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Within the context of the 't Hooft anomaly matching scheme, some guiding principles for 
model building are discussed with an eye to low-energy phenomenology. It is argued that Ach 
(chiral symmetry breaking scale of the global color-flavor group GCF)- AMC (metacolor scale) 
and AgcF (unification scale of the gauge subgroup of GCF) ~ Ach. AS illustrations of the method, 
two composite models are suggested that can give rise to three or four generations of ordinary 
quarks and letpons without exotic fermions. 

1. Introduction 

A composite (preon) model of  leptons and quarks has been proposed as one way 
to understand the existence of  at least three generations of  leptons and quarks (the 

so-called "generat ion problem")  [1]. A central issue in preon models is to explain 
why the masses of  the composite leptons and quarks can be so much smaller than 
the confining scale AMC (the metacolor scale) [2]. At least two possibilities have 
been suggested: 

(i) Unbroken chiral symmetries of  the preons can protect the composite fermions 
from acquiring masses of  the order of  AMc, and the currents of  the unbroken chiral 
symmetries satisfy the 't Hooft  anomaly matching condition [3]. 

(ii) Composi te  fermions can also be massless in the supersymmetric theory if 

they are the supersymmetric partners of  the Goldstone bosons associated with 
spontaneously broken flavor symmetries [4]. 

Although large efforts have been made to construct a realistic composite model 
of  leptons and quarks along these lines [5], no such model has emerged. 

In this paper,  we return to the preon model without supersymmetry and formulate 
some guiding principles that appear  necessary to achieve a realistic composite model 
of  leptons and quarks. By realistic, we mean that the preon model must do the 
following: 

(i) Reproduce the observed three generations of  ordinary leptons and quarks. 
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(ii) Protect the leptons and quarks from acquiring masses of the order of AMc. 
(iii) Remove most of the exotic fermions usually contained in the composite 

representations. 
(iv) Break the color-flavor gauge symmetry at the right mass scale ("gauge 

hierarchy problem"). 
(v) Generate the observed masses of leptons and quarks at a suitably low-mass 

scale. 
(vi) Manage any excess Goldstone bosons associated with the spontaneously 

broken gobal color-flavor symmetry. 
This paper is organized as follows. In sect. 2, we begin with some simple chiral 

preon models which give a solution to the 't Hooft anomaly matching condition 
with respect to the entire global color-flavor chiral symmetry group GCF of the preon 
lagrangian. It will be seen, however, that there seems to be no straightforward way 
to find a potentially realistic model among these index solutions. Something must 
be missing. This exercise leads us to impose a series of constraints on preon model 
building on the basis of low-energy phenomenology. In sect. 3, the relation between 
the global chiral symmetry breaking scale Ach and the unification scale Age ~ of the 
gauge subgroup of the global chiral symmetry Gc~ is discussed. It turns out that 
we must have AgcF~ Ach. THUS, the gauge subgroup gCF of the global chiral group 
GCF can only be identified as the observed low-energy color-flavor gauge group 
SU(3)c x SU(2)L x U(1)v, or as a fairly modest extension (in mass scale) such as 
SU(3)c × SU(2)L x SU(2)R× U(1)a-L, etc. It is unlikely that gc~ can be identified as 
a grand unification group. 

In sect. 4, the transformation properties of the preons under a given color-flavor 
gauge group are further determined by the additional constraints of freedom from 
anomalies, vector-like electric charge and color charges, etc. The next section (sect. 
5) is devoted to the exotic fermion problem. It is proposed that if the global chiral 
group of GcF of the preon lagrangian is broken down maximally to an unbroken 
chiral subgroup HcF which minimally contains gc~ as a subgroup, then the 't Hooft 
anomaly matching condition can be used to remove exotic fermions. In sect. 6, we 
apply this principle to the preon model in sect. 2 and we identify one model that 
can reproduce four generations of massless !eptons and quarks (on the metacolor 
scale) but no exotic fermions. Another model with three generations of massless 
leptons and quarks but no exotic fermions is also obtained. Finally, sect. 7 contains 
some concluding comments. 

2. Some simple chirai preon models obeying 't Hooft anomaly matching 

Let us begin with a preon model in which the metacolor interaction is described 
by the exceptional group E6, and the left-handed preons are in the fundamental 
representation 27 of E6 with multiplicty n (see table 1). This model possesses the 
following features: 
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TABLE 1 

(E6)HC × SU(n) model 

385 

representation global chiral symmetry 
preons of  ( E 6) Mc multiplicity SU(n) 

p 27 n 

representation global chiral 't Hooft 
composites of (E6)MC symmetry index 

ppp 1 I-I-T-] I+ 

ppp 1 ~[~ I o 

ppp 1 [~ I_ 
t ._l  

(i) The metacolor dynamics of the preons is chiral. 
(ii) There is no metacolor anomaly. 

(iii) The metacolor interaction is asymptotically free if n < 22. 
(iv) There are metacolor singlet three-preon composite fermions. 
(v) There is global chiral symmetry GcF = SU(n) supposing that the color-flavor 

gauge interactions can be turned off (we willcome back to this point). 
A particularly interesting point is that the 't Hooftanomaly matching condition 

can be satisfied. In fact, from table 1, the 't Hooft anomaly matching equation can 
be written as 

I+A([-T~) + l o A ( ~ )  + I_A(~ = 27, (1) 

o r  

½(n+3)(n+6)l++(n2-9)lo+½(n-3)(n - 6 ) I _ =  27. (2) 

An n-independent solution can be found with 't Hooft indices: 

1+=/_= 1, 

lo = - 1 .  (3) 

This means that the global chiral symmetry SU(n) of the preon lagrangian can 
operate as an unbroken chiral symmetry, and it can protect one left-handed composite 

fermion multiplet in each of the two representations ~ and ~ of SU(n) and 

one right-handed composite fermion multiplet in the represen ta t ion~  of SU(n). 

For the above solution to describe reality, more discussion of the global chiral 
symmetry group SU(n) is needed. SU(n) cannot be. gauged without introducing 
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spectator fermions since the preons are in the fundamental representation of SU(n) 
which is not free of SU(n) anomaly. Thus only a subgroup gcF of SU(n) can be 
gauged such that the preon representation is free of gCF anomaly. This can be done 
in several different ways. The simplest way is to assume that the preons transform 
according to one single complex representation of gcF. Then gCF must be an 
anomaly-free group. From the metacolor asymptotic freedom condition, n < 22, and 
we immediately have n = 16 and the subgroup SO(10) of SU(16) is gauged such 
that preons transform according to the 16 spinor representation of SO(10) [6]. The 
resulting massless composite fermion spectra can be obtained by using the branching 
theorem for SU(16)--> SO(10). Then the index solution 1± = 1 and lo = -1 of the 't 
Hooft anomaly matching condition implies that the resulting massless composite 
fermions are the following: 

left-handed composite fermion multiplets: 
1 in 144 representation, 

1 in 560 representation, 

1 in 672 representation 

and fight-handed composite fermion multiplets: 

1 in 16 representation, 

1 in 144 representation, 

1 in 1200 representation. 

There is only one family but many exotics at the SO(10) level. One may argue that 
we can have more families when SO(10) breaks down to SU(4)L+a X SU(2)L x SU(2)R 
since the 144, 560 and 1200 representations of SO(10) all contain the combined 
representation (4, 2, 1) +(4, 1, 2) of SU(4)L+a X SU(2)L x SU(2)a. However, Georgi's 
survival principle [7] tells us that the left and right composite fermions in the 
(4, 2, 1)+(4, 1, 2)representation will be paired to give a mass of the order of the 
unification scale of SU(4)L+a x SU(2)L x SU(2)a. We again have only one family of 
ordinary leptons and quarks but many exotic fermions. 

The same unfavorable situation occurs in the model SU(N)Mc x SU(N + 4) x U(1), 
with two complex representations of the metacolor group, and even in the model 
SU(N)McXSU(N+5) x U(1)xU(1)' (see tables 2 and 3), with three complex 
representations of the metacol0r group, [8]. Inthese models we can take the global 
chiral symmetry GCF= SU(15) x U(1) or SU(15) x U(1) x U(1)', and gauge its 
subgroup gcF=SU(5) such that the preons transform according to 5+10 
representations of SU(5): 

[] ~ 5 + 1--'0, (4) 
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TABLE 2 

SU(N)M c x SU ( N +4)  x U(I) model 
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representation global chiral 
preons of SU(N)Mc multiplicity symmetry 

S U ( N + 4 )  uo) 

p~ [] N + 4  [] N + 2  

P2 ~ !" 1 - ( N + 4 )  

composites representation global cbirai Solution to 
symmetry 't Hooft anomaly 

of SU(N)Mc SU (N+4)  U(1) matching eqn. 

PlPlP2 1 l-I'-I N I+ =0  

PlPtP2 1 [=] N I_ = 1 

then 

--, 5+ 1 0 + 4 5 + ~ ,  (5) 

[] --, 3+ 10. (6) 

Taking Georgi's survival hypothesis into account, the index solutions to the 't Hooft 
anomaly matching condition imply that there is only one family of massless leptons 
and quarks in the model SU(ll)Mc X SU(15)x U(1), and just two families in the 
SU(10)MC x SU(15) x U(1) x U(1)' model. 

TABLE 3 

SU(N)Mc x SU(N + 5) x U(I ) x U'(1) model 

preons representation multiplicity global chiral symmetry 
of SU(N)Mc SU ( N +5)  U(1) U(1)' 

pt [] 1 1 1 - N  - ( N + 5 )  

P2 [] N + 5  [] -1 2 N + 5  

p3 ~ 1 1 2 - 2 ( N + 5 )  

representation global chiral symmetry 
composites of SU(N)M ¢ S U ( N +  5) U(1)  13(I)' 

Solution to 
't Hooft anomaly 

matching eq. 

P2P2P3 1 [::E:] 0 2N 

1 ~ 0 2N P2P2P2 
PlPl 1 1 2N  O 
P2P3 1 [] - N  - N  

l+=0 

1_=1 

m = 0  

n = l  
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These simple examples show that there seems to be no straightforward way to 
identify a potentially realistic example among the index solutions to the 't Hooft 
anomaly matching condition although there exist possible metacolor groups and 
metacolor representations (preons) that provide solutions to the 't Hooft condition 
[8]. We must therefore change our strategy. For this purpose, we note that the only 
gauge group for which there is strong experimental evidence is the standard group 
SU(3)cXSU(2)LXU(1)y and that, indeed, there is contrary evidence for SU(5) 
grand unification. We therefore try to construct a realistic composite model by 
deriving the constraints from low-energy phenomenology and then see in what 
way these constraints can be satisfied. 

3 .  Phenomenological constraints on the preon model 

Since the gauge subgroup gcF of the global chiral symmetry GcF and its representa- 
tions must correspond to experiment, we consider them first. Obviously, they should 
contain the phenomenologicaUy interesting color-flavor gauge group; the possible 
candidates for gcF are: 

SU(3), x SU(2)L × U(1)y,  

SU(3)c x SU(2)L+ SU(2)rt x U(1)a-L, 

SU(4)L+R X SU(2)L x SU(2)rt, 

su(5), 

SO(10), etc. (7) 

The exceptional group E6 cannot be a candidate for gcv since the global chiral 
group GCF is unitary. At first glance, it seems that all the above candidates can be 
used to construct a realistic preon model. However, this is not true if we take into 
account the constraint due to the chiral symmetry breaking scale Aeh. 

Suppose that the global chiral group Gcv is spontaneously broken down to an 
unbroken subgroup HcF, and a subgroup gcF of GcF is gauged. The geometric 
relations among Gc~, HcF and gcF are sketched in figs. 1, 2, and 3. In case (i), the 
color-flavor group gcF is a subgroup of unbroken chiral symmetry HcF. Thus, gcv 
is exact and unbroken at Ach. In case (ii), gcF is spontaneously broken down to a 
subgroup which is determined by vacuum alignment. The breaking scale is Aeh. In 
case (iii), gcF is a subgroup of HcF; however, an extension gcF x g' of gcF is gauged. 
gc~ may be broken due to misalignment of the vacuum state at a lower scale than 
Aeh [1, 9]. In any case, the breaking scale of gcF should be equal to or less than the 
chiral symmetry breaking scale Aeh; 

Asc ~ ~< A¢h. (8) 

Thus, gcv could be identified as a grand unification group only if the chiral 
symmetry breaking scale Aeh exceeds the grand unification scale A~trr. However, 
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HCF 

Fig. L Fig. 2 Fig. 3 
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the composite model of leptons and quarks becomes really interesting physics only 
if: 

AMc'¢ AOUT. (9) 

It is reasonable to assume that Aeh should not be vastly different from AMc, although 
we have no knowledge about the exact relation between these two mass scales: 

AMc ~ Ach. (10) 

Hence we conclude that the gauge subgroup gCF of the global chiral symmetry 
group GCF should not be a grand unification group, but rather a color-flavor gauge 
group with a (partial) unification scale, say, in the neighborhood of 100 TeV [10]: 

SU(3)~ x SU(2)L x U(1)y, 

SU(3), x SU(2)L X SU(2)R x U(1)a-L, 

SU(4)L+R × SU(2)L x SUR ( i fg r>  gR), (11) 

where gL (gR) are the gauge coupling constants to the gauge bosons WE (Wa). From 
this point of view, the approach in the last section, i.e. to identify the gauge subgroup 

gCF of GCF as the grand unification group SO(10) or SU(5) can only make sense if 
the chiral symmetry breaking scale Ach is vastly different from the metacolor 
confinement scale AMc. This is possible but unnatural. 

4. Preon models with low-energy gauge subgroups of Gcv 

Let us now discuss the transformation properties of preons under a given color- 
flavor gauge subgroup gCF. Obviously, there should be preons which transform 
non-trivially under each factor of gcv. Furthermore, the resulting preon model must 
be free OfgCF anomalies and have vector-like electric charge and color SU(3) charges. 
These constraints, in fact, can be used to determine the color-flavor number n of 
prcons and transformation properties of preons under gcF. 

One "naive" way is to take the color-flavor number of preons n = 16 or n = 15 
and let the preons have exactly the same quantum numbers as those of one generation 
of leptons and quarks, as we did in sect. 2. In this direct identification of preons, 
the preon representation is also chiral with respect to gcF. However, in this case, 
in order to reproduce the three generations of leptons and quarks, we may need 
more (even much more) than three generations of preons with exactly the same 
quantum numbers as those of one generation of ordinary leptons and quarks. We 
have no explanation for the origin of the color-flavor quantum numbers. This is not 
very attractive. 
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TABLE 4 

Preon contents 

color-flavor gauge group transformation properties number of 
of preons color-flavors 

SU(3)e × SU(2)LX U(1)y 
SU(3)c × SU(2)L X SU(2)R 

x U(I)a-L 
SU(4)L+R × SU(2)L x SU(2)R 

(3, l)a + (3, 1)b+(1,2)c+(l ,  1)d +(1, 1)e 10  
(3, l, l )a+(3 , l, l)h+(1,2, l)c+(1, 1,2)d 

+(1, 1, 1)~ + (1, 1, 1)f 12 
(4, 1, 1) + (4, 1, 1)+(1,2, 1)+(1, 1,2) 12 

Is there any way to reduce the color-flavor number of  preons? There is, if we let 
one left-handed preon carry just one color or one flavor. In addition, we must 
introduce a "mirror"  preon to make the theory free of  gCF anomaly and to have 
vector-like electric charge and SU(3) color charges at the preon level. The preon 
contents for the "low-energy" color-flavor gauge groups are summarized in table 4. 

In table 4, the U(1)v quantum numbers are determined by the vector-like condition. 
In such a physical identification the preon representation may not be color-flavor 
chiral. However, since the representation of  quarks and leptons must be chiral with 
respect to the color-flavor group gcv, we must ask whether a non-chiral preon 
representation can lead to a color-flavor chiral theory at the composite fermion 
level? Firstly, the preon representation is chiral with respect to the metacolor group; 
thus a metacolor and color-flavor gauge invariant bare mass term for preons could 

not be developed even if the preon contents are not chiral with respect to the 
color-flavor gauge group. Secondly, a composite fermion can be identified either as 
a quark-lepton or as a mirror fermion depending on the sign of  the 't Hooft  index 
associated with this composite fermion. Therefore, whether the resulting composite 
fermion spectra are color-flavor chiral can be determined only after solving the 
't Hooft  anomaly matching condition. As we shall see, a solution without mirror 
fermions can be found. 

After the determination of  the color-flavor gauge group and the preon trans- 
formation property, one important consistency check must be made. That is, at the 
preon level, gCF must be asymptotically free. In fact, one key assumption in the 
preon theory is that all forces, except the strong metacolor forces, can be neglected, 
at the metacolor confinement scale AMC. This is why the fundamental preon 
lagrangian possesses the underlying global chiral symmetry GCF. Consequently, the 
gauge bosons can only be.weakly coupled to the currents of  the chiral symmetry 
GcF. If  gCF is not asymptotically free at the preon level, it violates this basic 
assumption. It turns out that the asymptotic freedom condition for gCF at the preon 
level places a very strong constraint on the dimension of  the preon metacolor 
representation. As one example, it is easy to show that in the (E~)MC X SU(n) model 
described in sect. 2, if we take n = 16 and gauge the subgroup SO(10) of  SU(16) 
such that the preons transform according to the 16-dim spinor representation, there 
is no asymptotic freedom for the SO(10) color-flavor gauge group [2]. 
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5. Elimination of exotic fermions 

Now we turn to the composite fermion spectra. They are determined by the preon 
model construction and can be classified according to the representations of the 
global chiral symmetry GCF. As we have shown in sect, 2, the composites in general 
can be in the representations of SU(n) 

[] 

(12) 

and their complex conjugates since the composite fermions are metacolor singlets 
made out of three fermionic preons. Their transformation properties under gCF can 
be determined by considering the branching theorem of a given representation of 
GCF under Gcv-'>gcF. Evidently, the resulting composite fermion spectra should 
contain the ordinary leptons and quarks. However, for a given model, not all preon 
physical identification described in the last section can result in composite fermion 
spectra which contain quarks and leptons. For example, if preons transform as a 
16-dim spinor representation of gcr = SO(10), then the model with composite fer- 
mions in the representations l-T'q and [3 of GCF---SU(16) will not give rise to the 
observed leptons and quarks. Hence, only certain combinations of the metacolor 
group, preon contents, gauge color-flavor group and preon physical identification 
can lead to ordinary leptons and quarks. This is certainly an important constraint 
on preon model building. 

A common feature of most preon models is that the resulting composite fermion 
spectra contain a large number of exotic fermions. The reason is simple. The 
composite fermions are classified according to the representations of Gc~; however, 
only a subgroup of GCF is gauged and the leptons and quarks are to be identified 
only in the irreducible representations of the subgroup. Some exotics may be welcome 
and could serve as the Signature of compositeness in future accelerators. However, 
too many exotic fermions are certainly not an attractive feature. To get rid of most 
exotic fermions becomes a difficult problem in composite models. The survival 
hypothesis, effective Yukawa coupling to "preon condensates", etc. are often used 
to do this job. 

What we would like to suggest in this paper is a straightforward procedure to 
eliminate exotic fermions. We propose to exploit the 't Hooft anomaly matching 
condition for this purpose as follows: 

(i) Find an unbroken subgroup Hcv of the global chiral symmetry group GCF 
which minimally contains the color-flavor gauge group gCF as a subgroup; the preon 
representation should not be free of HcF anomaly; 

(ii) Work out the classification of the fermion spectra under HcF, and define a 
't Hooft index associated with each representation of HCF; 
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(iii) Write down the 't Hooft anomaly matching condition for this unbroken HcF 
and look for solutions such that all (or most) of the exotic indices (these are 
associated with those representations of HcF which do not give any leptons and 
quarks after gCF is gauged) are zero and the only non-vanishing indices are those 
associated with the representations of HcF that yield leptons and quarks after gCF 
is gauged. 

A few remarks are needed here. In (i) the unbroken chiral symmetry HcF is 
essentially selected on the basis of phenomenological requirements (let us recall 
that the 't Hooft anomaly matching condition is a necessary - not sufficient - condi- 
tion for an unbroken chiral symmetry to be maintained). In particular, Hcv is not 
the entire global chiral symmetry GCF of the preen lagrangian. GcF is assumed to 
be spontaneously broken down to  HCF by preen condensates even though the 't 
Hooft anomaly matching condition is satisfied. In this sense, the choice of the 
unbroken chiral symmetry can only be considered a working hypothesis. The method 
works because at present there is no completely reliable procedure for dealing with 
very strong gauge couplings and we do not know any sufficient condition for a given 
chiral symmetry to remain unbroken. We also do not know how a given chiral 
symmetry breaks and which subgroup remains unbroken; this is especially true for 
chiral gauge theories. In (ii) it is essential that the preen representations should not 
be free of HCF anomaly. This makes the solution to the 't Hooft anomaly matching 
condition non-trivial. In particular, HcF cannot be identical with the color-flavor 
gauge group gCF, since the preen representations must be free of gCF anomaly. In 
(iii) the solution we are looking for may not be a unique solution to the 't Hooft 
anomaly matching condition. It is possible that other solutions will be found. 
However, if the solution with no exotic indices does exist, then we have at least 
provided a scenario by which exotic fermions are removed naturally. 

6. Two realistic preon models 

Let us now summarize the salient features of our program to find a realistic 
composite model of leptons and quarks: 

(1) Identify the gauge part of the global chiral symmetry GcF as one of the 
"low-energy" color-flavor gauge groups in order to make the composite model 
physically interesting. 

(2) Select one of the preon physical identifications in sect. 4 and reduce the 
number of color-flavors to less than 15 or 16. The global chiral symmetry Gc~ of 
the preon system can be determined in accordance with this minimal color-flavor 
number n; for example, Gc~=SU(n), SU(n)xU(I)  and SU(n)xU(1)xU(1) ' ,  
depending on the model in which there are one, two and three different kinds of 
preons respectively (only one of them has multiplicity n > 1). 

(3) Determine the unbroken chiral symmetry HCF which minimally contains the 
"low-energy" color-flavor group as a subgroup. 
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(4) Find a metacolor group and metacolor representation (preons) which satisfy 
the condition for the metacolor group (discussed in sect. 2) and for the color-flavor 

part (discussed in sects. 3-5). 
(5) Look for the solution to the 't Hooft  anomaly matching condition with no 

exotic indices. 
In order to illustrate this program, let us return to the model S U ( N ) ~ c  x 

S U ( N  + 4) x U(1) considered in sect. 2. We now choose the color-flavor gauge group 
gcF as SU(3)c x SU(2)L × SU(2)R x U(1)8_L o r  SU(4)L+R × SU(2)L × SU(2)rt. The 
minimal color-flavor number n is now taken to be 12, and the preon identifications 
are shown in table 4. The unbroken chiral symmetry HeF,  which contains gcr 
minimally, is then: 

HCF = SU(4)L x SU(4)R x SU(2)L x SU(2)rt. 

The preon contents and the composite fermion spectra under this HcF are 
summarized in table 5. 

From table 5, it is easy to see that the indices associated with the representations 
which will give us leptons and quarks after gauging SU(4)L+rt X SU(2)L x SU(2)rt or 
SU(3)c x SU(2)L X SU(2)R x U(1)a-L are I~,/2, ml, m2. Since all other indices belong 
to exotic fermions, it is sufficient to set all exotic indices equal to zero. Then the 't 
Hooft  anomaly matching condition for HcF can be written as 

2(/~ + m~) = D ( r ) ,  (13) 

-2(/2 + m2) = - D ( r ) ,  (14) 

where D(r)  is the dimension of  the metacolor representation of  preons which 
transforms non-trivially under SU(4)L X SU(4)rt. It is important to realize that the 
index solution corresponds to leptons and quarks only if !1, 12~ > 0 and m~, m2 ~< 0; 
otherwise, they correspond to mirror fermions. Therefore, the left-fight symmetric 
condition and the absence of  mirror fermions imply: 

l -  I~ = / 2 > 0 ,  (15) 

m ~ ml = m2---- -Iml <0.  (16) 

From eqs. (13)-(16), we obtain the solution: 

m =-Iml ,  l=½D(r)+lml. (17) 

Consequently, the number of  families is: 

l +  Im[ = ½D(r) + Iml (18) 

Furthermore, if asymptotic freedom of  gcF = SU(4)c x SU(2)L x SU(2)R is also 
required at the composite fermion level, it is found that 

m = 0 .  (19) 
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TABLE 5 

Preon contents and the composite fermion spectra under HCF 

't Hooft 
preons  SU(12) Q SU(4)L SU(r)g SU(2)L SU(2)R indices  

Pl 

c [] 1 1 1 

[] - 5  1 [] 1 1 

WL 1 1 [] 1 

W R 1 1 1 [] 

P2 1 6 1 1 1 1 

c o m p o s i t e  SU(12) Q SU(4)L SU(4)p. SU(2) L SU(2)R 't H o o f t  
f ermions  indices  

ccp2 [ ~  1 1 1 St 

WLWLp 2 1 1 VII 1 52 

ccp2 1 [7171 1 1 S3 

WRWRp 2 1 1 1 VI-q S4 

c~p2 [~ ( - 4 )  [ ]  [] 1 1 t t 

WRWLp 2 1 1 [] [] t 2 

WLCp2 [] 1 [] 1 I t 

Wgcp2 [] 1 1 [] m t 

~WLp 2 1 [] [] 1 m 2 

~WRp 2 1 [] 1 [] 12 

ccp2 ~ 1 1 1 a t 

WLWLp 2 ~ (--4) 1 1 1 1 a 2 

ccp2 1 ~ 1 1 a 3 

WRWRp 2 1 1 1 1 a 4 

c~P2 [] [] 1 1 t t 

WRWLp2 1 1 [] [] t2 

WLCp2 ~ (--4) [] 1 [] 1 I t 

WRcp2 [] 1 1 [] m I 

~WLp 2 l [] [] 1 m2 

~WRp 2 1 [ ]  1 [ ]  12 

Thus, we finally have ½D(r) generations of  massless leptons and quarks but no 
exotic fermions. In the present model, D(r) = 8, and we obtain four generations of  
lept0ns and quarks. Another possible model is the group SU(6)Mc x SU(12) x Q1 x Q2 
where we obtain three generations of  massless leptons and quarks (see table 6). 

7. Conclusion 

In this paper, we have shown that if the global chiral symmetry group GcF of the 
preon lagrangian is maximally spontaneously broken down to an unbroken chiral 
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TABLE 6 

Preon model with three families of leptons and quarks 

preons SU(6)Mc SU(12) Ql Q2 

Pl [] [] 8 4 

P2 ~ 1 --16 4 

P3 [SIS] 1 -4  -8  

composites SU(6)Mc SU(12) Q~ Q2 

PlPlP2 1 ~ 0 12 

PtPlP2 1 [~ 0 12 

PlPlP3 1 [[13 12 0 

PlPlP3 1 [~ 12 0 
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s u b g r o u p  HcF which  m i n i m a l l y  conta ins  a " l o w - e n e r g y "  co lor - f lavor  gauge  sub- 

g roup  gCF, then  the ' t  H o o f t  a n o m a l y  ma tch ing  cond t ion  can be  used  to find a 

so lu t ion  with  no exot ic  fermions .  In  pa r t i cu la r ,  i f  the S U ( 1 2 ) x  U(1) g roup  in the  

S U ( 8 ) ~ c  × SU(12)  x U(1)  m o d e l  (or  SU(12)  x U(1) x U(1) '  in the m o d e l  S U ( 6 ) u c  x 

SU(12)  x U(1)  x U(1) ' )  is spon t aneous ly  b r o k e n  down  to the  u n b r o k e n  chiral  sub- 

g roup  SU(4)L x SU(4)R x SU(2)L X SU(2)R , which  subsequen t ly  b reaks  down  to the 

s u b g r o u p  SU(4)L+R X SU(2)L x SU(2)R or  S U ( 3 ) c  x SU(2)L X SU(2)R x U(1)a_L, then  

an index  so lu t ion  to the  ' t  Hoof t  a n o m a l y  ma tch ing  cond i t ion  with four  or  three  

genera t ions  o f  mass less  l ep tons  and  quarks  wi thout  exot ic  fe rmions  can b e  found.  

A n o t h e r  a d v a n t a g e  is tha t  the  G e o r g i - K a p l a n  mechan i sm [9] can be eas i ly  imple-  

men ted  in this  scheme to b reak  the e l ec t roweak  symmet ry  fur ther  and  to genera te  

the  masses  o f  l ep tons  and  quarks  at a la te r  stage. Thus,  the  p r o g r a m  sugges ted  may  

be  c a p a b l e  o f  l ead ing  to a real is t ic  compos i t e  m o d e l  o f  l ep tons  and  quarks*.  

We have  chosen  the u n b r o k e n  chiral  s u b g r o u p  HcF to be SU(4)LX SU(4)R X 

SU(2)L×  SU(2)R because  the  ' t  Hoof t  a n o m a l y  match ing  equa t ion  can be so lved  

easily.  However ,  there  are  o the r  poss ib le  solut ions .  One  in teres t ing poss ib i l i ty  might  

be to work  with  SU(3)L × SU(3)R X SU(2)L× U(1 )y  u n b r o k e n  chiral  symmet ry  and  

* We should point out the connection of our work to that of I. Bars [11], who searched for solutions 
to the 't Hooft anomaly matching condition fo r GCF that also satisfied the decoupling condition. He 
introduced the family group at the preon level whereas, in our approach, the family number is related 
to the 't Hooft index. In the Bars model, preons have exactly the same color-flavor quantum numbers 
as those of one generation of quarks and leptons. Instead, we looked for a model in which the number 
of color-flavors can be reduced in order to give some explanation of the origin of color-flavor. Finally, 
in Bars' approach, GCF is assumed not to be spontaneously broken and additional technicolor 
interactions or Higgs must be introduced to break electroweak symmetry. On the other hand, one of 
our models, SU(6)Mc x SU(12) x U(1) x U(1)', falls outside the Bars classification because it does not 
even satisfy the 't Hooft anomaly matching condition for GcF. 



396 X. Li, R.E. Marshak / Composite model 

gauge S U ( 3 ) c  x SU(2)LXU(1)v ;  then the 't  Hoof t  anomaly  matching  condi t ion 

would  become  more  restrictive and if there is a solution with no exotic index the 
result may  be more  interesting. 

In our  approach ,  the number  o f  families is de termined by solving the ' t  Hoof t  

anomaly  matching  condit ion.  This has the consequence  that the number  o f  families 

is related to the d imension  of  the metacolor  representat ion o f  preons  which trans- 

forms non-trivial ly under  HCF. At the composi te  level, we automatical ly  have global 

family symmetry.  More  work must  be done  to explain the observed differences 

among  the three different generations. 

Finally, we emphasize  that  chiral symmetry  breaking plays a most  impor tant  role 

in the present  approach.  Any  further progress in unders tanding  the chiral symmetry  
proper ty  o f  chiral gauge theory  would  be welcome.  
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