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We carefully discuss how to deal with "/5 in the dimensional regularization scheme when IR singularities are present. The 
dimensional continuation of the Dirac algebra in odd-parity fermion traces leads to anomalous IR axial and charge conjugation 
contributions. In an explicit calculation, namely the O(a  2) parity violating contributions to e+e - ~ v.z o q~-tg, we demonstrate 
that the IR charge conjugation anomaly vanishes and that the finite IR axial anomalies are spurious in the sense that they 
cancel among the real and virtual contributions to the p.v. cross sections as do the IR singular contributions. 

It is well known that the union of 75 (or the fully 
antisymmetric tensor ear,r8 and the dimensional re- 
gularization scheme is a problematic one [1-7] .  In 
the case of  odd-parity fermion loops, the n-dimen- 
sional Dirac traces generate O((n - 4) m ; m > 0) 
anomalous contributions, which in turn lead to finite 
anomalous terms when multiplied with ultraviolet or 
infrared divergent integrals. 

Spurious UV anomalies can be and must be can- 
celled by taking the appropriate renormalization 
scheme [4-6] .  In the IR case one encounters axial 
and charge conjugation anomalies. These cannot be 
removed by renormalization. One expects these to be 
spurious in the sense that they cancel when the ap- 
propriate real and virtual cross sections are added to- 
gether just as the IR singular terms cancel among the 
two contributions. 

To our knowledge the occurrence of  IR anomalies 
in the odd-parity fermion loops in the dimensional 
regularization scheme and their cancellation among 
real and virtual contributions has never been dis- 
cussed before. In order to demonstrate the compati- 
bility of  75 and the IR dimensional regularization 
scheme we calculate through a sufficiently complex 
process containing both UV and IR singularities, 
namely the O(a  2) parity violating contributions to 
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e+e - ~ qVtg • 

Let us first present an argument that an anticom- 
muting 3,5, 

(7u ,75)= 0 ,  (I) 

is not compatible with an n-dimensional Dirac algebra, 

VvTu= gu" = n .  (2) 

Consider the trace Tr(757aTulTv27vaTv47vs) and 
anticommute 7 ,  once around the trace. This leads to 
the identity 

e~lu2~#4g#sa + cycl'(/'tl "'" P5) = 0 ,  (3) 

where we have introduced the totally antisymmetric 
e-tensor via Tr (757a 7#7.r 76) = 4iec~#~ 6 . 

Contracting (3) withgaUs gives 

(n - 4)eulu2u3v4 = 0 ,  (4) 

which shows that (1) and (2) prevent one from analyt- 
ically continuing Tr(757aTO'),v76) or eaov6 from 4 to 
n :/: 4. 

There exist several proposals to escape the impalat- 
able conclusion (4) [1-3] .  

The authors of  ref. [2] decided to work with an 
anticommuting 75 (1) but dropped (2). In order to 
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give a meaning to the trace Tr(?5?u?U?a?b?c?d) in 
the absence of (2), they assigned a one-parameter am- 
biguity to its value: 

Tr(?5?u?u?a?b?c?d ) = [otn + (1 -- a ) (8  --n)] 4ieabcd. 

In their calculation of  the VVA triangle anomaly the 
free parameter was then fixed by postulating the 
"correct"  value for the anomaly. 

It is not clear whether the scheme of  ref. [2] can 
be consistently formulated in more general situations. 
In particular, it is not clear whether the prescription 
of  ref. [2] is applicable to higher-order IR calcula- 
tions with their multiple ?-contractions inside parity- 
odd traces. These multiple ?-contractions would ne- 
cessitate the introduction of multifold parameter am- 
biguities and it is not clear whether one could find 
enough physical conditions to fix them. Also dropping 
(2) implies tt@ l 2 (l is an n-dimensional integration 
momentum)  which spoils the validity of  higher-order 
field equations. 

Siegel in his dimensional reduction scheme [3] at- 
tempts to keep the Dirac algebra in four dimensions, 
whereas the integrations are in n dimensions. Thus, 
75 is anticommuting (1), but (2) is changed to ?u?u = 
4. As necessarily tt = l 2 (l is an n-dimensional integra- 

~a _ where tion momentum)  this implies qu~g u-guy ,  
guy and g. v are the "four-dimensional" and the "n- 
dimensional metric tensors. Latter condition can be 
shown to lead to (n - 4)(n - 3)(n - 2)(n - 1) = 0 
which shows that altering (2) to ?g?# = 4 is not a 
consistent procedure [8]. 

A third possibility is to drop (1), as originally 
proposed by 't Hooft  and Veltman [7] and later sys- 
tematized by Breitenlohner and Maison (BM) [1]. 
The main points of  the BM scheme are the following: 

(i) In addition to the "n-dimensional" metric ten- 
sor guy (guU = n)  introduce, a "four-dimensional" 
metric tensor guy (gu u = 4) such that 

(5) 

(ii) Eq. (1) is replaced by 

{?u' 75} = 2(?u - "~u)?5 , (6) 

where 4u = ~  a u ?a  is a "four-dimensional" ?-matrix. 
(iii) Traces involving 75 are calculated by substi- 

tuting 75 by its defmition 

75 = (i/4!) eaa,ra 7a?~? ' r?  ~ . (7) 

In particular, one has 

Tr (757a?#?8) = 4ie~#-r8 , 

Tr ((?h, 75} 7x?~?t~7~3'8 ) = 8(n - 4 ) i e ~ 7 8  . (8) 

(iv) ]Identities involving e-tensors are valid only for 
"four-dimensional" covariants, i.e. 

(a) eulu2uau4evlu2vau4 = - det ( ~ )  , 

a =/a t ..... U4, /~ = Vl, ..., v 4 ,  (9) 

(b) e u xu2u3u4~us ~ + cycl. (/~1 "-'/a5) = O. (10) 

Eq. (10) is the "four-dimensional" version o f (3 )  and 
will be referred to as the Schouten identity. In con- 
trast to the scheme of  ref. [2] the BM scheme guaran- 
tees wetl-def'med and unique ?-matrix trace results. 

That the BM scheme provides a consistent treat- 
ment of  the singularities in the UV realm (correct 
anomalies, all order renormalizability) has been dem- 
onstrated in refs. [1,6,9]. 

That the BM scheme also provides a consistent and 
practicable calculational scheme for the treatment of  
IR infinities will be demonstrated in the following by 
calculating through an example. 

First note that in parity-odd traces there is no 
need to use the "ugly" anticommutation relation (6) 
since all trace manipulations can be performed with- 
out commuting by 75 because of  the cyclic property 
of  a trace. Second, the 3'5-substitution (7) yielding 
long traces need not be done explicitly if one works 
with suitable parity-odd projection operators. The ac- 
tion of  the parity-odd projection operators finally 
bring into play "four-dimensional" scalars via (9). 
These have to be treated separately from the "n-dimen- 
sional" scalars resulting from the trace manipulations. 
As will be clear in a moment ,  there will be only one 
relevant "four-dimensional" scalar for every infrared 
region, which the computer  can easily handle. Even 
though the BM-scheme as formulated in (5 ) - (10)  
looks formidable at first sight from a calculational 
point of  view, we found it to be no more difficult to 
implement on a computer than the corresponding 
parity-even IR problem. 

We shall now turn to our specific example, the 
O(a 2) corrections to the p.v. structure functions in 
e+e-  ~ q~tg. 

First, we discuss the real tree-graph contributions. 
Some of  the contributing four-parton diagrams are 
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Fig. 1. Sample four-patton diagrams (a) e+e - -* q(Pl) qfP2) 
g(Pa)g(P4), Co) e+e - ~ q(P 1)q(P2)q(Pa)q(P4). The de- 
picted diagrams have true l/s~4 double pole singularities. The 
dots in (a) stand for 63 (plus 4 ghost) additional qCtgg dia- 
grams and in (b) for 63 additional qffq~ diagrams. 

drawn in fig. 1. To bring out the general features of  
our calculation we concentrate on the 3 - 4  IR regions, 
i.e. when the two gluons wi thP3 and P4 (see fig. la),  
and quark and antiquark with momenta  P3 and P4 
(see fig. Ib),  become infrared unresolvable. As infra- 
red cut-off  we choose an invariant mass cut-off si] = 
2PiP ] <~yq2 (q = P l  +P2 +P3 +P4)  *l" 

In the 3 - 4  CM system, the four-parton momenta  
have the components 

Pl  = [0134 - s34)/2 sN~M]( 1, .--, sinl3, cos~) , 

P2 = [(s234 - s34)/2 SX~34] (1, ..., O, 1) ,  

P3 +sin0 cos0 , +cos0) (11) , 

4 
where siik = (Pi +P/+ Pk) 2 and the dots in P l  and P2 
denote (n - 3) zeros, and (n - 3) equal and opposite 
unspecified angular factors in P3 and P4. 

The IR integration involves the angular integral in 
"(n - 1) dimensions" 

(n- l )  4)pv 3)pv fda3-4  /f£~ (Pl'P2'P3'P4)=H(~u (ql 'q2'q3) '  
(12) 

where H(i)vpv is the i-parton p.v. hadron tensor. We 

identify ql  =Pl,  q2 =192 and q3 =P3 +P4" The RHS 
of (12)  can be expanded as 

3) pv _ H~v - H6e~vqq  l ) + H7e(#vqq2) + H'e(t~vq lq2). 

Use has been made of  the/a ~ v antisymmetry of  

I-JPuV = { (HVA + HA V) (14) 
"~--,UV " ' / . i V  / , 

where V and A denote the vector and axial vector 
parts in the current-current contributions to the ha- 
dron tensor. Also the Schouten identity (10) has been 
used to limit (13) to three terms which is justified 
since we have choosen our coordinate system (11) 
such that the qi are four-dimensional. Note that the 
nonconserved axial contributions appear in H ' .  

Since H(3u )pv in (13) carries only "four-dimensional" 
tensor indices tt and v it is clear that the anomalous 
charge conjugation pieces in H (4)pv resulting from 
C(7u3@1C-1 ~ -7u3,5 vanish after the IR angular 
integration ( I  2). 

Next we scalarize the integrand in ( I  2) by contract- 
ing with the odd-parity projection tensors 

q2~e(I ~ q lq2q3),  qlve(I a qlq2q3) and qve(p qlq2q3) 
which leads to "four-dimensional" scalar contribu- 
tions via eq. (9). However, these are not hard to 
handle, since they all can be expressed in terms of  e.g. 

" ^ "-2 ~2 =/~2 and/~1/~3 /~2, since fi3fi4 = P4(P3 + P4) -- P4, P3 
= PlP3 = PlP3 etc. [see (5) and (11)]. The scalar in- 
tegrand can then be expressed as I s = A(si/) + ~2B(si/). 
The first term can be integrated conventionally as in 
ref. [10], whereas the second term requires the 
"(n - 1)-dimensional" integral over the "four-dimen- 
sional" scalar /~,  

l f d ~ 2 ~ - I / ~ 2  = [ ( 4 - - n ) / 4 ( 1 -  n)]s34 , (15) 

where N = f d ~ 3 ~  -1 ' 2  
We emphasize that the inclusion of  contribution 

(15) is o f  crucial importance in obtaining the correct 
final result. However, due to the appearance of  the 
explicit si! factor in (15) these contributions need to 
be taken into account only for diagrams with true 
sit 2 double pole contributions as depicted explicitly 
in fig. 1 as long as one is working only to O(y0).  

Finally, after adding up the IR contributions from 

, i  We work with massless quarks and gluons, p~ = 0, and use 
the Feynman gauge. 

,2 Note that integral (15) is of O(n - 4) in accordance with 
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all O(a  2) tree diagrams we obtain to O(y 0) 

H(~3)pV(real) = ga N c C  F 

X [CFHC + }NeHN + (½Nf - -d-Nc)H" f] 

X A(3) PV(Born) ' (16) 

where 

A(3)pV(Born) 

= - 8 { [(1 - t23)/t13 t23 - e/t23 ] e(lav qq 1) 

- (1 ~ 2) - e[(1 - t l z ) / t 13 t23  ] e ( # v q l q 2 ) ) ,  (17) 

is the p.v. Born term hadron tensor. We define e = 
(4 - n) and q2 t i /=  2qiq/ ,  where the qi are the three- 

parton momenta.  N c and Nf are the numbers of  col- 
ours and flavours, and C F = (N2c - 1 ) / 2 N  c. The 
strong coupling constant is denoted by g. The IR 
structure is given by three functions 

H e = C[2/e  2 - ( l / e ) (2  In t12 - 3) + 7 

- 2 ln2y + 4 lny  In t12 - ln2t12 - 3 lny  + -~ 7r 2 ] ,  

H N = C[2/e  2 - ( 2 / 0  ln ( t13 t23/ t12)  + 

- ln2t13 - ln2t23 + ln2t12 - 2 ln2y 
1 

+ 4 t n y  ln ( t13 t23/ t12)  + ~ ~r2], 
5 H f = C ( -  1/e - ~ + l n y ) ,  (18) 

and where 

C = 1 (47rg2]e r(1-e) 
8it---2 [ - - ~ - - ]  ~(1 ~ - )  (1 --17r2e2) . 

One notes from (16) that the O(y 0) IR result fac- 
torizes into a Born-term contribution and an universal 
IR factor as in the p.c. case discussed in ref. [11].  
The universal IR factor is the same for the p.c. and 
p.v. contributions. 

We now turn to the virtual IR contributions. The 
O (as 3/2) one-loop contributions to the vector-current 
amplitude J~ ~ qFtg have been calculated in ref. [12]. 
We fix the axial-vector renormalization constant such 
that the corresponding axial-vector-current contribu- 
tions to jA _~ qFqg are obtained by substituting 7u 
3,t~3, 5 in the vector-current result [11]. 

In ref. [12] it was shown that the IR-divergent 
parts of  the vector-current one-loop contributions are 
proportional to the Born-term amplitude. In order to 

demonstrate the cancellation of  IR singularities and 
axial anomalies we limit our attention only to these 
IR singular pieces*3. Their contributions to the ha- 
dron tensor are given by*4  

H(~3) PV(virtual; sing.) = g 4 N c C  F [CFH~v +1~ NcHvN 

+ ( I N f  I f (3)pv - (Born),  (19) 

where 

H~v = C [ - 2 / e  2 + (1/e)(21n t12 - 3)] ,  

H~v = C [ -  2/e 2 + (2/e) ln( t13t23/ t12)]  , 

= C / e  . (20) 

Comparing the singular virtual O(~s 2) contribu- 
tions (19), (20) to the real contributions in (16) - (18)  
one sees that IR singular contributions cancel, as well 
as the f in i te  contribution to the anomalous structure 
function e(gv  qlq2) .  

In conclusion we summarize our results by writing 
out the various contributions in a symbolic notation: 

real: an/e 2 + bn /e  + bale + c n ( y )  + c a , 

virtual: - a n / e  2 -  bn / e -  ba /e  + c 'n - c a . 

The normal IR singular pieces proportional to (a n , b n) 
as well as the IR anomalous singular and finite pieces 
proportional to (b a, c a) cancel among the real and vir- 
tual contributions. The charge-conjugation anomaly 
vanishes after IR integration. To 0(3, 0) the real con- 
tributions factor into the Born term and a universal 
IR factor. 

It would be interesting to find out whether the 
same mechanism that leads to the cancellation of  the 
normal IR singularities is also responsible for the can- 
cellation of  the IR singular and finite anomalous con- 
tributions. 

It goes without saying that the expertise gained 
from this first explicit calculation o f  a higher-order 
QCD correction to a p.v. cross section will be quite 
valuable for the many higher-order QCD calculations 
that have to be done for the interpretation of  p.v. 
experiments at the high-energy machines to be com- 
pleted in the following years. 

, 3  A more  detailed account  o f  our w o r k  will  be presented in 
ref. [13]. 

,4 g is the strong coupling constant in the MS scheme.  
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