for 
F = f @ g ~ K ,  

A(F) = q~(f) + 7z(g). (8) 

The scalar product ofF, G s K is denoted by (F, G) and the antilinear involution on K 
corresponding to complex conjugation of the functions F in configuration space by F. 
The adjoint of A(F) is given by 

A*(F) = A(FF) (9) 

and the commutator by 

[A*(F),A(G)]=(F,(_O io)G).l (10) 

in an obvious notation. The algebra ~ of all polynomials in the fields A(F), Fe K is thus 
a self-dual CCR algebra [6]. 

The time translations t ~ OR act on ~ by automorphisms c~ t according to 

~xt(A(F))=A( ( _ cosratsin rat cosSinrat ~ "F) " r a t /  (11) 

Here ra denotes the operator which is defined on a dense set of vectors f = @~ 1 f~ in 
K,  and K,, respectively, by 

ra ' f  = ~3 co,f,.. (12) 
i = 1  

The operators co,. act o n  L2(~ 3) as multiplication operators in momentum space 
according to 

(~ i~)  (P) = (p2 + m2),/2 . f (p ) ,  (13) 

where f denotes the Fourier transform off .  
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The vacuum state o9o is completely fixed by the requirement that it is a ground state 
for the dynamics (11). It is a quasi-free state with the two-point function 

! K ( :  ;)o) (14) 

Similarly, the equilibrium states oga, fl > 0 are fixed by the KMS condition [7]. Their 
two-point function is given by 

1( (coth/~./2 i ) ) 
S~(F, G) = og~(A*(F)A(G)) = ~ F, G . (15) 

- " co th /~ /2  

The local algebras ~((9), assigned to the bounded regions (9 c ~3, are the subalgebras 
of ~ generated by the fields A(F), where F~ K((9) : = Kr K=((9) and 

K~((9) = o9-1/2@~1 9((9) K,~((9) = tol/2@-~ ~((9) t = l  �9 (16) 

Here 9((9) is the set of all test functions with support in (9 and the bar denotes the 
closure of the respective spaces. 

For the analysis of the local properties of ogt~ we will make use of a criterion of Araki 
and Yamagami [6]. To this end we represent the restrictions of the positive forms 
So(., . ) and S#(., .) to K((9) by positive bounded operators S O and Sty, respectively, 
which are given on K by 

S o= �89  1 E and S~=�89 (17) 
- i - "  coth fir 

Here 

denotes the orthogonal projection in K onto the closed subspace K((9), and E~,, E,~ 
denote the projections in K ,  and K,~, respectively, onto the subspaces K,((9) and K~((9). 
We now can state the 

CRITERION [6]. The state o9~ is locally normal (i.e., the GNS-representations of ~3( (9) 
induced by o9~ and o9 o, respectively, are quasi equivalent) i f  and only i f  the operator 
SJ/z - S~/2 is in the Hilbert-Schmidt class. 

3. To begin with we will show that o9t~ is not locally normal for a given fl > 0 if the mass 
spectrum of the model is such that 

~ e - 2 B m '  = o o .  (18) 
i = I  



EQUILIBRIUM STATES AND PARTICLE SPECTRUM IN QFT 55 

Because of the identity 

= ~ / 2 . t e l / 2  ( S y  2 S~/2) S 1/2 (19) - S o  ( s U  - s U )  + - + - ' 

and the fact that the Hilbert-Schmidt operators form an ideal in the algebra of all 
bounded operators on K it is, according to the above criterion, sufficient to verify that 
AS = S, - So is not in the Hilbert-Schmidt class. Now a crude lower bound on the 
Hilbert-Schmidt norm of AS is given by 

TrK(AS)2~> ~ it:(m,), (20) 
t = l  

where 

it(m;) = sup ( g ,  �89 - 1 )g )  (21)  
g~o,? /~(e)  ( g , g )  

and ( . ,  . ) denotes the scalar product in L2(~3). Using the fact that 

�89 - 1) = (e a . . . .  1)-~ >~ e -/~~ ~> e -/~m' e -~IPI (22) 

where P is the momentum operator on L2(~3), it is easy to verify that 2(m;) >/c. e - ~ "  
for some constant c > 0 depending only on (_9 and ft. From (20) and (18) it then follows 
that AS is not in the Hilbert-Schmidt class. 

We mention as an aside that the representations of ~((9) induced by ~o~ and O)o, 
respectively, are even disjoint if (18) holds. 

Next, we will prove that o)a is locally normal for a given temperature fl > 0 if 

~ e  < .~c. (23) (/3/2)m, 

/ = 1  

For the proof it is sufficient to show that the operator AS = Sn - So has a finite trace, 
since then S y  2 - S~/2 is in the Hilbert-Schmidt class (cf., for example, the appendix 
of [8]). Let Z be the operator which is defined on the elements f = G :~ ,= 1 f of K ,  and 
K, ,  respectively, by 

Z" f = O z ' f - .  (24) 
i = 1  

The operator Z acts on L2(~ 3) by multiplication (in configuration space) with a test 
furction Z(X) which has compact support and is equal to 1 on (0. According to the very 
definition of the projections E~ and E. ,  we have 

Er = o~ l"2Zo~l/2"Eep , E ,  = r  ~ (25) 

and, consequently, 

A S  = E(O~l /2Zco- l  (e~~ - 1) lZCOl/2 0 ) E .  (26) 
0 ~ 1/2Xto(e/~- 1)-~Xo~ -1/2 
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So it suffices to show that the operators in the diagonal of this matrix have a f'mite trace 
in Kr and K, ,  respectively. Since 

0 ~< r %  (e p~~ - 1) -1 ~ 4 e-(B/'/2)o' ~< 4 e -(B/2)m, e - ( ~ / 2 )  IPI (27). 

and 0 ~< toe -1 ~< m71, it is obvious that 

T r x o  - 1/2Z~ (e t~~ - 1)- 1ZO - 1/2 

~< tim o - "  , = 1  e - ( B / 2 ) m '  . TrL2(R3)Z �9 e -(~/2) Ivl Z , (28) 

where mo is the minimal mass in the model. A similar argument leads to the estimate 

TrK,ol/2Xo - 1 (ea,,, _ 1)- lxol /z  

4 oo 
. e -(fl/Z)m, e-(B/2)  Ivl (29) i~= l "Trr2(~3)ool/2 Z Zvo 1/2 , 
3mg 

where co is the operator defined in (13) with mass m, = too. Now both, e -(a/4) Ivl Z and 
e-(a/4) iPI Xcol/2 are Hilbert-Schmidt operators on LU(0q3). Hence, the right-hand sides 

of (28) and (29) are finite, i.e., AS has a finite trace, if condition (23) is satisfied. 
Combining the results of this section we thus arrive at 

PROPOSITION 1. In a model with mass spectrum mi, i ~ N all equilibrium states o9~, [3 > 0 

are locally normal if  and only if  the nucleanty condition (6) is satisfied. 

(This results holds also if there is no mass gap in the model [9].) 

It is noteworthy that the simple class of models considered here can be used to give 
examples of theories in which no equilibrium states o9~ (i.e., states satisfying the KMS 
condition) exist above a certain temperature. To this end one must only proceed from 
the field algebras ~((9) in the representation no induced by the vacuum state COo to the 
corresponding von Neumann algebras 9ao((9 ) = no(~(d~))". As long as condition (23) is 
satisfied, i.e., as long as the states c% are locally normal, one can extend these states 
to the net of algebras (9 ~ ~to((9), and these extensions still satisfy the KMS condition. 
But if the mass spectrum is such that for some temperature (and, consequently, for all 
higher temperatures) relation (18) holds, it follows from a result of Takesaki and 
Winnink [ 10] that there cannot exist any state on the net C ~ 9~o((9 ) satisfying the KMS 
condition for this temperature. For, such a state would necessarily be normal on 9ao(C ), 
in contradiction to our results. Similarly if 9aa(d~) = rca(~ ((0))", where rca is the represen- 
tation induced by some equilibrium state o9 a in a model with a mass spectrum for which 
(18) holds, one obtains a net (9 ---, 9ap((9) for which there exists no other equilibrium state 
besides coa. Of course, these physically awkward models can be ruled out by the 
nuclearity condition. 

4. In conclusion, we want to analyze the local energy content of the equilibrium states 
coa and its relation to the mass spectrum. First of all we notice that, irrespective of the 
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mass spectrum, one can approximate the states ega by states in the vacuum represen- 
tation. Namely, given ~o~ and ~((9)there exists some generalized sequence O9o, t~ l  
(D being some index set) of normal states with respect to the vacuum representation of 

such that 

~o~(A) = lim ~o,(A), A ~ ~((9). (30) 
l 

This fact can be used to evaluate the local energy content of the states ogt~ relative to 
the vacuum. (Note that the algebra ~ does not contain operators having the meaning 
of an energy density.) We say that a state ogt~ has finite local energy if one can choose 
an approximating sequence COo, in (30) in such a way that for any n ~ ~q 

COo,(H" ) <~ c. < oo (31) 

uniformly in t e L Here, H denotes the Hamiltonian in the vacuum representation of ~. 
Let us assume first that the mass spectrum satisfies the nuclearity condition (6) and 

let oJa be any equilibrium state. Then we define a quasi-free state ~Oop on ~ which 
coincides with oJa on the algebra ~(C) and with the vacuum a~ o on any algebra ~((91) 
whenever C1 is contained in the complement of some sufficiently large region (~ = (9. 
The two-point function of a~oa is given by (compare (26)) 

Sot~(r, G) = So(F, G) + 

+(F, (~ l /2z to - l (e  g'~ 1)-xZto '/2 0 ) G ) .  (32) 
0 ~-~/2Z~ (e ~ - 1 ) - I Z ~  -1 /2  

Using the criterion of Araki and Yamagami [6] and the methods of the previous section 
it is easy to verify that ~Oo~ is a normal state with respect to the vacuum representation 
of ~. By a straight-forward calculation, one can also show that ~Oo~ can be extended to 
any power H ' ,  n ~ bJ of the Hamiltonian, i.e., a~o~(H" ) < ~ .  To given an example, one 
has 

O)ot~(H) 

= �89162 -1 (e t~ - 1)-l](o} + 1Trg,Z~ (e t~' - 1 ) - Iz  , (33) 

which is finite if(6) holds, cf. the discussion in the previous section. So one may choose 
for the approximation (30) of coa the constant sequence COo~, showing that toe has finite 
local energy. 

Let us now assume that the mass spectrum of the model is such that condition (6) 
is violated for some/?. In order to see that the corresponding equilibrium state coz does 
not have finite local energy, we must exhibit a sequence of Hermitean operators 
H ~ e  ~(C), n e N such that, firstly, 

+ rco(H, e') ~< k. (1 + H ' )  (34) 

for fixed numbers k, l > 0 and, secondly, lim, ~ ~ e~t~(H, ~) = ~ .  Then the estimate 

1 l i m l  e, 1 - co o,(H.'  )1 = I ~oB(H~)I (35)  lim, inf O9o,(1 + H 1) >~ k , k- ' 
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which holds for fixed n and any sequence COo, converging to coa in the sense of relation 
(30), shows, that co o,(H t) cannot be uniformly bounded in t. A natural candidate for the 
sequence Hff is the expression 

HC~ = 2 : rC*(og/")rC(O~gk) + CP*(Pgk)" qS(Pgk) + r : ' (36) 
k = l  

where the colon indicates that the vacuum expectation value has to be subtracted, m 
is the mass operator on Kr which, on a dense set of vectors f = ~ 1 f. ~ Kr is defined 
by 

m . f  = ~ m i f ,  (37) 
i=1  

and the functions gk 6 Kr are to be properly chosen such that rco(Hff) approaches 
(in the sense of bilinear forms on states with finite energy) the energy density integrated 
over the region (9. 

By standard arguments ([ 11], cf. also [12]) one can establish for no(Hff) an energy 
hound of the form (34). Moreover, from (36) one obtains 

cot~(HCO) = ~ (g~, ~2 (et~ _ 1 ) - '  g/,), (38) 
k = l  

and taking into account the constraints on the functions gk as well as the fact that 
E ~  ~ e - ~ '  = ~ one can show that the sequence coa(Hff) diverges. Since the arguments 
are very similar to those given in the previous section, we omit them and just state the 
final result. 

PROPOSITION 2. In a model with mass spectrum m~, i ~ ~q all equilibrium states coa, fl > 0 
have finite local energy if and only if the nuclearity condition (6) is satisfied. 
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