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We discuss a set o f  methods and numerical tools, which are useful for a computer  based 
approach to perturbative calculations in lattice gauge theory. The topics considered include the 
automatic  generation of  gluon vertex programs, a derivation of  the Faddeev-Popov determinant 
on lattices with boundary., the use of  a partially finite lattice with twisted boundary conditions as 
an infrared cutoff without zero modes,  and finally the numerical extrapolation of  lattice Feynman 
diagrams to the cont inuum limit. As an illustration of  the methods we describe their implementation 
in the computat ion of the on-shell improved lattice action at weak coupling. 

I. Introduction 

In a recent article [1], we have presented our results on the computat ion of  the 
action for on-shell improved lattice gauge theories at weak coupling, a calculation 
which essentially amounts to evaluating a number  of  one-loop Feynman diagrams 
with definite external momenta.  The propagators and vertex functions from which 
Feynman diagrams in gauge theories are built are much more complicated on the 
lattice than they are in the continuum, especially so for improved lattice gauge 

theories (see e.g. the appendix of ref. [2]). Analytical manipulations of  lattice 
diagrams are therefore time consuming and liable to errors. For this reason, we 
decided to follow a strategy where, apart from listing the diagrams and extracting 
the group theoretical factors, the whole calculation is done numerically on a 
computer.  To guarantee the efficiency and reliability of  the numerical computations, 
we have developed various adapted techniques, which we hope will prove useful 
for other perturbative calculations as well. It is thus our objective in this paper  to 
describe these methods each in their own right in separate sections, which can be 
read and referred to independently from one another (common notations are 
summarized in sect. 2). 

A computer  program, which calculates the value of  a lattice Feynman diagram, 
calls subprograms which compute the value of the relevant vertex functions given 
the momenta  flowing into the vertices. Because of the above mentioned complexity 

' Heisenberg foundat ion fellow. 
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of the lattice vertex functions, it is in general not easy to manufacture such vertex 

programs and to make sure that they are faultless. If one approaches this problem 
straightforwardly, errors are likely to occur at two stages: firstly, when one derives 
an analytical formula for the vertex functions starting from a given lattice action S, 

and secondly, when this formula is coded into a computer  program. In sect. 3, a 
method of producing vertex programs is described which avoids the intermediary 
step of actually printing an analytical formula for the vertex functions on paper. 

The basic idea is simply to design an "algebraic" computer  program, which requires 
as input the action S and the number of  legs of the desired vertex function, and 
whose output is the vertex program*. In the course of our work on improved lattice 

gauge theories, we have found that the particular realization of this idea described 
in sect. 3 is foolproof  and yields fast vertex programs. Moroover, simplifYing features, 
e.g. when some of the momenta  entering the vertex are external and hence fixed, 
can easily be taken into account to obtain even better performance of the generated 
programs. 

Lattice gauge theory presents a framework in which the Faddeev-Popov deter- 

minant can be rigorously derived. We are of course aware of  the existing treatments 
in the literature [4]. Nevertheless, we feel that a further discussion here would not 
be out of  place, the aim being to derive a closed formula for the Faddeev-Popov 

determinant which is valid for arbitrary linear gauge conditions and on lattices with 
or without boundary (sect. 4). Especially in the case with boundary,  care must be 
taken to treat possible zero modes of the Faddeev-Popov operator correctly. With 
ordinary gauge fixing conditions, the Faddeev-Popov determinant turns out to be 
rather simple and is easily expanded by hand. Diagrams involving ghost loops are 
therefore negligibly complicated as compared to the diagrams with gauge boson 
loops; in particular, the numerical evaluation of these diagrams usually does not 

require special programming techniques. 
Lattice Feynman diagrams are ultra-violet finite, of  course, but infra-red divergen- 

ces may occur, especially if one aims at computing on-shell quantities. These 
divergences can be regulated by assuming a finite space-time volume, for example. 
However, with ordinary periodic boundary conditions, one then has to face an 
apparently difficult zero-mode problem (the " torons"  of ref. [5]), which renders 
the normal Feynman diagram expansion invalid. As is described in detail in sect. 
5, a better way to intoduce an infrared cutoff is to compactify only two of the four 
spacetime dimensions and to impose twisted periodic boundary conditions [6] in 
these directions. There are no torons in this case and the perturbation expansion is 
straightforward. Moreover, it turns out that the gluon propagator is completely 
massive, i.e. there are no singularities in the range of momenta  admitted by the 
boundary conditions. In this twisted world, the integrands of Feynman diagrams 
are thus totally regular and the integrations over those momentum components,  

* Algebraic computer programs have been used previously to check some of the rather involved algebra, 
which must be mastered to calculate A-parameter ratios (e.g. ref. [3]). 
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which are not quantized by the boundary conditions, can be done easily (an adapted 
exponentially convergent method of integration is described in subsect. 5.3). In our 
calculation of  the improved action, we used the formalism of sect. 5 merely as a 
tool, but we emphasize that the twisted world is interesting in itself and may prove 
useful in the study of the transition from the perturbative to the non-perturbative 
regime in non-abelian gauge theories. 

In perturbative lattice gauge theory computations, one is often interested in the 
limiting behaviour of the diagrams as the lattice spacing a tends to zero. From 
Symanzik's work on the cutoff dependence of scalar field theories on the lattice [7], 
one expects that for any diagram D an asymptotic expansion of the form 

D ~ a -~' ~ 3~ c . . , a " ( In a ) "  (I.1) 
c l i o  n ~ O  m ~ ( )  

holds, where l is the number of loops in the diagram and to ~>0 depends on the 
convergence properties of D and of its sub-diagrams. In our numerical approach, 
the first few coefficients c,,, can be determined accurately by calculating the diagram 
for a sequence of lattice spacings and fitting the results with the asymptotic series 
(I . l) .  An adapted fit procedure together with a reliable estimation of  the rounding 
and systematical errors is described in subsect. 6.2. It is based on a recursive blocking 
transformation, which takes into account the general form of the higher terms in 
the expansion (1.1) to increase the precision of the calculated first few coefficients 
c,,,. In this way, very accurate results can be obtained even if the diagram has only 
been evaluated for moderately small lattice spacings (very small lattice spacings 

usually require large amounts of computer time and are hence impractical). 
The asymptotic expansion ( I. 1 ) is not only the basis of our numerical extrapolation 

procedure, but it is also of fundamental importance for lattice theories as it describes 
how precisely the continuum limit is approached in perturbation theory. It appears, 
however, that a rigorous proof  of (1.1) has only been given for one-loop diagrams 
on the standard lattice Z 4 [7] (Symanzik has given further reasons for the general 
validity of ( l . l )  by referring to Pauli-Villars regularized field theories, where he has 
earlier been able to prove the analogous expansion for any number of loops [8].) 
As an example of  how a rigorous derivation of eq. (1. i) for lattices with boundary 
may look like, we here treat in detail the case of  one-loop momentum sums over 
4-dimensional Brillouin zones as they typically arise from Feynman diagrams with 
vanishing external momenta (subsect. 6.1). Diagrams with non-zero external 
momenta or momentum integrals instead of sums can be treated similarly [9]. 

It is only in the final sect. 7 that we give an illustration of the methods described 
in this paper by applying them to Symanzik's improvement programme. Although 
there is unavoidably some overlap with the material of  ref. [1], this section is meant 
as a technical supplement to that paper. We suggest that the reader, interested in 
,his particular application, should read ref. I l l  first and consult ref. [10] if an 
introduction to the programme is desired. 



312 M. Liischer, P. Weisz / Lattice gauge theory computations 

2.  N o t a t i o n  

In this paper we will be dealing with various aspects of perturbative calculations 
in lattice gauge theory• We Will work on a (4-dimensional) hypercubic lattice A with 
spacing a, i.e. 

x ~ A ,  x=na ,  n ~ Z  4. (2.1) 

For convenience we will often set a = 1. If desired the lattice spacing may always 
be reintroduced in these parts of the paper by dimensional analysis• /~ will denote 
the vector in direction ~ of unit length• Lattice derivatives c~,, 3" are defined by 
differences 

cg,f(x) = ( f(x  + at2) - f ( x ) ) / a ,  (2.2) 

;9*,.f(x) = (f(x) - f ( x  - al2))/a. (2.3) 

We limit ourselves to the case when the dynamical variables are SU(N)  matrices 
U(x, tz) associated with links joining the points x and x+al2. Often we will work 
with some directions compact; in this case the boundary conditions must be specified. 
0~/ will denote the space of gauge fields. 

The action S should be invariant under local gauge transformations 

U(x ,g )~  A(x)U(x, lx)A(x+al~)-' ,  A (x )~SU(N) ,  (2•4) 

where the A's obey boundary conditions such that the transformation (2•4) is from 
0// into itself• We denote by ~3 the gauge group, the maximal set of such A's. 
Expectation values are given as usual by 

(¢5)=I~[U]e-StU' (7 / I~[U]e-S~U' ,  (2.5) 

where ~ [  U] is the Haar measure on ~. 
We restrict attention to perturbative expansions around the classical vacuum and 

only to situations when the functional integral can be performed by substituting for 
the parallel transporter 

U(x, tz) = exp [agoA. (x ) ] ,  (2.6) 

fixing the gauge, and expanding all entries in powers of the bare coupling go. In 
(2.6) the potential A.(x)  is an element of the Lie algebra su(N)  of SU(N).  The 
A.(x)  have a Fourier decomposition appropriate to the boundary conditions. For 
the infinite volume case for example this takes the form 

A,,(x) = $ e'k("+)°~')A~(k)T b (2.7) 
k,h 

where 

• b=-i j _ , , / ~  2 ~ r ]  
(2.8) 
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and the T b are matrices belonging to the fundamental  representation of  su(N).  The 

phase in (2.7) involves the coordinate of  the mid-point of  the link joining x and 
x + ate. It has the consequence that t he /~ ,  have the following periodicity properties 

,40(k + 27 ra -~ )  = ( -  1)~-,,4~,(k). (2.9) 

When performing lattice calculations it is useful to introduce the notation 

k~ =-2 sin ½ak. (2.10) 
a 

for any momentum k,. 
Finally the class of  actions we consider will be sums over closed curves TO of 

terms of the form 

~(TO) = Re tr ['d - U( TO)], (2.11 ) 

where U(To) is the parallel transporter around TO, starting at some arbitrary point 

on ~. Note ~(~g)~> 0 for any TO. Extensions to actions involving higher characters 

of  S U ( N )  are trivial. The standard Wilson action $w involves only curves ,@ 
surrounding single plaquettes, i.e. 

9 
Sw[ u ]  = ~ E z¢(,~). (2.12) 

g o  ,~ 

3. Automatic generation of vertex programs 

3.1. D E F I N I T I O N  O F  T H E  V E R T I C E S *  

In this section we shall discuss how, for a given action, one can automatically 
generate programs which compute values of  vertices appearing in the Feynman 

rules, for a given configuration of the external momenta.  
Our formulae, in this section, refer to the infinite volume case, however, we stress 

that the reduced vertices we shall encounter (eq. (3.20)) are dependent  only on the 
local nature of  the action (the finite volume aspects having bearing on the allowed 
momenta) .  The action, of  the general form discussed in sect. 2, can be arbitrarily 
complicated and can include terms referring to many varieties of  closed curves. It 
is of  course sufficient to initially consider one general curve and finally sum over 
different curves. 

Let TO be an arbitrary closed path in Z 4 of  length /. Further, let TO, be the path 
obtained by translating the path TO through n c Z 4 and denote 

s('~') = E ~(To.). (3.1) 
n 

* We set the  la t t ice  s p a c i n g  a = I t h r o u g h o u t  this  sec t ion .  
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Vertex funct ions  V f  are then defined in the per turbat ive  expans ion  by* 

~ g o k S  . . .  $ ~ ' ' "  (2~r)48 k 

x ,4: , , (k,)  %, ~ . . .  A~,,(k,) V,  (k~, a~, I t s ; . . .  ; k,, a,, It•) (3.2) 

and requir ing them to be totally symmetr ic  

tr .  V~'= V~ fora l l  t r~  ~ • ,  (3.3) 

where ~ ,  is the group  of  pe rmuta t ion  of  r e lements ,  and the act ion of  cr ~ a2, on a 
funct ion F or r a rguments  a. is defined in the natural  way by 

(~r. F ) ( a l , . . . ,  a•) = F(a, , ( l~ , . . . ,  a~,(,~). (3.4) 

The vertex funct ions V~ ~ are uniquely de te rmined  through eqs. (3.1)-(3.4) and the 
geomet ry  of  the curve ~. Our  first task will be to derive an explicit expression for 
V~, which is suitable for  p rogramming .  

3.2. EXPLICIT REPRESENTATION FOR THE VERTICES 

The pa th  ~ is comple te !y  specified by 

n(i) :  sequential  vertices a long c¢ (i = l , . . . ,  I ) .  (3.5) 

From these we can extract  the following arrays s( i ) ,  I t( i)  by 

n ( i - l ) - n ( i ) = s ( i ) .  I t ( i ) ,  (3.6) 

which specify the direct ions of  successive links along c¢. In (3.6) set i - 1 --* l if i = 1, 

and s(i) takes values ±1. 
With this notat ion,  the parallel  t ranspor te r  f rom n ( i - l )  to n(i) is given by 

exp goX, with 

A,~t,)(n(i)) if s( i )  = +1 
X, (3.7) | 

( - A ~ , ( , ) ( n ( i - 1 ) )  i f s ( i ) = - I  

Thus,  the act ion density associa ted with ~ becomes  

~ ( ~ )  = ~ Tr {2 - e~ 'X ' . . ,  e ~x '  - e - ~ x '  . . .  e-S°x'}. (3.8) 

Expand ing  this express ion in powers  of  go, we have 

1 • 
~ ( (¢ )  = ~ ~go~?•( (~) ,  (3.9) 

r = 2  - 

with 
r] 

~ • ( ~ )  = ( - 1 ) • ÷ '  ½ Z 
l , ~ u l , ~ : . . . ~ = u  ~:. I 0 2 1 !  . . . O l l !  

x T r { X u . . . X u + ( - 1 ) • X , , . . . X ~ , } ,  (3.10) 

* The 8-function appearing is the periodic ~-function. 
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where a, counts the factors associated to a given link: 

a~= ~ 8~.,° ( i = 1 . . . ! ) .  (3.11) 
a : l  

The Fourier representation of X~ is given by (see (2.7)) 

Xi = $ ~ ,4~ ( k ) Tbs( i)S~.~,,~ e 'k~li>/2 , (3.12) 
k,h 

where ~a(i) is the coordinate of the mid-point of the link joining n(i)  and n ( i -  1), 

au(i)  = nu( i )+ n~,( i -  1). (3.13) 

Inserting (3.12) in (3.10), we obtain (3.2) with 

'e 1 
V , ( k ~ , a ~ , # ~ ; . . . ; k , , a , , l ~ r ) = ~  ~ tr. Cr (a~ , . . . , a r ) tT .  Y ~ ( k ~ , g ~ ; . . . ; k , , # r ) ,  

(3.14) 
Y~(k,, ~ ;  . . .  ; k,, #~) 

2 ~ ( _ l y e ,  r! 
I~u~,~. . .~u,  ~ l  OCl ! . . •Otl! 

x s(1)"' . . . s(l)"'{6,,.,,(,,~ e i k " a ( u ' ) / 2 . . .  ~u,u(~,,) eik"~(" ' ) /2},  (3.15) 

where the Clebsch-Gordan coefficients Cr are defined by 

C'~(a] . . . . .  a , ) = T r ( T  ~, . . .  T ~ ' ) + ( - 1 ) ~ T r ( T ~ , . . .  T~,). (3.16) 

They have simple properties under the subgroup ~,  of permutations generated by 
cyclic permutations and the inversion p ( p ( i ) =  r+ 1 - i ) ,  namely 

or. C, = X,(tr)C,, cre Lr,, (3.17) 

where X, is characterized by 

X,(cr' ~')= X,(~r)" X~(r), o', ~'~ Y,, 

X,(tr) = 1 for tr cyclic, 

X,(p) = ( -1 )  ~ for inversion p. (3.18) 

Making use of  property (3.17), we end up with 

V f ( k , ,  a,, I.t]; . . .  ; k,, a ,  I~r) 

1 
= - -  ~. tr" C~(a, . . . .  , a,)tr .  Y f ( k b  t z , ; . . .  ; k,, t z , ) ,  (3.19) 
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where the reduced vertices Y,~ are given by 

Y~(k , ,  I t , ; . . .  ; k,, It,-) 

, s ( 1 ) o , . . ,  s ( l )  °, =2 ~ (_1),÷ I r! 
l ~ u t ~ . . . ~ u e ~ t  Ol l !  . . . 011! 

" ~ i k  . a t u  ) / 2 /  × ~.. X r ( o r ) o  r"  { S ~ , . , ~ ( u , )  e ' k ' a (u ' ) / 2  • • • o~ ,~ t (u , )  e " " t ( 3 . 2 0 )  

(the permutations tr act on the arguments u i , . . . ,  u, according to eq. (3.4)). 
The reduced vertices have simple symmetry properties under permutations in Y,: 

or. Y ~ = g , ( t r )  Y f  for tr ~ ~ , .  (3.21) 

Their reality properties are 

Y f ( k , ,  I t , ; . . .  ; k,, It,)* = Y~, ( - k , ,  I t , ; . . .  ; - k , ,  It,) (3.22) 

Finally, for the curve ~ obtained from ~ by inversion through the origin ( f i ( i )=  
- n ( i ) ) ,  we have 

Y f ( k l ,  I t , ; . . . ,  k,, Itr) " ~' " = (--1) Yr ( - k i ,  I t s ; . . .  ; - k , ,  I t , ) .  (3.23) 

In the following we will discuss only the automatic generation of the reduced 
vertices Y~. Of  course the Clebsch-Gordan coefficients Cr can also be programmed,  

but, at least for small r, these coefficients are simply evaluated by hand. 
When momentum is conserved,* Y~ k, = 0, the a(uj)  in (3.20) can be replaced by 

translated coordinates a'(uj). This can be done separately for each configuration of 

the uj and hence we can use the translation invariance to get the exponents appearing 
in (3.20) into a standard form. Such a procedure is obviously useful to identity 
terms which have equal exponents and hence reduce the number  of  final independent 
{a(uj)} configurations appearing in (3.20). A particular realisation would be, for 
example 

! a~.(uj) = a . (  uj) - s~,({ u}), (3.24) 

where 

s~,({ u}) = ½(m~, - m~,(mod 2)) ,  

rn~, = max (a , (u j ) )  + min (a~,(uj)).  
J J 

(3.25) 

The "centralised coordinates" a '  then obey the constraints 

max (a'~(uj)) + min (a'~(uj)) ~ {0, 1}. 
3' 3' 

" As can be chosen without loss in Feynman diagram calculations. 

(3.26) 
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3.3. GENERATION OF VERTEX PROGRAMS 

For the case when c¢ is simply the curve around one plaquette and for 

reasonably small r(<~5), the terms in eq. (3.20) can be quite easily collected by hand. 

However, for larger and more intricate curves the task becomes rather tedious, and 
the probability of  making errors in the derivation of the analytical formulae is high. 

Another source of  error is the subsequent transcription of the analytical expressions, 

which are algebraically complicated, into computer  programs. 

It is thus effort-saving and overall more reliable to generate vertex programs using 
algebraic computer  techniques. One could employ for example standard routines 

such as R E D U C E  and SCHOONSCHIP .  On the other hand, the expression (3.20) 
is ideally suited for programming in a language which is efficient in list processing, 

for example PL/ I  [ 11 ] with its facility of  based storage. 
We now proceed to describe the structure of  a program whose sole function is, 

for a given curve (or set of  curves), to write corresponding vertex programs. As 

explained in the introduction, the output of  a vertex program is an array 
Y R ( ~  . . . .  ,/Zr) equal to the numerical values of  an r-point vertex function Y/' for 
a given input of  external momenta.  Such vertex programs can then be used as 
subprograms for the evaluation of  Feynman diagrams, without reference to the 
programs which generated them. 

The key to our method is to recognize that according to eq. (3.20), the reduced 

vertex function Yf  is a sum of terms of the form 

I f ei(kt'v(I)+k2"o(2)+'"+k,v(r))/2 , 

where f is an integer factor and v~(i)  (i = 1 , . . . ,  r ; /z  = 0 , . . . ,  3) are integer vectors. 
For every combination of  Lorentz indices / z , , . . . , / z , ,  the terms T contributing to 
Y ~ ( k , ,  lz~; . . .  ; k,, lZr) can be found from eq. (3.20) and may be collected in a table 

9 - , ( ~ , , . . . , / z r ) .  Thus, each entry T in the list ~-r(#, . . . . .  P-r) is jUSt an i n t ege r f  plus 
an integer array v, ,( i) ,  and Y~ is simply given by 

Y ~ ( k ~ , / z , ; . . .  ; k,,/Zr) = ~ ~ f e,~k,o~,)+ .... k,~r~)/2 (3.27) 
r ~  ~,(~t,... , ,~,) 

Of course, since only the sum of all terms is required, the table J-r(/z, . . . .  , ~t,) may 
be reduced by adding up all those entries with equal shift vectors v,, (i). I f~[= ,  ki = 0, 

it is advantageous to perform this reduction only after the vectors u,,(i) have been 
transformed to a normal form by a translation as explained at the end of subsect. 
3.2. Without further notice, we shall from now on assume that shift vectors v , ( i )  
are normalized. 

The main program for vertex generation calls two subprograms (I) and (II) ,  which 
perform distinct tasks. Subprogram (I) sets up the tables f f , ( / z~ , . . . , / z , )  as follows. 

First, for the particular curve c¢ under consideration, the integer arrays a, , ( i ) ,  s ( i )  
and /z ( i )  (as defined by eqs. (3.6), (3.13)) are determined. Then, for a given r, sums 
over 1 ~< u~ ~< u2 <~ • • • <~ u, <~ I and over permutations ~ e ~r are made as in eq. (3.20). 
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For each configurat ion o f  uj's and ~r, the r.h.s, o f  eq. (3.20) defines a term T, i.e. a 

factor f and vectors v, , ( i ) .  This term is then added  to the list ff,(p., . . . .  , /z,) ,  where 

the Lorentz indices /x~ . . . .  , ~,  are given by ~j = tz(u,,ul). 

When adding  a term, the table ff,(/.t~ . . . .  ,/Zr) is first scanned to establish whether 

a term with the same vectors u~,(i) already exists. I f  not, the new term is simply 

added  to the list. If, on the other hand, a term with the same vectors v~,(i) is found,  

the factors f o f  the new and the old term are added.  In the case that the resulting 

factor  is zero, the storage is freed. In this way one is economical  with respect to 

the storage. The number  o f  terms /1,.~ in the sum (3.20) for given r, I is 

2 
- -  l ( l +  1 ) . . .  (1+ r -  1),  (3.28) n r . t - ( r _ l )  ! 

e.g. for r = 6, I = 6 we have /16. 6 = 5544. However ,  in practice the collection o f  lists 

have much fewer terms because of  cancellations. 
In certain applicat ions,  a general form for the vertices may not be required. The 

special propert ies o f  the momenta  and Lorentz  indices in such cases should then 

be incorporated  at this stage to simplify the lists accordingly.  

We finally remark that the subprogram (I) may be designed so that contributions 

from various curves with weight factors cor responding  to the lattice action under  

investigtion, can be added  to the same tables in succession. 
After subprogram (I) has run, the lists o f  terms described above exist in the core 

memory  of  the computer .  It is the function o f  subprogram (II)  to convert  these lists 
into ordinary vertex programs,  which yield the vertices Y~ for given external 

momenta .  
For each c o n f i g u r a t i o n / z , , . . . ,  p., o f  Lorentz indices, subprogram (II)  first locates 

the table J-,(/z~ . . . .  , /z,)  in the core memory.  After that it runs through the list and for 

each term in the list prints an assignment statement on a print file. The assignment 
statements are o f  the form* 

YR(p .~ , . . . ,  p.,) = YR(tz~ . . . . .  /z,) + T E R M ,  (3.29) 

where T E R M  is the mathematical  expression corresponding to the term in the list, 

in the desired computer  language (cf. eq. (3.27)). 
In the final step the assignment statements in the print file are copied into an 

ordinary program file where they are completed with cards to make up an ordinary 
subprogram which can be compiled in the usual way. It is our  experience that the 
vertex subprograms generated in this way are faultless and speed efficient. 

Lastly we note that  in most  cases o f  interest a further simplification arises f rom 

the fact that  the tables contain terms which come from a set o f  loops { ~  . . . . .  qg,} 
which are mapped  onto  each other under  inversion through the origin. Then the 

'~ Separate assignment  statements are made for each term to avoid lengthy expressions, which could 
cause problems during compilation. 
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reduced vertex 

Y,= ~ Yre' (3.30) 
i - I  

satisfies (see (3.22) and (3.23)) 

Y r ( k , , / x , ; . . .  ; k,~/z,)* = ( - l ) ' Y , ( k , , / x ~ ; . . .  ; k,,/Zr), (3.31) 

Y , (  k~, ~ t ;  . . . ; k~, ~ , )  = ( - l  ) r Y r ( - k ~ ,  tz~; . . . ; - k , ,  t x , )  . (3.32) 

It follows that each term with vector v ( i ) ~ O  has a partner in the same list with 

- v ( i ) .  These terms correspond then to exponentials which can be combined into a 

sine if r is odd or to a cosine if r is even. In the special case v ( i )=0 ,  the term 

corresponds to a constant. Hence, the assignment statments (3.29) are written for 

pairs of terms rather than for single terms. 

4. Linear gauge fixing conditions and the Faddeev-Popov determinant 

Conventional perturbation theory involves a saddle point expansion around the 

classical vacuum configurations U ( x ,  lz  ) = A ( x ) A ( x + f t  ) 1, A ~ ~.  T h e  degeneracy 

of this saddle point requires that the gauge degrees of freedom are separated out 

before one expands the integrand in the functional integral in a power series of the 

coupling constant go. The separation of gauge variables from the other ("physical") 

degrees of  freedom amounts to choosing a special coordinate system in a neighbor- 
hood* of the classical vacuum manifold in such a way that a first set of coordinates 

parameterizes the gauge orbits and the remaining coordinates label the fields along 

the orbits. Only the latter are shifted by a gauge transformation, and gauge invariant 

quantities, in particular the action S, are independent of them. The integration over 
these variables is therefore trivial and may be factored out so that after that one will 

be left with the integrals over the "physical" coordinates and a non-degenerate 

saddle point. 

Different coordinate systems of the above type correspond to different "gauge 
fixing conditions". We here consider a class of  smooth parameterizations, which 

are geometrically motivated and which lead to particularly transparent formulae. 

Throughout this section, the lattice spacing is set equal to 1 for convenience, and 

we shall also assume that the lattice A is finite. If desired, the infinite volume limit 
may easily be taken at the end of all calculations. 

For our derivation of  the Faddeev-Popov determinant, a more detailed description 
of gauge fields and gauge transformations on the lattice A is needed. All commonly 
used boundary conditions may be accommodated in the following framework: 

(a) A is a finite subset of  the standard lattice Z 4. 

* In perturbation theory one effectively integrates only over an infinitesimally small neighborhood of 
the saddle-point manifold. A parametrization of the gauge field manifold far away from this region 
is therefore not required here. 
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(b) Gauge  fields U(x , /x)  live on a fixed set ~ o f  bonds  ( x , x + / 2 ) ~ A x A .  

does not necessarily contain all the bonds  on A, but we shall require that every 

x e A may be connected  to any other point  y e A by a sequence o f  bonds  in ~ .  The 

gauge variables U(x, ~) are independent  and unrestricted elements of  S U ( N ) .  

(c) The act ion S is a cont inuous  funct ion o f  the gauge field variables U(x, tz) 
and the a priori measure in the functional  integral is given by 

~ [ U ] =  I1 d U ( x , / . t ) ,  (4.1) 
x,  tz  

the produc t  being taken over all bonds  in ~ (d U denotes  the invariant measure on 

SU(N) ) .  

(d) The elements o f  the gauge group ~J are functions V(x) on A with values in 

S U ( N ) .  In general,  not all such functions are in ~J, but only those for which the 

gauge t ransformat ion 

U(x, ~) ~ V(x) U(x, ~z) V(x + ~)- '  

is a symmetry  o f  the act ion S.* 

For example,  a lattice with L sites on a side and periodic boundary  condi t ions  can be 

realized by choosing 

A-={xEZ4[O<~x~<~L fora l l  z,; 

~ = { ( x , x  +12)~ Ax  AlO<~x~< L 

.~--{ V:A--, SU(N)I V(x)= V(y) 

x~ = L for at most one v}, 

for all v; /~ = 0 , . . . ,  3}, 

i f x ,  =y~ (mod L) for all v}. 

Other  bounda ry  condit ions (free, Dirichlet, twisted periodic, etc.) are also easily fit 
into the above f ramework so that in the fol lowing we shall assume that (a ) - (d)  

hold. Note  that (c) and (d) imply that ~ is a closed Lie subgroup of  the group of  

all functions V(x), x c  A, with values in S U ( N ) .  

4.1. INFINITESIMAL FIELDS 

The basic idea o f  the parametrizat ions in t roduced in the next subsection is to first 

identify the gauge and non-gauge  coordinate  axes in an infinitesimal ne ighborhood  
of  U(x,/z) = 1, and then to use gauge t ransformat ions  respectively the exponential  

mapping  to extend the infinitesimal coordinate  system to a finite ne ighborhood  of  
the classical vacuum configurations.  To prepare the ground for this construction,  

we here study the space ~ o f  infinitesimal gauge fields a round  U(x,/z) = 1 and 
appropr ia te  gauge fixing condit ions.  

* if the group ~ of all gauge transformations leaving the action fixed divides into several disconnected 
parts, the gauge group .~ is usually taken to be the identity component of ~ (Gauss' law requires 
infinitesimal gauge invariance only). The discrete group ~/~3 is then interpreted as a physical symmetry 
of the system. 
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~ is equal to the linear space of  all vector fields a , (x ) ,  which are defined on 
the bonds (x, x +/7,) ~ ~ and which take values in the Lie algebra su(N)  of SU(N).  
A convenient inner product on ~ may be defined through 

(a, b) = - ~. Tr {a~,(x)b,,(x)}, (4.2) 

where the summation is over all links in .°/'3 and the trace is in the fundamental 
representation space of  su(N).  

Infinitesimal gauge transformations to(x) form a vector space Mo of scalar fields 

on the lattice, which also take values in su(N).  In general, ~o does not contain all 
possible such fields (i.e. there are usually some restrictions on to(x) at the boundary 
of A). ~o may be identified with the Lie algebra of  ,~ and a scalar product may be 
defined by a formula analogous to (4.2). To every oJ e ~o, there corresponds an 
infinitesimal pure gauge field a~, according to 

a~(x) = cg~,to(x) for all (x ,x+l~)~  ~ .  (4.3) 

The set of  all these modes a~, is a linear subspace ~ of ~ .  
We now turn to discuss possible gauge fixing conditions for infinitesimal fields. 

Suppose ,~: ~m --, no is a linear operator and let ~:~* denote the kernel of ~, i.e. 

~ = {a~ ~ ~7('~ I ~ ( a )  = 0 } .  (4.4) 

We then say that ~ is an admissible gauge fixing operator, if the following criteria 
ar satisfied: 

(i) Every a~, ~ ~e has a unique decomposition 

.~ r (4.5) a~, =a , ,  +a~,,  

where 

(ii) Let go be the group of constant (i.e. space-time independent) gauge transfor- 
mations.* Then ~ is invariant under the adjoint action of  ~3o. 

In other words, if a,, e ~ and Ve go, then Va,,V-~e Y(~. Property (i) insures 
that the gauge fixing conditions J: leads to a clean separation of the gauge modes 
from the other "physical" degrees of freedom. The significance of property (ii) will 
become fully clear later. At this point, we only mention that the vacuum manifold 
is isomorphic to ~3/~3o. To lift the degeneracy of the saddle point, it is therefore not 
necessary that the gauge fixing condition also breaks the invariance under go- 

A particularly natural choice for the gauge fixing operator ,~ is the following. 
Let d: ~ o ~  ~ be defined by 

(dto)~,(x)=a~to(x) for all ( x , x + ~ ) c  g~. (4.6) 

° % is a closed subgroup of SU(N),  which depends on the boundary conditions chosen. In the case 
of the twisted world of sect. 5, for example, % is equal to the centre of SU(N).  
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The adjoint operator  d* of d relative to the scalar products defined in ~o and ~ 

then maps M~ into ~o. In the interior of  the lattice, d* is simply given by 

(d*a)(x) = - ~  a*a~,(x),  (4.7) 
~t 

but near the boundary,  the explicit form of d* must be worked out taking into 

account the shape of A and the restrictions on oJ(x)•  ~go near the boundary. It is 
then easy to verify that the choice 

,~ = d '  (4.8) 

has all the required properties. In this case, Yt'~ is simply the orthogonal complement  
of x ,  

4.2. PARAMETRIZATION O F A  N E I G H B O R H O O D  OF THE CLASSICAL VACUA 

We are now in a position to set up a coordinate system around the classical vacua, 
which separates the gauge degrees of  freedom from the physical ones as required 

for the saddle point expansion. To this end, choose some arbitrary admissible gauge 
fixing operator  ff  as discussed above. Then, one can show that every gauge lield 
U(x, ~), which is sufficiently close to a pure gauge configuration, can be represented 
by 

U(x, lx)= A(x)expq~,(x)A(x+ fi) ~, (4.9) 

where q, e )t'~ is small (say Ilqll < e) and A • ~. This representation is, however, 
not unique, because the r.h.s, of  ~q. (4.9) is invariant under the substitution 

q,~(x)~ Vq,,(x) V- '  , 

A (x) ~ A (x) V - ' ,  (4.10) 

where V is an arbitrary element of  ~o, the group of constant gauge transformations. 
Note that since 5 ~ is an admissible gauge fixing operator, Vq~, V-~ is again an element 

of 
The degeneracy (4.10) can be lifted by imposing a constraint on A. For example, 

one may realize the coset space SU(N)/~3o by some convenient subset of SU(N)  
and then require that for some fixed y e  A the matrix A(y) is in SU(N) /~o .  Such 
a constraint defines a subset c~ or ~3, which is a smooth manifold except perhaps for 
a singular set of  points, which is of zero relative measure and which may therefore 
be neglected in what follows. One may now prove, using property (i) of  the gauge 
fixing operator  ~ and the implicit function theorem, that the representation (4.9) 

is unique for q • 9~i *, II q II < ~, and A • ,~. 
To obtain an explicit parameterization of the gauge field manifold around the 

classical vacua, choose some orthonormal basis v ~ in Y(~ and some coordinates ra 



M. Liischer, P Weisz / Lattice gauge theoo' computations 323 

for ,~. Then, the gauge field U(x, ~)  parametrized'by so,, and ra is given by eq. (4.9), 
where 

q~,(x)=Y.~,,v~(X), E s c ] < e  z , (4.11) 

and A is the element of ~ with coordinates rA. Note that because the lattice A is 
finite, the total number of parameters ~, and ra is also finite. 

4.3. THE FADDEEV-POPOV DETERMINANT 

We now proceed to work out the a priori measure (4.1) in the coordinates of the 
preceding subsection. Define a metric G in gauge field space by 

G,~ c3~,, U, U- 0--~ U , (4.12) 

( u  -'/-~-~ u -' a u )  G,,A = Ga,, = a~,, U, ~ra ' (4.13) 

GAt~ = ( U - ' ~ r ~  a U, U-'~3"~-U)orn ' (4.14) 

where the scalar product is given by eq. (4.2). The associated volume element 

H ds¢, H drA (det G) '/2 (4.15) 
~r A 

may be shown to have the same invariance properties as the a priori measure (4.1) 
and is hence proportional to @[ U]. We are thus left to calculate the determinant 
of G. 

From the definition (4.9), (4.11) of our coordinate system, the derivatives of U 
with respect to ~:,, and ra can be worked out easily and one obtains 

G,,a = ( Juv", Jqvt~ ) , (4.16) 

G,,A = -(Jqv", dqtoa), (4.17) 

GAn = (dq~o A, dqto°). (4.18) 

The notation here is as follows. The fields toae ~,) are defined by 

w A ( x ) = A ( x ) '  0--~A A (x).  (4.19) 

Jq is a linear invertible operator acting in ~ .  Explicitly, it is given by 

~" ( -1)"  
(Jqa),,(x) = ,Vo (n+ I)! [adq"(x)]"" a~,(x), (4.20) 
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where A d X .  Y = [ X ,  Y] for all X, Y e s u ( N ) .  The series in eq. (4.20) may also be 
written in the closed form 

[ 1 - e-Adq,(x~]/Adq~, ( x ) ,  (4.21) 

which should,  however,  be used with care, since A d X  has always zero eigenvalues 
and is not invertible. Finally, the opera tor  dq occurr ing in eqs. (4.17), (4.18) maps 

~o into ~ according  to 

(dqto),,(x) = ~,,to (x) + [1 - e-Ad%(~]to(x).  (4.22) 

In particular, dq = d if q vanishes. We now use the following iemma from linear 
algebra: 

Lemma 4.1. Let w', i = 1, 2, 3 , . . . ,  be a basis in a Hilbert space 2( and suppose  

A is a l inear opera tor  in ~ .  Define matrices a o = (w ~, AwJ), b,j = (w', w J) . Then,  

we have det a = (det A) • (det b ) .  

In our  case, ~ is identified-With ~ and the basis w ~ with the vectors v ~ and 
J~dqto A. For q = 0, this set o f  vectors is certainly a linear basis of  ~g~, because to A 

plus the constant  modes  (i.e. the generators  o f  ~o) form a basis o f  ~o and the dto A 

are hence a basis o f  ~ ,  thus complement ing  the v" 's .  For  small q, the vectors 
+ 

Jq~dqto A are just a little de fo rmed  so that we still have a basis. Choos ing  A = JqJq, 
the lemma yields 

det G = (det J*qJq). (det G ) ,  (4.23) 

G ~  = 6 ~ ,  (4.24) 

G~A = GAo, = - ( v " ,  Jq  ' dqto A) , (4.25) 

CJ,,, a = ( J ,~ ' d qto a, J q ' d qto s ) . (4.26) 

The next step is an application of 

L e m m a  4.2. For a matrix M with block structure 

we have 

det M = (det A) • (det [ C  - BTA-~B]) .  

Identifying M with G and using the completeness  of  the basis v ~ in ~g~, one obtains 

det G = det H ,  (4.27) 

HAs = (J-q' dqto A, PJ~' dqton), (4.28) 

where P denotes  the (or thogonal)  projector on the or thogonal  complement  o f  ~ .  
With the help o f  the adjoint  operator  ~* of  ~ ,  which maps ~'o into ~ ,  we have 

P = 5 ~ * ( ~ * ) - '  5~. (4.29) 



M. Liischer, P Weisz / Lattice gauge theol, computations 325 

Note that the zero modes (if any) of 3 t~  t are orthogonal to the subspace , ~ ( ~ )  
of Mo, and the inverse of  , ~ *  in eq. (4.29) has therefore a well-defined meaning. 

Inserting (4.29) in (4.28), we have 

HA B : (A F.po.) A, ( ~ , ~ ) - I A F p £  0 a ) ,  (4.30) 

AFp ---- ,,~Jq |dq. (4.31 ) 

The Faddeev-Popov operator AFp is a linear and in general non-hermitian operator 
acting in ~o- An important property of this operator is now summarized by 

L e m m a  4.3. For small q, the zero modes of AFp are  exactly the constant fields 
to e ~o, and the range of  AFp is'dxactly the subspace , ~ ( ~ )  of ~o. 

Postponing the proof  to appendix A, we note that the lemma implies in particular 
that the fields z, a = AFpto A form a finear basis in ~ ( ~ ) .  Applying lemma 4.1 once 
more, we thus have 

det H = (det /~)  • (det' ,~,~t)-~, (4.32) 

I~t AB : ( toA,  AFpAFptoB) , (4.33) 

where det' implies the determinant with zero modes omitted. 
We finally introduce the space ~ of all those modes to E ~o, which are orthogonal 

to the constant fields. Let P~ be the corresponding orthogonal projector. By lemma 
4.3, /~a~ may be then written in the form 

I t B A t A ~'lan = t t.A, "4FpAFp,U- ) ,  ~ = Poto • (4.34) 

Since tza's are a basis of ~h, iemma 4.1 applies and one obtains 

d e t / t  = (det' d~pAFp) • (det /2) ,  (4.35) 

12An = ( toA, p,oton) (4.36) 

Summarizing the results obtained so far, we have thus established the factorization 

det G = (det' ~ t ) - ~  det 1-2 det t JqJ,~ det' A tFpAFp. (4.37) 

Note that the first factor is independent of the coordinates ~,,, rA, the second one 
depends only on r a, and the last two factors depend only on s¢~. In the functional 
integral (2.5) with gauge-invariant observables ~, the first factor and the integral 
over the r A therefore drops out and we are left with 

1 
f ~[q]{det  JqJq det' A~-p/'IFp}'/2~ e -'s, (4.38) 

where in ~? and S the field U(x ,  tz) should be replaced by exp q~ , ( x ) (~[q]  denotes 
the usual translation invariant measure in the vector space ~ ) .  For perturbation 
theory, we finally substitute 

q~, (x )  = g o A ,  ( x )  , (4.39) 
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and introduce (anti-commuting) Faddeev-Popov ghost fields c and t?: 

(O')=Z f,~ ~[a] f~( ~[c] I~Te~ ~[~]~e-Se~, (4.40) 

Se, = S -  ~ In det  Jg,,AJ~A --(?, A FpC ) . (4.41) 

As indicated in eq. (4.40), the ghost field c is not integrated over the whole space 
~o, but only over the space ~ orthogonal to the zero modes of AFp. Correspondingly, 

is integrated over the range ~ ( ~ , )  of A~p, which has the same dimension as ~ .  
Eqs. (4.40) and (4.41) constitute our final result for the gauge-fixed functional 

integral on finite lattices A. From here on, perturbation theory simply proceeds by 
expanding C and S~a in powers of go and performing the resulting gaussian integrals 
by Wick's theorem. For the measure term in Sea and the Faddeev-Popov operator, 
the expansion in go is easily worked out. For example, up to fourth order, we have 

~,ln det  J~,,AJ~,A = ~ Tr {~g2o(AdA~(x))2-~og4(AdA~,(x))4+ ~(g6)} ,  (4.42) 
x . ~  

AF-~= Ao + goA, + g~A~ + " +~?(go S) - g o A 4  , (4.43) 

za0 = ,~d, (4.44) 

A, = J;{½(AdA)d + AdA}, (4.45) 

A2 = ~.~( AdA ) 2d, (4.46) 

A, = 7-~,~( AdA )" d (4.47) 

(in eq. (4.42), the sum is over all bonds in ~ and the trace is in the adjoint 
representation space of su(N)) .  

5. Perturbation theory on a lattice with twisted periodic boundary conditions 

In this section we collect some results concerning SU(N)  lattice gauge theories 
on a 4-dimensional lattice with 2 compact dimensions and twisted periodic boundary 
conditions for the gauge field (a "twisted tube" in other words)*. Compared to 
other lattices, the twisted tube has several technical advantages, in particular, the 
perturbation expansion is straightforward and the compact dimensions imply an 
infrared cutoff in the Feynman diagrams. Moreover, due to the special geometry, 
the summations over loop momenta are either finite (in the compact directions) or 
they are integrals over periodic analytic functions, a situation, which is favourable 
for numerical treatment. A further remarkable feature is that scattering processes 
of particles moving along the x3 axis can be studied without ever running into 
infrared divergences (we have exploited this fact for our calculation of the on-shell 
improved action for lattice gauge theories, see sect. 7). 

* W h e n  m o r e  t h a n  two  d i m e n s i o n s  a re  c o m p a c t i f i e d ,  the  ana lys i s  c a n  be  ca r r i ed  t h o u g h  a n a l o g o u s l y .  
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In subsect. 5.1, we describe in some detail how to set up perturbation theory on 
the twisted tube. Since the discrete symmetries of the system are not immediately 
obvious from the Feynman rules, the transformation laws for the gauge potential 
A,,(x) are derived in subsect. 5.2. Finally, an efficient numerical integration program 
for periodic analytic functions, as they typically arise in Feynman diagrams, is 
described in subsect. 5.3. 

5.1. BASIC FORMALISM 

We consider a lattice of finite extent L in the x, and x2 direction and infinite 
extent in the other two directions. The space a//n of gauge fields on this lattice is 
identified with the set of fields U(x,#)eSU(N),  x / a 6 Z _  4, IX = 0 , . . .  ,3, which are 
twisted periodic, viz. 

U(x+L~,IX)=O~U(x,#)O, ' ,  (~,= 1,2) .  (5.1) 

Here, the twist matrices O~ are constant, gauge field independent elements o fS U (N ) ,  
which satisfy the algebra 

0,02 = ZO:,O, , Z = e 2 '~' /N . (5.2) 

The corresponding gauge group Nn consists of  all fields A(x) e SU(N)  with 

A(x+L~)=I2,,A(x)O-~', ( u = l , 2 ) .  (5.3) 

The twist algebra (5.2) insures the "'integrabiity'" of (5.1) (and (5.3)) in the sense 
that if x is shifted by several periods L in the x,, x2 plane, the resulting matrix U 
at the final point does not depend on the order in which the shifts are applied. In 
other words, if U(x, IX) is given arbitrarily for 0~<x,,< L, ~,= 1, 2, eq. (5.1) con- 
sistently defines a unique extension of U(x, tx) to all points x. 

Examples of twist matrices O,, have been given in the literature (e.g. ref. [12]), 
but since an explicit representation is never needed, we here only note that 

(i) eq. (5.2) fixes the O,.'s up to unitary transformations, 

(ii) they are irreducible, i.e. any matrix, which commutes with 0 ,  and 02, is a 
multiple of the unit matrix, and 

(iii) O ~ = ( - - 1 )  N -1,[] for u=  1,2. 

In particular, property (i) implies that all choices of twist matrices result in the 
same physical amplitudes. 

For twisted periodic gauge fields, the action density is periodic in x, and x2 and 
the total action S is defined by summing the density over an arbitrary periodicity 
cell (in the present formulation, there are no extra twist factors in the action, cf. 
appendix B). Now suppose that S I> 0 and S = 0 if and only if ~ ( ~ )  = 0 for very 
plaquette loop ~'. Then, using properties (i) and (ii) above, one readily shows that 
the only zero action fields are pure gauge configurations, 

U(x, ix)=A(x)A(x+al.~) ' ,  A e ~ n ,  (5.4) 
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i.e. the toron manifold is trivial. It follows that for such actions, the perturbative 

expansion of the functional integral can be done straightforwardly by substituting 

U(x , / z )  = e~,,aA- ~~1 , (5.5) 

fixing the gauge and expanding all entries in powers of go. The gauge potential 
A~,(x) in (5.5) satisfies 

A~,(x) ~ = - A ~ , ( x ) ,  Tr A~,(x) = 0,  (5.6) 

A~,(x + LP) = l l~A~,(x)O~' , (5.7) 

and an example of  a gauge fixing condition, suitable for the calculation of one-shell 
quantities, is the familiar Coulomb gauge condition 

3 

E ~*A,(x)  = 0. (5.8) 
i - - I  

The corresponding Faddeev-Popov ghost action is derived in sect. 4 and we shall 
therefore not repeat any details here. We only remark that in the present case the 
ghost fields c and ~" are also twisted periodic fields and the Faddeev-Popov operator 
AFp has no zero modes. 

Feynman rules are most conveniently formulated in momentum space. To this 
end, we would like to expand A~,(x) into plane waves, which respect the periodicity 
(5.7). Now, it is not difficult to show that a basis of  twisted periodic plane waves 

is given by 

l'k e ~kx , - z r / a  < k~, <~ zr /a ,  (5.9) 

where Fk is a (complex) N x N matrix, which solves the eigenvalue equations 

£2Wk/-/;' = e%LFk, ( v = 1 , 2 ) .  (5.10) 

Actually, a non-zero solution of (5.10) exists if and only if the transverse momentum 
components  k~, k2 satisfy 

27r 
k , = m n , ,  n , ~ 7 / ,  m = L N  , (5.11) 

i.e. as expected, these momentum components  are quantized, although the quantum 
m is smaller than the usual quantum 27r/L. With (5.11), the solution of eq. (5.10) 
is unique up to a phase, which we may choose such that 

Fk =/2~"2/2~'z *'~n'+"2~C"~÷":-l~ • (5.12) 

These matrices have previously appeared in the context of  large-N reduced models 
(see ref. [ 13] and references therein). Besides eq. (5.10), the most relevant properties 
of the Fk are 

F ~ S U ( N ) ,  (5.13) 
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l'k,= Fk if k; = k±(mod N ) ,  

Fk =~ if k± =0  (mod N ) ,  

Tr Fk = 0 unless k± = 0 (mod N ) ,  

F~ = z-'~k'k~F_k, 

Fk'l'k = Fk'+kZ ~k' 'k>-~k' 'k ' .  
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(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

In these equations, the notation k'~ = k_ (rood N) means n,' = nl (mod N) and n : - '  - 
n2 (mod N). Furthermore, the bilinear forms (k', k) and (k', k) are defined by 

( k ' ,  k )  = n'~ nl + n'2n: + ( n'~ + n'2)( n~ + n2) , (5.19) 

(k ' ,  k)  = n ; n 2 -  n'2nl . (5.20) 

Note that in view of eq. (5.14), there are exactly N 2 distinct Fk. Also, one easily 
deduces from eqs. (5.15)-(5.18) that 

I T r ( F k , F k ) = J ' l  i f k ' ,= k ~  ( m o d N )  (5.21) 
N [0 otherwise, 

which implies that the Fk form an orthonormal basis in the space of all complex 
N × N matrices. 

After these lengthy preparations, we can now write down the Fourier representa- 
tion, replacing eq. (2.7), of the gauge potential: 

f "/" dko dk~ 
A,. , (x)  = (L2N) - '  ~ - e'k~Fk e'k,'"/2.4,~(k) (5.22) 

k, a -~ /a  20" 277" 

The transverse momentum components are here summed over the discrete values 
(5.11) in the Brillouin zone. An interesting aspect of eq. (5.22) is that the color 
degrees of freedom of A , ( x )  are transformed into momentum degrees of freedom 
(note that as compared to a tube with ordinary periodic boundary conditions, the 
total number of possible values of transverse momentum is enlarged by a factor of 
N2). Using the properties of the Fk listed above, eq. (5.6) translates to the following 
conditions on the Fourier amplitude ,4,,(k): 

,4~, ( k )* = -- Z~k'k~/2,4~, ( - - k  ) , (5.23) 

, ~ , ( k ) = 0  i fk  = 0 ( m o d N ) .  (5.24) 

Correspondingly, the (free) gluon propagator is written as 

(,4~,(k),4~(p))e~,=o = 6(k ,  - p )  e'lk~+P~)'~/2(--~z-'~k'/2)xkD,,, ,(k), (5.25) 

where 8 ( k ' ,  k )  and Xk are defined by 

8 ( k ' ,  k )  = L 2 Nfn i , ,  6,~,~(20")28(k6 - ko) 8( k ~ - k 0 ,  (5.26) 

{~ i f k ± = 0 ( m o d N )  
Xk = otherwise. (5.27) 
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(the 6-functions in eq. (5.26) should be interpreted as periodically extended, if k' 
and k are not in the same Brillouin zone). The propagator function D~,,.(k) is real 
and must be worked out from the given action and the gauge fixing condition. For 
the Coulomb gauge (5.8) and for small lattice spacings we have the familiar 
expressions 

1 
Doo(k) = k-5, Dos = Dso = 0,  (5.28) 

Do(k) = 6 o - k2 ] .  (5.29) 

All the considerations in sect. 3 on the gluon vertices go through unaltered, in 
particular, the reduced vertex functions Y~(k~, tz~; . . .  ; k,, IZr) are the same as those 
appearing in the infinite-volume case (eq. (3.20)). The only minor change is in the 
Clebsch-Gordan coefficients Cr (eq. (3.16)), which here become 

C,(k ,  . . . .  , k,) = l { T r  (l'k, - . .  F k , ) + ( - l ) ' T r ( F k . . . .  l'k,)}. (5.30) 

From eqs. (5.15)-(5.18), an explicit formula for Cr can be worked out and one finds 
in particular that 

C , ( k ~ , . . . , k , ) = O  unless (Y. k,)± = 0 (rood N ) .  (5.31) 

Actually, this result is a consequence of the invariance of the action under the group 
of transformations, isomorphi9 to ZN x ~'N, generated by 

U(x, l z ) ~ g 2 v U ( x , ~ ) f 2 ~  ~ for all x, ~ .  (5.32) 

Together with translation invariance, it implies total momentum conservation 
(modulo 2¢r/a) at each vertex. Note that the transformation (5.32) is not a gauge 
transformation, because A ( x ) =  fL  does not satisfy the periodicity condition (5.3). 

With all the ingredients ready, the perturbation expansion of the n-point correla- 
tion functions of ,2,,,(k) in terms of Feynman diagrams is derived as usual and we 
shall therefore not go into further details here. An important property of the resulting 
Feynman integrands is that they are completely regular, because the singularity at 
k = 0 of the propagator function Du~(k) is outside the range of possible momenta 
(cf. eqs. (5.24)-(5.29)). The physical significance of this observation becomes clear 
if we look for the poles of the propagator in the complex energy plane. For small 
lattice spacings, they are at 

I% = + i4k~ + kZ3 + O(a 2) (5.33) 

and since k] i> m 2, it follows that the spectrum of the transfer matrix has a (mass) 
gap. We see therefore that the twisted compact dimensions make the theory massive 
in perturbation theory and thus provide for an infrared cutoff. 
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Starting from eq. (5.33), the particle spectrum of the theory can be worked out 
and scattering processes can be studied in perturbation theory (ref. [ 1] and sect. 7). 

We emphasize that these excitations are truly physical in the sense that they can be 
created from the ground state by applying gauge invariant operators, which are 
local in xo and x3. In particular, their properties could also be studied by the strong 
coupling expansion and the Monte Carlo simulation method. For the latter it is 
more convenient to use a formulation of twisted periodic boundary conditions, where 
the .O,'s do not appear explicitly and the twist is taken into account by a change of the 
action (cf. appendix B). 

5.2. SYMMETRY PROPERTIES OF THE n-POINT FUNCTIONS 

Due to the asymmetric shape of the twisted tube, the cubical symmetry of the 
infinite lattice ~,4 is broken down to a smaller group of symmetries, which is generated 
by the following transformations: 

(1) reflection of xo. 
(2) interchange of Xo and x3. 
(3) reflection of x~. 
(4) interchange of xt and x~. 
For the symmetries (1) and (2), the associated transformation law for the link 

variables U(x ,  tz) is the ordinary one, which amounts to 

,4~,(k)-~. .  Rt~ ,~A.(R")k) ,  (i = 1, 2).  (5.34) 
i ,  

where R ~i~ denotes the orthogonal matrix belonging to the transformation (i). The - - / a t ,  

n-point correlation functions of ,4~,(k) are invariant under (5.34), provided this 
transformation is a symmetry of the action and the gauge fixing condition (as is 
usually the case). 

For the transformations (3) and (4), the situation is more complicated, because 
they tend to conflict with the twisted periodicity (5.1) of the gauge fields, which 
must also be respected by a valid symmetry operation. However, as will be shown 
in detail below, the transformations (3) and (4) give rise to symmetries of the gauge 
theory too, provided they are combined with a charge conjugation. The correspond- 
ing transformation laws then read 

- R(3),~ (R(3)k), .4 , , (k) - ->-z  ","2 E _.~, . . . . . . . . . .  , (5.35) 
l ,  

,4~, (k) -~ - E  R '2~),4~ (R'4)k) (5.36) 
v 

(in eq. (5.35), the integers n, are defined by n, = k , / m ) .  
We now proceed to derive the transformation law (5.35) (the derivation of (5.36) 

is similar and will be omitted). To this end, first note that the pair of matrices 

6~ = (I2~-')*, fi2 = zf2*, (5.37) 
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also satisfies the twist algebra (5.2) and is hence unitarily equivalent to the I'/~'s, i.e. 
there exists W e  SU(N)  such that 

I2,,= WgT~W- ' ,  ( v =  1,2) .  (5.38) 

Next, given a field U(x ,  Ix) e ~//~, we define the transformed field U(x, IX) by 

U(x, IX) = W U ( x ' , I X ) * W  -1 i f # @  1, 

U(x,  Ix) = W U ( x ' - a # 2 ,  I x ) r w - '  ifl.t = 1, (5.39) 

where U r denotes the transpose of U and x' is defined by 

x ' = RC3)x = ( Xo, - x .  x2 ,  x3)  • (5.40) 

The transformation (5.39) is the product of three operations, namely a reflection of 
x~, a charge conjugation and a constant color rotation. These are usually symmetries 
of the action and it is also not difficult to check that U(x, Ix) is again twisted periodic 
so that altogether we have found a symmetry of the functional integral. The transfor- 
mation law (5.35) is now obtained by working out the Fourier transform of  the 
gauge potential /i~,(x) associated with U(x ,  Ix), using 

WF~< k' W - l  = z -  ' q - "~Fk  , (5.41) 

which follows from eqs. (5.37), (5.38) and the definition of Fk (eq. (5.12)). 

5.3. NUMERICAL EVALUATION OF INTEGRALS OF PERIODIC ANALYTIC FUNCTIONS 

AS mentioned previously, due to the presence of the mass gap, the integrals over 
loop momenta ko, k3 encountered in Feynman diagrams are integrals of periodic 
analytic functions. We shall consider below how such integrals can be numerically 
well approximated by appropriate sums. In particular, we will discuss the special 
refinements that have to be made in order to obtain sufficiently accurate results with 
modest computational effort, in situations when the mass gap is small. 

For simplicity, we here only discuss how to integrate a periodic analytic function 
f ( k )  of a single variable k~R.  Multiple integrals can be treated similarly, in 
particular, in our calculation of the improved action, we have merely iterated the 
procedure described below. Our aim is thus to calculate the integral 

¢ = k),  f (k  + 2,~) - - f (k) ,  (5.42) 

assuming that a subprogram exists, which computes f ( k )  for given k. The basic idea 
is to approximate ~ by the finite sums 

' 
I(T)=-~,,~, \ T  ,#' 
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For ordinary integrands, this method is not very efficient, but in our case, I ( T )  
converges exponentially fast as T~oo .  More precisely, we have 

I ( T )  = ~ + O(e-~T),  (5.44) 

where e is the absolute value of the imaginary part of  the singularity o f f ( k )  closest 
to the real axis. Eq. (5.44) is an easy consequence of contour integration and the 

representation 

r "  dk 
I ( T ) = J + 2  / - - c o s  ( n k T ) f ( k )  (5.45) 

,=~z" .1_,, 27r 

which follows from the Poisson summation formula. 
In various l- loop diagrams (especially if the mass gap is small) one encounters 

situations in which e is nearly zero. In such cases the rate of  convergence can be 
drastically increased by making an appropriate change of variable, which maintains 

periodicity and moves the dominant pole away from the real axis. For example, if 
f ( k )  has a peak around k = 0 due to a pole at k = ie, e small, one could try 

with 

k = k ' -  a sin k ' ,  (5.46) 

0<~ ct(e) < 1 (5.47) 

and a chosen close to 1 such as to move the singularity optimally away from the 
real axis in the k'  plane. Then, we have 

with 

I "  dk 'A  , 
= - , -~--~f(k  ) ,  (5.48) 

f ( k ' )  = (l - a  cos k ' ) f ( k ( k ' ) ) ,  (5.49) 

and the corresponding approximations 

i(r) =~.=, \ T  / (5.50) 

converge significantly more rapidly to J than I (T ) ,  viz. 

I ( T )  = p + O ( e - ; r ) ,  ~ = O ( 1 ) .  (5.51) 

For the diagrams, which we have calculated, the rate of  convergence achieved in 
this way typically was such that T = 32 was sufficient to obtain a relative accuracy 
of 14 digits. We finally note that since the convergence is known to be exponential,  
it is possible to control the error 1 ~ -  I (T) I  by also calculating smaller sums, e.g. 
I ( T / 2 )  and I ( T / 4 ) ,  and fitting the results with a constant plus exponential.  
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6. Asymptotic behaviour of Feynman diagrams for small lattice spacings and associated 
extrapolation procedures 

6.1. ASYMPTOTIC BEHAVIOUR OF FINITE MOMENTUM SUMS 

We here give a rigorous proof  of the basic expansion (1.1) for a class of  one-loop 
diagrams on finite lattices with periodic boundary conditions. Our objective is not 
so much to obtain the most general result, but to illustrate a strategy of proof, which 
appears to be more widely applicable. In particular, the proof  can be easily adapted 
to the case of  the partially compactified twisted lattice of  sect. 5. 

On a 4-dimensional L x L x L x L hypercubic lattice with periodic boundary 

conditions, the possible values of  momentum are" 

27r 
k=-~- -v ,  vEZ 4, -rr/a<k~,<~Tr/a. (6.1) 

In the absence of masses and for vanishing external momenta,  one-loop diagrams 
on this lattice assume the general form 

D ( f )  = L -4 • a~f(ak) ,  (6.2) 
k ~ - O  

where (5 denotes the engineering dimension of  the Feynman integrand and the 

summation is over the range (6.1). A simple example for the integrand is 

a~f(ak) = I~1 - ~  , (6.3) 

with/~ given by eq. (2.10). In general we expect that f ( q )  has a singularity at q = 0, 

but is otherwise regular. More precisely, we shall assume that 
(a) f ( q )  is periodic with period 27r in all momentum components,  i.e. if q~, = 

q~,(mod 2zr), then f (q ' )  = f ( q ) ;  
(b) f ( q )  is C °o for q (mod 27r) g 0; 
(c) The structure of  the singularity o f f ( q )  at q = 0  is such that the function 

f(K, n) = r~f(Kn), 

initially defined for 0 <  r ~< 7r and n E S 3, extends to a C ° function for all 
K e [0, ~r] (and all unit vectors n). Moreover,  the Taylor coefficients o f f  at 
K = 0 are polynomials of  n. 

Functions f ( q )  having these properties are later referred to as elements of  the 
class ~ .  According to property (c), every f E  ~ may be expanded around q = 0 in 

a series of  the form 

f(•n) ~ K -~ ~ K"P, , (n) ,  (6.4) 
~t ~ O rtl = O 

where the P,~'s are polynomials of  the unit vector n. 

" L has physical units with L/a  being an integer. 
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The main result of this section is now summarized by the following 

Theorem. For any f s  ~6 we have 

D(f) ~ a~-4[A+BIn(a/L)]+L ~-" ~ am(a/L) m, (6.5) 
a~O m 0 

where the 6oetticients A, B and a,, are independent of L. Furthermore, B = 0 if 
8 # 4 , 5 , 6 , . . . .  

For actual Feynman diagrams, 8 is always integer in which case the expansion 
(6.5) does indeed assume the general form (1.1). Note also that for superficially 
divergent diagrams (i.e. if 8 < 4), B vanishes and A is simply given by 

A =  [ '~ daq (6.6) 
_,~ (27r) " f (q)  " J 

Thus, a possible application of the theorem is to calculate integrals of  the type (6.6) 
by evaluating the finite sums D(f) for a range of  lattice spacings and extrapolating 
to the limit a ~ 0 using the method of subsect. 6.2. 

We now turn to the proof  of the theorem. First, we simplify our notation by 
observing that apart from an explicit factor a m, the dependence of D(f) on the 
lattice spacing is only through the combination a~ L. The limit a ~ 0 at fixed L is 
therefore equivalent to L ~  oo at fixed a. Taking the latter point of  view, we may 
choose units such that a = 1. L is then an integer and (6.1), (6.2) and (6.5) become 

2~r 
k=--~v,  z, EZ 4, -½L<v~,<~L, (6.7) 

D(f) = L -4 Z f ( k ) ,  (6.8) 
k~O 

D(f) ~ A -  B In L+ L ~-4 ~ a,,L -m. (6.9) 
L~oo rn=0 

The proof  of  eq. (6.9) given below proceeds in three steps. First, by a partition of  
unity, the momentum cutoff implied by the Brillouin zone is replaced by a smooth 
cutoff function h(k). In the second step, the integrand f (k)  is expanded according 
to eq. (6.4) and the cutoff function h is replaced by a gaussian cutoff in each 
term. After that one is left with a set of momentum sums, whose integrands are 
analytically given and which are sufficiently simple to be tractable by ordinary 
techniques such as the Feynman parameter representation and the Poisson summa- 
tion formula. 

Suppose h(k) is a C ~ function of k e R  4 such that 0~<h~ < 1 and 

10 if[k{ ~< -~r 
h ( k ) =  iflkj~>½~r" (6.10) 
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We then split the sum D(f)  into two parts according to 

D(f)  = D~(f) + D2(f),  (6.11) 

D,(f)  = L -4 ~. h(k) f (k ) ,  (6.12) 
k # O  

D2(f)=L-" E ( 1 - h ( k ) ) f ( k ) .  (6.13) 
k ~ 0  

The following lemma, which is proved in appendix C, may now be applied to 
the second part D2(f).  

Let g ~ ~ ,  and a < 4 -  2j for some integer j with j /> 3. Then, for Lemma 6. I. 
L--~ oc we have 

f ~ d4k  
O(g) = J_,  ~ g ( k ) +  O( L-2S) . (6.14) 

Because the function g = ( 1 -  h)f  vanishes identically in a whole neighborhood of 
k = 0, it is an element of  ~ for every a. It follows that D2(f) = D(g) only contributes 
to the coel~cient A in the large-L expansion and all the non-trivial terms in (6.9) 

must therefore come from the first part D~(f). 

For the further analysis of  D j ( f )  we now make use of  the expansion (6.4). Define 

polynomials Q,,(n) through 

1 c3" 
Qm(n)-  m! r)K '~ {e~2Ksf(Kn)}~=° (6.15) 

(the use of  the factor e K2 will become clear soon). Furthermore, set 

fm(k)=e-k2lkl~"-~Qm(k/Ikl), ( k # 0 ) ,  (6.16) 

gM(k)=h(k) f ( k ) -  , (Ik.l~ 7r). (6.17) 

Note that gM vanishes identically for Ikl ~½~r so that we may periodically extend 
gM to all k e R 4, excluding of course the singular points k (mod 21r) = 0. From the 

definition (6.17) (and Taylor 's  theorem) we infer that gu  e @~-M-t. Provided M is 
large enough, lemma 1 therefore applies to gM and we conclude that for L ~ oo 

M 

D r ( f ) =  E D(hfm)+const+O(L6-~a-3) . (6.18) 
m = 0  

At this stage, the cutoff function h may be removed again. To this end, first note 
that hf,, vanishes for Ikl/> ~Tr so that we are free to extend the summations over k 
to all k # 0 of the form k,= 2zrv/L, v ~ Z 4. This is indicated symbolically by writing 

1 oo 
D(hfm) = D°~(hf,,) =-~ k,~'o h(k)f , ,(k).  (6.19) 
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Next, we observe that (1 - h)f, ,  is a C ~ function, which together with its derivatives 
is rapidly falling off at infinity. As in the proof  of lemma 1, it may be shown that 
these properties imply 

D~((1 - h)f , , )  = const + O(L-P) ,  (6.20) 

for any power p. It follows that 

D( hf,.) = D~( f , , )  + const + O( L-P) . (6.21) 

Summarizing the results obtained so far, we have for any fixed large M and L ~ 

M 

D ( f ) =  ~ D ° ~ ( f , , ) + c o n s t + O ( L  ~ M-3)). (6.22) 
m=O 

We now proceed to prove that an expansion of the form (6.9) holds for each of  
the sums D ~ ( f , . )  individually. This will be achieved by a somewhat lengthy series 
of simple analytic manipulations. 

We first remark that because of reflection symmetry, the polynomials Q,, may be 
replaced by 

(~.,(n) = ~{Q.,(n) + Q, . ( -n)}  (6.23) 

without changing the value of D~( f , . ) .  Next, let q,. denote an integer such that 

2q, .>  m - 8  

and such that 2q,. is also larger than the degree of (~,. (in particular, q,./> 1). Define 

H,.( k ) = [kl2~mO.,( k/[k[) , (6.24) 

a, .=q, , ,  + ~ ( 8 - m ) .  (6.25) 

By construction, H,. is a homogeneous polynomial of k of degree 2q,.. Furthermore, 
we have 

D~,(f,,,) = ~1 ~ ik[_2,.,,,H,,,(k ) e_k ~ . (6.26) 
k ~ o  

To obtain a more tractable expression, set 

x = (27r/L) 2 , (6.27) 

F , , (z )=(2~ ' )  -4 Z H,,(u) e-z" ' ,  ( z > 0 ) .  (6.28) 
~ Z  a 

Then, eq. (6.26) may be rewritten in the form 

fo D~(f,,,)=x_~(~_4_,~ ~ 1 d t t~  _~F. , ( t+x  ) (6.29) 
F(  otm) 
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(note that for x > 0 the integral is absolutely convergent, because a,,  > 0 and because 
Fm is a C ~ function, which is exponentially decaying at infinity). A good feature 
of  this representation of D~(f,~) is that L enters only through the variable x, in 
particular, the function F,, is independent of  L. 

We now split D~(f,,) into two parts according to 

D~,(f,.) = x_~,_ , , . , 1 {  l,(x) + 12(x)} , (6.30) 
F(,~,.) 

fO I l l (x)  : d t t " ' - ' F , . ( t + x ) ,  (6.31) 

I 
oc 

12(x) = dtt'~m-tF,,,(t+x). (6.32) 
I 

Because Fro(z) and its derivatives are exponentially decaying at infinity, the integral 
12 is a C ~ function of x for x > - 1. In particular, it may be expanded in an asymptotic 
power series at x = 0. It follows that the contribution of I2 to D~(fm) has a large-L 
expansion of  the form (6.9) with A -- B = 0. 

To expand I~, we need the following lemma, which is proved in appendix D. 

Lemma 6.2. There exists a constant C,, such that the function ,~,~ defined by 

F,,(z)= F, , (z)-C, ,z  -q°,-2 , ( z > 0 ) ,  (6.33) 

extends to a C ~° function for 0 ~ z < ce. 

Inserting (6.33) into the definition (6.31), we have 

I,(x)=Cm dtff ' ' - l( t+x)-q'~-2+ll(x) , (6.34) 
) 

where l~(x) is C ~ for x/> 0 and can therefore be expanded in an asymptotic power 
series as x ~ 0. Finally, to expand the explicit integral in eq. (6.34), we substitute 
t= x /s  and obtain the following contribution to D~(fm): 

F(otm) dss-~(o-2-")(l+s) -qm-2 (6.35) 

For small s, the integrand can be expanded in a convergent power series and this 
quickly translates into a small-x expansion of the form (6.9). In particular, a 
logarithm is obtained if and only if 8 - 2 -  m is a positive even integer. Summing 
up, we have thus shown that D~(f,,) has a large-L expansion of the proposed form. 

The proof  of  the theorem is now completed by remarking that via eq. (6.22), the 
expandabili ty of  D°~(f,,) implies the validity of  (6.9) up to terms of order L ~-M-3. 
Since M may be chosen arbitrarily large, the expansion in fact holds to all orders. 
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6.2. EXTRAPOLATION OF LATTICE FEYNMAN GRAPHS 

In the preceding subsection we have shown, for a class of  one-loop Feynman 
diagrams, that as the lattice spacing tends to zero, one has an asymptotic expansion 
of the form 

D(a)  ~ a -'° ~ a"[c,o+Cnl In a ] .  (6.36) 
a ~ O  n-~O 

We here discuss the question of how to extract the first few coefficients cm, when 

D(a)  is known for a sequence of lattice spacings at, lmi. ~< I <~ lmax. In order to keep 
the presentation of our method as transparent as possible, we shall make a few 
simplifying assumptions. First, the lattice spacings at are taken to be inversely 

pr6portional to I, i.e. 

at = 1/Izl .  (6.37) 

Secondly, we assume that only even powers of  a occur in the expansion (6.36) and 

that the leading coefficients Cot and c2, of  the logarithmic terms are already known 
analytically. Actually, for the sum of diagrams which one needs to calculate for 
improvement,  both conditions are met, in particular, Co, is proportional to the first 
coefficient of  the Callan-Symanzik B-function and co2 vanishes because of tree 

improvement.  
We now proceed to describe how to determine the leading coefficient Coo accurately 

and how to control the rounding and systematical errors along the way. The extension 
of  the method to subleading coefficients is trivial and will not be discussed any 
further. Using (6.37), we can define the dimensionless auxiliary function 

f o ( l )  = {a ' [D(a)+(Co ,  + a2c2,)  In I]} . . . .  (6.38) 

in terms of which the expansion (6.36) reads 

fo( l )  - A o + A f f l 2 +  ~ ( A n + B ,  In t ) / t  2", (6.39) 
l ~ o c  n ~2  

Ao = co~)- Col In # .  (6.40) 

A first approximation to the desired coefficient Ao would thus simply be 

Ao-=- fo(lm~,x). (6.41) 

However, since a range of values of  ! is available, we can do better by defining 

an " improved"  auxiliary function f t ( l )  through 

f , ( l )  ( I+8°)2fo(I+8o1 ( I - 8 ° ) 2  
48ol 48o-----i- fo( I - 8o), (6.42) 

where 80 is an integer parameter,  typically 80 = 1 or 2. Then, f~ has an expansion 
of  the form (6.39) with Ao as before and A t missing, f~ is therefore more rapidly 
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converging as I--} oo and one expects that fm(lm~x-80) is a better approximation to 
Ao than the estimate (6.41) (note that fro(I) is only defined for lm~n + 80 <~ I <~ lm~x- 

8o). 
The "blocking" transformation leading from the initial function fo to the improved 

function ft can be iterated and one obtains in this way a sequence of functions f, 
such that 

f . ( l ) = A o + O ( l - 2 ' - 2 ) ,  i = 0 ,  1 , 2 , . . . .  (6.43) 

Actually, because of the logarithmic terms in eq. (6.39), the transformation f~-~f., 
is a bit more complicated for i >/1 than for i = 0, namely 

f ,  ~(I) = wtf . ( l  + 8,) + w2f.(l) + wsf.( I - 8 , ) ,  (6.44) 

w l = v J ( v l + v 2 + v 3 ) ,  ( j =  1 ,2 ,3 ) ,  (6.45) 

vl = (I + 8,)2'+2 In (1 - 8 , / I ) ,  (6.46) 

v2 = I2'+2[1n ( 1 + 8 , / I )  - In ( 1 - 8 , / I  ) ] ,  (6.47) 

v3 = - ( I  - 8i) 2~+2 in (1 + 8 , / I ) .  (6.48) 

At each step, 8, can be chosen freely and the range of values o f / ,  where the new 
function is defined, shrinks. After a few iterations, further blocking is therefore 
often useless, because the available range of I is too small to observe the convergence 
of the improved function f.+~. 

To derive a reliable stopping criterion for the iteration described above, we need 
an estimate for the "systematical error" 

s,( I ) = If,(I) - A,,I/IAol . (6.49) 

To this end, we fit f, with the function 

f , ( l )  = a + ( f l +  3' In l ) / l  2'+2 (6.50) 

by minimizing the quadratic form 

E l " + s [ f , ( l ) - ~ ( l ) ]  2 , (6.51) 
I 

with respect to the parameters a,/3 and 3'. Of course, the fit function ~ is motivated 
by the large-/ expansion of f~(l) and the weight in (6.51) is chosen such as to 
minimize the effects of possible higher terms. Having determined a, /3 and 7, the 
systematical error is estimated by 

s , ( t ) ~  ~,( t ) / l f . ( 1 ) l  , 

]'1/3 + 3' In t l / t  2'+2 
e,( l )  

t m a x  (I/31, 13'1 In t ) / t  : '~: 

(6.52) 

if y / f l  >! 0 
(6.53) 

i f y / f l<~0 .  
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This formula avoids underestimating the error in case /3 + ~ In I happens to go 
through zero in or near the range of available values o f / .  Before the systematical 
error determined in this way can be taken seriously, a test of  the quality of  the fit 

o f f  should be made. This is in general a rather subjective affair. Our criterion was 

to accept the fit if 

If,(/) -~ ( l ) l / l~ , ( t ) l  < e t ~ . x l t  2 . (6.54) 

where (say) E =0.1. If  (6.54) was not satisfied, the systematic error was taken to be 

unestimable and f would then not be used to determine Ao. 
So far we have assumed that the functions f are known with infinite numerical 

precision. Of  course, since f is calculated on a digital computer,  this is not actually 
the case, i.e. the computer  approximates f ( l )  by some number  f , ( l )  with a finite 
number  of  digits. If  one uses 64 bit precision, the error 

eo( I )  : (fo( #) - fo(  t ) ) /  fo(  l )  (6.55) 

of  the initial data can be rather small, e.g. leo[ ~< 10 -~4. Hoffever, through the blocking 
transformation the errors e~(l) of  the improved auxiliary functions f tend to increase 
significantly, a fact, which turns out to be one of the limiting factors to our method. 
To understand how these numerical errors evolve, we assume that the errors eo( l )  

are random numbers with a gaussian distribution of variance 

(eo( l )eo(  l ' ) )  = ~,rro( l )  ~ , (6.56) 

where ro( l )  is known. Because the blocking transformation is linear, it follows that 
the errors e~(l )  are also distributed according to a gaussian and the matrix 

(e~(l)e , ( l ' ) )  can be calculated recursively. In particular, we may define 

r,( l ) = (e , (1 )e , (  l ) )  ~/z , (6.57) 

which is a realistic estimate for the numerical precision o f f ( ! ) .  It is our experience 
that with each blocking step, the significance loss thus determined is about 1 to 2 
decimal places, slightly depending on the choice of  the parameters 6,. 

As a result of  the error discussion, the best possible estimate for Ao may now be 
obtained by setting 

A o ~ - f . ( l * ) ,  (6.58) 

where i* and I* are chosen such as to minimize the total error. In addition, the 
(relative) precision of the estimate (6.58) can be predicted to be better than 

s,.( l * )  + r~.( I*)  . (6.59) 

We have tested our extrapolation procedure in various cases where Ao was known 
beforehand,  for example by evaluating the diagrams directly in the continuum using 
dimensional regularization. In all cases, the error estimates were shown to be realistic 
(or even conservative), thus confirming our expectation that the method works 
reliably indeed. 
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7. Calculation of Symanzik's improved action Ill 

The purpose of the present section is mainly to illustrate how the techniques 
introduced in this paper fit together in a concrete case. Besides that we want to 
provide further details on the calculation outlined in ref. [1]. In order to avoid 
unnecessary repetitions, we shall here assume that the reader is familiar with ref. [ 1 ], 
in particular, the notations of that paper on the improved action, the improvement 
coefficients cs(gg), etc. are taken over. 

7.1. G A U G E  F I X I N G  A N D  T H E  P O L E  S T R U C T U R E  O F  T H E  P R O P A G A T O R  

As explained in ref. [1], the calculation of the coefficients cs(gg) in perturbation 
theory proceeds by evaluating two on-shell quantities in the twisted world of sect. 5 
and requiring the absence of O(a 2) scaling violation terms. These on-shell quantities 
can be defined using gauge invariant (composite) interpolating fields (see sub- 
sect. 7.2) and the choice of  gauge one makes to perform the calculation is therefore 
of only practical importance. A convenient choice is e.g. the modified Coulomb 
gauge condition 

3 
6*A, (x )=O,  (7.1) 

S=l 

-c2 )(OoOo+Os Os)+a c2 (7.2) 

In momentum space, eq. (7.1) becomes 

3 

.So,(k)/~.~s(k) = 0 ,  (7.3) 
S=l 

where the tensor %,~(k) is defined through 

_2,_to, _(o,x,,?2 . / ~ )  a2c~O)f¢2 (7.4) s , , , . ( k ) = l - u  ~ct - c2  )~n~,-~ - 

This tensor also appears in the action, namely [14] 

[ ,~/a dko dk3 1 ^ - 
Sl,o o:(L2 ) ' • j_,,/a 2¢r 2~r 2..~ ~ s""(k)lf~"'4~(k)-k~A"(k)12 (7.5) 

and the gauge condition (7.3) therefore implies the decoupling of the "static" 

potential Ao from the transverse components As at go = 0. For the propagator function 
D. . (k )  defined in sect. 5, we thus have 

Do,(k) = Dso(k) = 0,  (i-- 1 ,2 ,3 ) ,  (7.6) 

Doo(k) = ( ,~,  So,(k)/~) - '  (7.7) 
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The other components are more complicated a~d explicit formulae are therefore 
deferred to appendix E. Here we only note that 

Do(k) : Doo(k)P,j(fc)/Q(f~), (7.8) 

where P,j and Q are polynomials in /~0 of degree 8 and 10 respectively. 
In what follows, we assume that the coetficients ct~ °) are such that s~,,(k) is positive 

for all k and # # p. This insures the stability of the action (7.5) and is true for the 
values of ct~ °) and c~ °), which are later found to be necessary for improvement. With 
this proviso, it is easy to show that the gauge fixing condition (7.1) is admissible in 
the sense of sect. 4 and the derivation of the Faddeev-Popov determinant given there 
therefore carries over to the present case. In particular, the Faddeev-Popov operator 
is given by 

{ adq~(x) + adqi(x)} (7.9) 
AFp=--,~,~ a~ l - e x p [ - A d q , ( x ) ]  O' 

where qi(x)= goaA,(x). As already mentioned in sect. 5, the corresponding ghost 
fields are twisted periodic and from eq. (7.9) the Faddeev-Popov propagator is easily 
found to be equal to Doo(k). 

The stability of the action (7.5) also implies that the polynomial Q(/~) is positive 
for rea l /~# 0. The only singularities of the propagator D~,v(k) in the Brillouin zone 
are therefore at k =0  (from the vanishing of Q) and at k =0  (from Doo(k)). These 
latter singularities also occur in the ghost field propagator and are special to our 
choice of  gauge. Since k --- 0 is excluded by the quantization of transverse momentum, 
the Feynman integrands actually encountered are completely regular as discussed 
in sect. 5. 

For the physical interpretation of  the theory, the poles of D~,~(k) with complex 
ko and real k are relevant. Because D~(k) is even under ko~ -ko, such poles come 
in pairs with opposite signs of ko. There are exactly 5 pairs stemming from the zeros 
of Q(/~) plus one additional pair from Doo(k). For small lattice spacings, two pairs 
converge to the relativistic locus 

ko = ±ilkl , (7.10) 

and the other poles move to infinity, i.e. the associated energies are of the order of 
the cutoff: 

lm ko= O ( 1 / a ) .  (7.11) 

This behaviour is illustrated by fig. 1, where the energy momentum relations corre- 
sponding to the 6 pairs of  poles of  D,,~(k) are plotted for kl = k2, k3 = 0. Elsewhere 
in the 3-dimensional Brillouin zone the situation looks similar, in particular, the 
unphysical branches (those which are not approximately of the form (7.10)) are 
always far up in energy. Note that the physical branches closely follow the relativistic 
dispersion (7.10) up to rather large momenta (Ik]<~ 7r/2a). This is partly due to 
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I I 
~ / 2a  T~/a 

I-fl 

I I 

a 

Im ko 

1 

Fig. 1. Gluon energy-momentum dispersion along the line k~ = k2, k 3 = 0 for the tree-level improved 
action (c~ °~= -~ , ,  c~ °~ =0) .  The top level is doubly degenerate and all other levels to the left of  the 
bifurcation points are not degenerate. All of  them are purely imaginary, i.e. Re k o = 0. The branches to 

the right of  the bifurcation points represent complex energies (Re k o ~ 0). 

tree-level improvement as can be seen by comparing with the Wilson action, where 
the energy-momentum relation starts to deviate from the relativistic formula already 
at Ikl~-~r/4a. We finally observe that the two physical branches correspond to 
different (transversal) polarizations of the gluon. At tree level they are not exactly 
degenerate because of O(a 4) scaling violation terms and at higher orders the 
degeneracy is completely lifted by the asymmetry of the lattice. 

If we now take into account that the transverse momentum components kl and 
k2 are quantized, we see that the energies k0 associated with the poles of D~,v(k) 

cannot be arbitrarily close to zero. The family of poles with smallest energy is given 
by 

2~r 
k~+ k 2 = m 2 , m - 

L N '  

ko = ± ix/m 2 + k] + O(a2) , (7.12) 

i.e. these are the poles with the smallest amount of momentum in the transverse 
directions. As explained above, for each of these poles there are two possible 
polarizations. They can be distinguished by their parity under reflections of kl (or 
k2). To see this, take for example k~ = 0, k 2 = m. Then, ,g,~(k) is even under a reflection 
(5.35) of  kl and the other components ,42(k) and ,43(k) are odd. Correspondingly, 
one of the poles occurs in the ,~l(k) propagator and the other in the propagator of  
,42(k) and ,43(k) (note that because of the gauge condition (7.3), these latter field 
components are linearly dependent so that there is only one degree of freedom 



M. Liischer, P. Weisz / Lattice gauge theory computations 345 

associated to them). These symmetry considerations are also valid at higher orders 
of perturbation theory and the lowest-lying poles of the full gluon propagator can 
therefore be unambiguously identified by specifying the momentum k, the sign of 
lm ko and the parity of  the interpolating field under an appropriate reflection. 
Similarly, the next to lowest-lying poles (those with Iktl =fk21 = m) can also be 
completely characterized by conserved quantum numbers. 

7.2. PHYSICAL SIGNIFICANCE OF THE LOW-LYING POLES OF THE GLUON PROPAGATOR 

The physical interpretation of euclidean lattice gauge theories rests on the con- 
struction of a Hilb.ert space of  physical states and the transfer matrix as described 
in detail for improved lattice gauge theories in ref. [15]. The aim of the following 
discussion is to show that the poles (7.12) (and similarly the other poles of the 
propagator) are related to eigenvalues e -°" of  the transfer matrix through the familiar 
formula 

to = a[Im ko[. (7.13) 

This implies that although the gluon propagator is gauge variant, its low-lying poles 
are associated with gauge invariant eigenstates of the transfer matrix and may 
therefore be interpreted as physical one-particles states. In fact, with little more 
work, the Hilbert space of  physical states at go = 0 can be identified with a Fock 
space of an infinite tower of free particles as described in ref. [1]. 

To establish (7.13) it is sut~cient to construct, for each of the poles (7.12), a gauge 
invariant field ~k(Xo), which is composed from the link variables U ( x , j )  at a fixed 
time Xo and which satisfies 

(~'k(Xo)*(f~k(O))lgo=O xoO~c~ e -x°llmk°l . (7 .14)  

As an example, consider the case with k~ = 0, k2 = m and positive parity as explained 
above. Define a gauge invariant composite field ~(Xo, x2, x3) through 

¢(Xo, X2, X3)=lTr{ FI, II U(x, 1) / , (7.15) 
go o~x,<L 

which is just a Wilson loop winding around the twisted tube (in eq. (7.15), the 
matrix ~ is needed to make the loop invariant under the gauge transformations 
(5.3)). Because of  twisted periodicity, we have 

~(Xo, x2 + L, x3) = z~(Xo, x2, x3), (7.16) 

so that the Fourier transform 

~Tk(Xo) = a 2 Y. e-itk2x2+k3%)~P(Xo, X2, X3) (7.17) 
x2,x3 
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is well-defined. Noting -O1 = F~, it is easy to show that 

f, rrla A~ 
= J_.,. e"o'oa,(.o, 

and the exponential decay (7.14) of  the correlation function of Ck(xo) thus follows 
from the residue theorem. 

When the gauge coupling go is turned on, the full gluon propagator  not only has 
poles but also a cut in the complex ko-plane, which comes from 2-particle intermedi- 
~tte states ai~l which therefore starts at about ko = +i 2m. The stable physical particles 

in the theory are thus the A-mesons, which correspond to the lowest-lying poles 
(7.12), and the B-mesons, which belong to the poles with Ik,I --Ik~[ = m. In addition, 
there may be some poles just below the 2-particle threshold. As for go = 0, the gauge 
invariant field defined above may be taken as an interpolating field for a positive 
parity A-meson, and similar composite fields exist for the other A-mesons and the 
B-mesons. Because these fields are local in xo and x3, an LSZ scattering theory can 
be formulated for them and a sensible definition of the scattering matrix for scattering 
processes involving A and B mesons can be obtained in this way*. One may then 

show that the scattering amplitudes so defined are in fact equal to the full propagator  
amputated n-point functions of  the gauge potential A, evaluated at the poles of  the 
propagator  and multiplied by polarization vectors and wave function renormaliz- 
ation constants as usual. In particular, the "phenomenological"  coupling constant 
A defined in ref. [1] and the masses mA and rna of the A and B mesons have a 
well-defined physical interpretation and are therefore quantities suitable for the 
calculation of the improvement  coefficients c~(g~). 

7.3. CALCULATION OF c,(g~) TO ONE-LOOP ORDER 

The coefficients c~(g~) are now determined order by order in perturbation theory 
by requiring the absence of O(a  2) corrections to the mass m A of a positive parity 
A-meson and to the coupling constant A. The leading terms in the expansions 

m A  = m ~  ~-~- gore2 (tl + O ( g o 4 ) A  , (7.19) 

A = goAIo) + g~A(l) + O(g~) (7.20) 

are obtained by locating the appropriate pole in the J~(k)  propagator  (cp. appendix 
E) respectively by evaluating the 3-point vertex function at the momentum configur- 
ation where A is defined. Skipping the trivial details, we note the result 

m~ ) = m{1 - (am)2(c~ ° ) -  c~°)+ i½) + O(a4)}, (7.21) 

A ¢ ° l = - 8 m { l - ½ ( a m ) 2 [ 9 ( c ~ ° l - c ~ ° ) + ~ 2 ) + 2 c ~ 2 ° ~ ] + O ( a 4 ) } ,  (7.22) 

* The conceptually more satisfactory Haag-Ruelle scattering theory is presently unavailable for lattice 
theories. 
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which implies 

c~ °) = - , ~ ,  c(2 m = 0 (7.23) 

for the improved  action. From now on, the tree-level coefficients c<, °) are fixed to 

these values and the p ropaga tor  and the vertices in Feynman diagrams refer to this 
tree level improved action, the vertices propor t ional  to the one- loop coefficients c~Atm~ 

(and the higher- loop coefficients) being given a separate label (cp. figs. 2, 3). 

At one- loop  order,  the calculation o f  mA amounts  to the evaluation o f  the 
self-energy diagrams drawn in fig. 2, where the momen tum flowing into the diagrams 
is given by 

k = (imtA °), O, m,  0 ) .  (7.24) 

The terms propor t ional  to e ('~ _, are tree diagrams and can be easily computed  by 

hand. If  we define r ~  > to be the contr ibut ion o f  all other diagrams, we have 

m ~ ) /  m = r~ ~ )/ m - ( a m  )2( c~ n) - c(2 n)) + O (  a ") . (7.25) 

Now it is impor tant  to note that apart  f rom an overall factor  o f  m 2, the self-energy 

diagrams to be calculated depend on N and L / a  only. The small a expansion of  

rh~ > therefore assumes the general form 

t h ~ ) / m  ~ a o + ( a m ) 2 a , + ( a m ) + [ a 2 + b 2  in ( a m ) I +  . . . . .  (7.26) 

where the coefficients ai and bi are dimensionless numbers  depending  on N. A 

logari thm o f  O(1) is absent in eq. (7.26), because mA is expected to have a limit at 

a = 0. There is also no logari thmic term of  O(a2),  because the action we use is 

improved at tree level [7]. Inserting (7.26) into eq. (7.25) we see that improvement  
at one- loop  order  requires the coefficients c, to be chosen such that 

c] ~ 

(a) 

(¢1 

® 

(e) 

( I )  - c2 = a, . (7.27) 

(b) 

(d) 

0 

I f )  

Fig. 2. Feynman diagrams contributing to the gluon self-energy at order go- Wavy lines denote gluon 
propagators and the broken lines represent the propagation of Faddeev-Popov ghosts. Diagram (e) stems 
from the measure term (4.42) and the diagrams (f) represent the contributions proportional to c(, t> ( i = I, 2). 
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(a) (b) 

> > 
(c) (dl 

(e) (t) 

f 
[gl Ihl 

(i) (k) 

It) 
Fig. 3. Feynman diagrams contributing to the 3-point vertex function at order gg. The notation is the 

same as in fig. 2; in particular, the diagrams (I) represent the contributions proportional to cl t~. 

Using the techniques described in this paper, the coefficient a~ can be calculated 
along the following lines. First, for every self-energy diagram a computer  program 
is written, which computes the value of the diagram given N and L/a .  These 
programs perform the finite sums over the transverse components  p~, P2 of the loop 
momentum p exactly and the integrations over the other two components  P0, P3 are 
done using the integration method of subsect. 5.3. The Feynman integrand for given 
p is computed by calling subroutines for the vertices as described in sect. 3 and a 
subroutine for the gluon propagator,  which may be easily manufactured given the 
analytical expressions of  appendix E. The CPU time needed to compute a diagram 
is approximately proportional to ( L / a )  2 and it is therefore important to make the 
programs efficient, in particular, factors of  2 can be gained by making use of the 
symmetry properties of  the Feynman integrand (cp. subsect. 5.2). When all the 
programs are ready, rh~)/rn can be calculated for fixed N and a range of L/a ,  for 
example, we have taken 10 <~ L~ a <~ 36 ( N = 2) and 6 <~ L~ a <~ 30 ( N  = 3) with L~ a 



M. Lilscher, P. Weisz / Lattice gauge theo~ computations 349 

even. The results are then fitted with the series (7.26) using the method of  subsect. 6.2. 
With an estimated initial numerical precision of 10 -14 for individual diagrams, we 

have thus been able to extract the following numbers: 

ao = -0.01682658 (1) ,  at = -0.011006 (2) 

ao = -0.03731598 (1) ,  al = -0.020799 (4) 

( N = 2 ) ,  

( N = 3 ) .  (7.28) 

where (with new coefficients a,, b,) 

X(I)/m ~ a o + b o l n ( a m ) + ( a m ) 2 a , + ( a m ) ' [ a 2 + b 2 1 n ( a m ) ] + . . . ,  
a~O 

(7.32) 

l l N  
b o --- 67/" 2 . (7.33) 

This value for bo is implied by the renormalization group and the tree-level result 
(7.22). We have verified (7.33) from our data for ~tt) to 6 significant decimal places 
and we have also checked that indeed there is no logarithm at order a 2 (as expected 
from tree improvement) .  Taking this into account, the fit of  the data gave 

ao = -0.8483231 (3),  a, =0.41988 (3) ( N  = 2) ,  (7.34) 

ao= -1.2877352 (1) ,  at =0.78412 (5) ( N  = 3).  (7.35) 

Now for A to be improved, we must have 

36(c~J) .(I)X~Q.(1) _ -- t -2 1- -o~-2  - - - - a l ,  (7.36) 

so that together with eqs. (7.29), (7.30) we have two relations for the coefficients 
c~ 1), which can be solved and lead to the result quoted in ref. [ l] .  

Incidentally, we note that we have also calculated the energy gap in a twisted world 

with 3 compact  dimensions and obtained the more accurate result 

c~t)-c(2~'= -0.01100879 (I)  ( N  = 2) ,  (7.29) 

c~J-c~2~= -0.02080086 (2) ( N  = 3 ) ,  (7.30) 

which agrees with (7.27), (7.28) and also with the earlier calculation of ref. [2]. 
The calculation of the coupling constant A to one-loop order proceeds as for the 

mass mA and, apart  from the larger number  of  diagrams, no additional technical 

difficulties are encountered. The diagrams contributing to A ~ are the vertex graphs 
listed in fig. 3 plus the self-energy diagrams of  fig. 2, which give rise to a correction 
of order g2 to the wave function renormalization constants ZA and ZB occurring in 
the definition of  A. Again, the diagrams proportional to the coefficients c~ ~) are easy 

to evaluate and we have 

A~l)/m=A~l)/m+36(am)2(c~l)-c~l))+8(am)2c~l)+O(a4),  (7.31) 
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We finally remark that individual diagrams contributing to m~ ~ or X ~1 in general 

have a small a expansion, which is not exactly of the form (7.26) or (7.32). Rather, 

there are usually also divergent terms and odd powers of the lattice spacing. In the 

sum of all diagrams, one may however show, using the gauge Ward identities, that 

these additional terms cancel out. That they do not show up in the numerical data 

for m~ ) and X ¢~) is thus another global check on our calculation. 

Appendix A 

PROOF OF LEMMA 4.3 

We first show that the constant to's are zero modes of A~p. Indeed, from eqs. (4.20)- 
(4.22), we have 

Avp = ,~J~l d + J ;Adq  , 

so that for constant modes to 

(A.1) 

implies 

Thus, by property (i) of ~:, we have do)= 0, and since the lattice /~ is linkwise 

connected, it follows that to is constant. 

We now proceed to show that the range of Avp is equal to :T(~°~). For q = 0, this 
is certainly the case, because 

AFo(~o) = 5~(~/) = 5~(~,).  (A.6) 

For q ¢ 0, it follows from the definition of AFp that 

AFp(~o) c ~:(~,) .  (A.7) 

AFpto = i ~ ( A d q ,  to) = -~ ( [ to ,  q]) .  (A.2) 

Now we note that to is in the Lie algebra of .~o and % ~ ~ .  Hence by property 
(ii) of ~, we have 

[to, q,,]c W~ (A.3) 

and therefore AFpto = 0. 

Next, we prove that for small q, there are no other zero modes. Because AFp 

depends continuously on q, it is sufficient to show the absence of additional zero 

modes for q = 0. In this case, the equation 

AFpto  = .~  do) = 0 (A.4) 
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On the other hand, the codimension of AF~,(~0) is equal to the number of zero 
modes of AFp, and since this is independent of  q, we have 

dim AFF,(~o) = dim , ~ ( ~ ) .  (A.8) 

Together with (A.7), this relation implies AFp(~o) = , ~ ( ~ ) ,  as was to be shown. 

Appendix B 

FORM OF THE ACTION SUITABLE FOR MONTE CARLO CALCULATIONS WITH 
TWISTED PERIODIC BOUNDARY CONDITIONS 

In numerical simulations of lattice gauge theories, twisted periodic boundary 
conditions are usually implemented by a modification of the action, which amounts 
to multiply some plaquettes and (if present) other action pieces at the boundary by 
central elements of the gauge group (see e.g. refs. [5, 12, 13]). In this formulation, 
the gauge fields U(x,/~) satisfy ordinary periodic boundary conditions rather than 
eq. (5.1). 

We here show that through a simple change of variables in the functional integral 
(2.5), the realization of twisted periodic boundary conditions described in sect. 5 is 
mapped onto the modified action representation so that the two formulations are 
thus completely equivalent. 

For the twisted tube of sect. 5, the independent link variables to be integrated 
over in the functional integral may be taken to be 

U(x, l~) ,  l ~ x , , ~ L  ( u =  1 ,2) ,  (B.1) 

with Xo, x3 and ~ unrestricted. Using (5.1), the action $[U] can be written as a 
function of  these variables only. Note that some of the loops contributing to S[ U] 
cross the boundary and hence involve D~ after the links not contained in the set 
(B.I) are replaced by their periodic images in (B.I). 

We now choose new integration variables U(x, ~)  according to 

U(x, i~)J~, if/~ ~ {1, 2] and x,, = L 
l~(x, ~)  = U(x, #)  otherwise. (B.2) 

This transformation has unit jacobian and when the action S[ U] is expressed in 
terms of/.~, the ~O~'s cancel. Actually, for loops crossing the boundary in the xt and 
x2 direction (a plaquette loop passing through x and x + a l + a2 with Xl = x2 = L, 
for example), the J3~ cancel only after a rearrangement using the twist algebra (5.2). 
These loops thus pick up central phase factors and one ends up with the modified 
action commonly used for Monte Carlo simulations with twisted periodic boundary 
conditions [13]. 

We finally remark that in the formulation of  sect. 5, Wilson loops winding around 
the world require the inclusion of a matrix ~ whenever the boundary at x = L is 
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crossed (otherwise the Wilson loop would not be invariant under the gauge transfor- 
mations (5.3)). These /2~'s are also removed by the transformation (B.2). 

Appendix C 

PROOF OF LEMMA 6.1. 

At k = 0, the singularity of g(k)  is integrable (in fact, g(0) = 0) and the integrals 

I ' "  d4k k )e 'km', m Z', (C.1) 

are therefore well-defined. Furthermore, we have 

(--Ak)Zg(k) k°~o Ikl-~-2t, 

where A k denotes the (4-dimensional) Laplace operator with respect to k. As long 
as l<~j, the partial integrations in the following lines are therefore allowed: 

I , ,  4 k d "k'" A \l ik. mL (m2L2)Zc.. = _.  (--~--~)4gt )~-ak)  e 

f,~ ,.14k 
= J _ , , ~ [ ( - - A k ) ' g ( k ) ] e  'k'mL • 

For l = j  and m g 0, this leads to the bound 

Ic,.I <~ C(m2L2) -j , (C.2) 

where C is some constant independent of  m and L. It follows that the sum 

S(g) = ~z" c , .  

is absolutely convergent and one easily shows that it is equal to D(g).  Indeed, we 
have 

S(g)  = lim ~. exp [ - e  ~ ,m~,, ,o  ,. 

= l i m l  '~ d 4 k , : - ~ o  -,.(27r) 4 g ( k ) ~  {(1 e-'÷'k~L)-' (1 e ~ ÷ ' k " t ) - ' } -  - - 

1 
= L--~ g(k) ,  

and since g(O)=0,  the last expression is equal to D(g).  Summing up, we have 
shown that 

D(g)=Co+ ~. cm, 
rn~O 

which together with (C.2) implies the lemma. 
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Appendix D 

PROOF OF LEMMA 6.2 

Starting from the well-known "duali ty" relation 

~" e -Z~"+i~~=(2~ . )4 (47rz )  -2 ~ e - ~ - 2 ' ~ ? / 4 z ,  
r, c l  4 v ~ / 4  

(Z>0,  WeR4), 

we have 

Define 

- ( w -  2 rr~,)2/4zl 
F , . ( z )  = (4rrz) -2 ~z '  H, , ( - iV~) e Iw-o. 
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(D.I) 

(D.2) 

C,,, = ( 4 ~ r ) - 2 H . , ( - i V w )  e- 'W].  =o, (D.3) 

F,,(z) = (47rz) -2 E H m ( - i V w )  e-(W-2"~'~/'q . w=o (D.4) 

Then, using the homogeneity of the polynomial H,,, one may show that for z > 0 

F,, , (z)  = C,,,z -~.,-2 + F , , ( z )  . (D.5) 

Furthermore, it is obvious from eq. (D.4) that/3,, (z) together with all its derivatives 
vanishes as z--, 0, in particular, F,,(z) extends to a C ~ function for 0<~ z < oc. 

Appendix E 

EXPLICIT EXPRESSIONS FOR THE GLUON PROPAGATOR 

Concise expressions for the functions Q and P0 appearing in the gluon propagator 
(7.8) are given by 

Q = ( ] ~ 2 ) - 2 ~ [ ] ~ .  H d,~'],  (E.1) 
M- p ~ x  

A 

eik,.efln( kkSok )( ktSol)( ~mnd m + k,nk,,soo) , (E.2) Pi j~  -1 

where the vector d~ t is defined by 

d~,' = Y. s,,~£2~ . (E.3) 

For the calculations with the improved action 

c', °' -- - , ' 2 ,  c ;  °' :- o ,  
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it is useful to have explicit expressions for Q, P,j as polynomials in /~o:. Towards 
this end we define auxiliary quantities 

i ^2 ( E . 4 )  U~ = i-2k~, , 

3 3 
2 Z = ulu2u3 (E.5) X = ~  uj, Y = Y  u , ,  

~ = l  j = l  

Then Q is a polynomial of degree 5 in uo, 

Q = (12)2(USo+ Bug+ Cu3+ Du2o + Euo+ F ) ,  (E.6) 

with coefficients given by 

B = 3 + X ,  (E.7) 

C = 3 + 4 X + 3 X 2 + ½ y ,  (E.8) 

D =  I + 5X + 7X2 + ~Y + 2 X Y  + 7 Z ,  (E.9) 

E 2 X + 3 X 2 + 2 y  5 s 3 = + ~ X Y + ~ X - + 3 Z + 3 X 2 y - ~ y 2 + 4 X Z ,  (E.10) 

F = ( X + Y ) ( X + X 2 + y + x Y + 3 Z ) .  (E.11) 

Q factorises for special configurations e.g. when one of the u;'s is zero or all three 
u/s are equal. 

Corresponding explicit formulae for the P~j are: 

3 2 P~ = (12)2( A~lu~ + B~uo + C~uo + D~uo + E~) , (E.12) 

with 

All = - u l  + X ,  (E.13) 

B~ = - u ~ ( 3 +  2 X ) + ( 3 X  + X2+ Y),  (E.14) 

C ~ = 3 u ~ X _ u ~ ( 3 + 5 X + 7 X 2 + ~ y ) + ( 3 X + 3 X 2 + 2 y  s 3 +2X +s_XY),  
(E.15) 

D , , = 3 u ~ ( X + Y ) - u , ( I + 4 X + ½ 1 X 2 + ~ Y + 5 X Y + 7 Z )  

+ ( X + 3 X 2 +  Y + ~ X 3 + ~ X Y + ~ X 2 y + 2 x z - ~ Y 2 ) ,  (E.16) 

E,, = - u , [ ( X +  Y ) ( I + 2 X + ½ X 2 + ~ Y ) + Z ( 3 + X ) ]  

+ ( X +  Y ) [ ( I + X ) ( X +  Y ) + 2 Z ] .  (E.17) 

The other diagonal elements are given by permutation of the momenta. The same 
comment applies to the off-diagonal elements which are given by the following 
formulae 

P23 = - 12/~2/~3(u~ + 3 2 Buo+ C23u0+ D23uo+ E23) , (E.18) 
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with B given in (E.7) and 

C23= u , X + ( 3 + 3 X + ½ X  2+~Y) ,  

D23 = u2X + u , (X  - X 2 +  Y)+(1 + 3 X + ~ X 2 + ~ y + x Y + 7 Z ) ,  
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(E.19) 

(E.20) 

E23 u~(X+ Y ) - u i X ( X +  Y ) + [ ( X +  Y ) ( I + X  , 2 t = +~X - ~ Y ) + Z ( 3 + X ) ] .  
(E.21) 

Finally we consider the free propagators of the A and B mesons. These take a 
particularly simple form, since, for general c~, °~ 

D,,(k)lk,=o = d,(k)lk,-o'  (E.22) 

2 

2 e, ejD,j(k)lk,-k~ = d,(k)Ik,..k~, (E.23) 
i , I  = 1 

where e, = 1, e2 = - 1 .  
The function d, has only two poles in the complex u0 plane which can hence be 

determined analytically. The physical pole corresponds to an energy E(k)  given by 

where 

cosh E (k )=  1 - 4 ( 1 - ~ / 1  to) 2 +4c,  f , / b , ) ,  4c.1 v, 
(E.24) 

b, l_(c~lO)_ (ol, 2e2 2c~O~a2~2 = c2 )a KI -  2 , (E.25) 

f= /~2(1  - c~O,a2~2)_(c~O,_c~O,)a2(y. ~:+/~/~2) . (E.26) 
x j  

E(k)  has a small-a expansion 

E(k)=~/k--5[1-(c~°) c~°)+ ' ' '  2{ '2  ) + .  ] (E.27) 
- . + 2 k ; / k  2 . .  

.t 

To obtain the energies of the A and B mesons of momentum p in the 3-direction 
we simply have to set k equal to kA or kn respectively where 

kA = (0, m, p ) ,  kB = (m, m, p ) .  (E.28) 

In particular for the A-meson with p =0,  eq. (7.21) follows directly from (E.27). 
The residue Z of d, at a physical pole 

d, (k) = Z ( k ) / (  ko + E2(k)) + regular (E.29) 

is given by 

Z(k )  = - E(k)[sh E(k)4c~,°)~/1 + 4c~,°' f~/b~] -' . (E.30) 
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