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We refine a previously introduced Monte Carlo method for simulating random surfaces. This allows us to calculate with high 
precision critical indices for planar random surfaces without spikes. We assume standard scaling laws. Within errors of only a 
few percent our results in four dimensions are: u = ~. y = ~. d H = 4, ~ = 1. In contrast to planar random surfaces with spikes 
the model is non-trivial: The two-point function has an anomalous dimension ~ :g 0. 

Within the last few years there has been a continu- 
ous interest in the study of  random surfaces. Most 
prominently they are studied because of  their con- 
nection to QCD, but  also their relation to surface 
problems in solid state physics and many other as- 
pects are of  interest. For  a review see ref. [1]. The 
simplest lattice model is the one of  planar random 
surfaces (PRS) with taxed Euler characteristics [2]. 
Unfortunately it has been proven by Durhuus, 
Fr6hlich and Jonsson [3] that PRS are trivial. This 
means the anomalous dimension 7/of  their two point 
function vanishes and in the critical limit they de- 
scribe a (generalized) free field theory.  

Independently from the investigations of  ref. [3] 
one of  the present authors, in collaboration with 
Billoire and Foerster [ 4 - 6 ] ,  started a numerical in- 
vestigation of  lattice random surfaces. In this con- 
text  planar random surfaces without  spikes ,1 
(PRSWS), called "fermionic random surfaces" in refs. 
[ 4 - 6 ] ,  were introduced. For  reasons sketched at the 
end of  this letter the triviality proof  of  ref. [3] does 
not  apply to PRSWS. Our numerical results presented 
here show that  PRSWS are non-trivial and consequent- 

z Supported by Deutsche Forschungsgemeinschaft, contract 
BE 915/2-1. 

*1 A spike is consisting out of two connected surface plaquet- 
tes, occupying the same lattice plaquette. For a figure see 
ref. [5]. 
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ly belong to a different universality class than PRS. 
Our model is defined by the following loop Green 

functions: 

G#(')' 1 . . . . .  "),n) = ~ e-131SI , /3 >//]c . (1) 
S~ c3 ('rl ..... ~n) 

The sum goes over the set c5 (71 . . . . .  3'n) of  all link- 
wise connected PRSWS with boundary ~'1 U ... U 3'n 
given by n loops 3'1 . . . . .  3'n in Z d, ISI is the area 
(= number of  plaquettes) of  surface S. The difference 
to ref. [3] is that there c5 (71 . . . . .  3'n) is a set of  con- 
nected PRS with spikes allowed. 

In our numerical work we simulate surfaces with a 
common fixed plaquette. In other words, the boundary 
consists of one loop ~P0 given by the four links of  
this plaquette. The part i t ion function of  our model is 

Z = G~(~po) ,  (2a) 

and for technical reasons [4,5] we generate surfaces 
with respect to the modified part i t ion function 

2 = ~ ISI e-t31Sl. (2b) 
s~ d(apo) 

The results of  refs. [2,3] imply that the parti t ion 
function converges for/3 large enough. A critical point  
/3 c is supposed to exist such that in the limit/3 -->/3 c + 
0 the loop Green functions (1) define a euclidean 
quantum field theory.  

Critical indices are defined as follows 
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m(/3) ~ (/3 - /3c)  v , X(/3) ~ (/3 - /3c)  - v  , (3a, b) 

G~(3p0, 3p) ~ Ixp - Xpo 1- (d -2+n) .  (3c) 

Here mO)  is the mass gap, ×(/3) the susceptibility and 
r? denotes the anomalous dimension of the two-point 
function at the critical point (1 < Ixp - Xp0 [ 
m(/3) -1 ,/3 -~/3c + 0). 

Let n(A) be the number of  surfaces with area [SI = 
A contributing to the partition function (2). We as- 
sume 

n(A) = cA ~ e t3eA [1 + O(1/.4)] , asA -+ oo. (4) 

If  the susceptibility X(/3) diverges, as/3 -+/3c, i.e. if e 
~>-2 ,  then 

y = 2 +  _~. (5) 

Our numerical simulation will directly "determine e 
and the Hausdorff  dimension d H defined by 

(X2)A = cA 2/dH asA -+oo. (6) 

Here the expectation value (2) is given by averaging 
over all surfaces of  area ]S I = .z/4and x 2 = (Xp - Xp0)2 
is the squared distance of the plaquette p E S from 
the fixed plaquette P0" The other critical indices fol- 
low from standard scaling relations 

V = d H 1 ,  3' = v ( z - r ? ) .  (7a, b) 

We now present our numerical results. In ref. [6] /3c 
was calculated in d = 5 dimensions to high precision. 
We obtain now similar results also in d = 4 and d = 8 
dimensions: 

1.507>/3e > 1.502 (d = 8 ) ,  (8a) 

1 . 1 9 5 > / 3 c >  1.180 ( a = 4 ) .  (Sb) 

[For completeness: 1.305 </3c < 1.310, d = 5.] As in 
ref. [6] the results rely on expanding (/3 </3c) and con- 
tracting (/3 >/3c) surfaces. The largest surfaces in- 
volved had an area of  approximately 8000 plaquettes. 

In ref. [6] also an at tempt was made to determine 
the entropy coefficient e of  eq. (4) by calculating for 
/3 >/3c the average area (A) with respect to the modi- 
fied partition function Z (2b). Fitting the asymptotic 
behaviour (A) ~ (e + 2)/(/3 - /3c)  for/3 ~/3c + 0 
yields, in principle, e. This approach is, however, 
plagued by large statistical errors and unknown sys- 
tematic errors. The reason is the for/3 >/3e the MC 

Table 1 
Statistics of our MC calculation 

Area x Iterations 

1.170 300 3 × 10 9 

1.160 5000 5.4 X 10  9 

1.165 5000 5.4 × 109 
1.170 5000 5.4 X 1 0  9 

procedure [4,5] spends most of the CPU time on 
small surfaces and the divergence is only indicated by 
occasional excursions to (very) large surfaces. For the 
present investigation we therefore decided to measure 
(x 2) A in a way similar to the microcanonical approach 
as successfully applied in ref. [7]. (Unfortunately the 
model considered in ref. [7] has severe diseases [8].) 
This is done by using our MC method at/3 < $c to 
generate lattice surfaces. We prevent these surfaces 
from growing ad infinitum by inserting an upper 
boundAma x for the area. Any shift of  our MC proce- 
dure which would increase the area beyond Area x is 
rejected. This rejection does not destroy detailed bal- 
ance, but ergodicity is only maintained for surfaces 
of  sufficiently smaller areaA = ISI than Area x. By this 
method we calculate (X2)A and get reliable results 
even for surfaces of  areas as large as A ~ 5000, where- 
as by sirnulatingZ for/3 >/3 c [6] similar results al- 
ready became unreliable around A ~ 50. 

Table 1 contains (in "iterations") the high statistics 
that we have collected with two different upper 
bounds Area x and for various/3-values. Each proposed 
shift for a single plaquette is counted as one iteration. 
The acceptance rate is ~15%. Altogether the calcula- 
tion relies on approximately 90011 CPU time on the 
Fuji tsu-Siemens 7.882 computer of  Hamburg Uni- 
versity. 

Table 2 gives an impression about our measure- 
ments of  (X2)A . For close-by surfaces the results are 
strongly correlated and practically identical. This is 
expected because these surfaces emerge from one an- 
other by small deformations. During the simulation 
(X2)A fluctuates heavily, but moves slowly. This is 
due to the fact that deforming the shape of the sur- 
face requires a large amount of  subsequent iterations 
and unfortunately the entropy of surfaces of area A 
is not sharply peaked around x 2 = (X2)A" This can be 
seen from fig. 1. Nevertheless our very high statistics 
results are quite indicative for the Hausdorff  dimen- 
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Table 2 
Measurements of (x 2 )A for selected values of A. nMC (,4) gives 
the total number of surfaces of area A generated by our MC 
procedure. The error bars are estimated by dividing each sam- 
pie into five independent bins. For Ama x = 5000 we have dis- 
carded the first 5% of our data to reach equilibrium. In case 
ofAmax = 280 the minimal surface of area A = 1 is reached 
so often that we can conclude to be in equilibrium immediate- 
ly. 

Amax 3 A nMc(A) (x2)A 

280 1.170 131 12 X 106 5.00(0.03) 
135 1.3 X 106 5.06(0.03) 
139 1.4 X 106 5.16(0.03) 
263 1.1 × 107 6.91(0D4) 
267 1.1X 107 6.69~.05) 
271 1.2 X 107 7.00(0.05) 

5000 1.160 

1.165 

1.170 

4951 1.1 x 107 29.0(1.8) 
4955 1.3 X 107 29.0(1.8) 
4959 1.4 X 107 29.1(1.8) 
4963 1.6 X 107 29.1(1.8) 
4967 1.8 x 107 29.1(1.8) 
4971 2.0 x 107 29.1(1.8) 

4951 1.2 X 107 24.9(2.0) 
4955 1.3 X 107 24.9(2.0) 
4959 1.5 X 107 24.9(2.0) 
4963 1.6 X 107 24.9(2.0) 
4967 1.8 X 107 24.9(2.0) 
4971 2.0 × 107 24.9(2.0) 

4951 1.2 × 107 29.3(1.8) 
4955 1.3 X 107 29.3(1.8) 
4959 1.4 X 107 29.3(1.8) 
4963 1.6 X 107 29.3(1.8) 
4867 1.7 X 107 29.3(1.8) 
4971 1.8 X 107 29.3(1.8) 

sion. Using 

d H = 2 ln(A I /A2)[ln((x2)A1/(X2)A 2 )] -1  , 

A I > > A  2 ,  A 2 - + o o ,  (8) 

we obtain  d H = 4.3 +- 0.2 f o r A  1 = 2 7 1 , A  2 = 131 and 

d H = 4.2-+ 0.2 f o r A  1 = 4 9 5 5 , A  2 -- 131 o r A  2 = 271.  
In the last case we have combined  our three values for 

(x2)4955 to (x2)4955 = 28 + 2. In the same way  we 
may  use o ther  values o f  A and get very similar results. 

Within statistical errors and a presumably small posi- 

tive systematic  error (due to the finite value o f  Amax)  

our data  give 

d H = 4, (9) 

in agreement  wi th  an old conjec ture  [8].  

Remark. I f  one assumes that  (X2)A grows logarith- 

mical ly wi th  A ,  that  is d H = oo, the results obta ined 

f r o m A  1 = 2 7 1 , A  2 = 131 a n d A  1 = 4 9 5 5 , A  2 = 131 
or 271 are no t  consistent  w i th  each o ther  in the sense, 

that  they  lead to comple te ly  di f ferent  values for the 

constants  appearing in (x2)A = a lnA + b. So we con- 

clude that  d H = ~ is ruled ou t  for PRSWS. 

Our m e t h o d  allows to measure accurately the ex- 

ponent  e o f  eq. (4). The MC procedure  generates large 

surfaces wi th  the  probabi l i ty  n~Mc(A ) = c#A e+l X 
exp[(3c  - 3 ) A ] ,  where  we have neglected O(1/ ,4)  cor- 
rections.  This yields:  

n32 ~A ~ln01 (,4 "~= c #l MCV'2 :" MC ~ 1:  32(A2/A1 )e+l 

X e x p ( - ~ 2 A  2 +/31A 1)"  (10) 

60' (x2>A 13=1.160 

5O 

40 

30 

20 

1¢ 

13 = 1.170 13 = 1.165 

979 

A=279 
= t  

Fig. 1. Fluctuation of ~x 2 >.4 for large (.4 = 4979) and small (A = 279) surfaces versus computer time t. (Each set of measurements 
is represented by 50 bins for large surfaces, 43 for small surfaces.) 
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T , ' x  

161 171 181 191 201 211 221 231 21,1 251 261A 2 

Fig. 2. Least square fits for determining e. For each curve the 
data points are strongly correlated such that the whole curve 
fluctuates, e = -1 .5  would not fit on the scale of this figure, 
but would lead to values 

1 n~c (A2)  exp(#zA2) >/4.4 
5.5 ~ cgl n~C(A1 ) exp( f l l~~  

e and the constants cg 1 are unknown. We now take 
b } 2  r ¢¢ I 1 ~  

A 1 E {large surfaces) andA 2 E t smaJJ surfaces) 
w i t h a  1 - A  2 = AA = 4718. By varyingA 2 in the 
range 161 ~<A 2 ~< 26l  least square fits to our data, 
as depicted in fig. 2, give the result 

e = - 1 . 7 4  + 0 .03 .  (11) 

#z in eq. (10) is Despite the fact that the constant c~2 
/~l,2-dependent, we find consistent e-results for the 
three different/~-values. They are: e = -1 .723  (/32 = 
1.160), e = -1 .729  (/~2 = 1.165) and e = -1 .765  
(#2 = 1.170). Treating these results as independent, we 
find e = - 1 . 7 3 9  + 0.013. They are, however, corre- 
lated because the small surfaces are identical in all 
three cases. To analyse these correlations we have di- 
vided each dataset into three bins. This gives 3 X (3 × 
3) combinations and for each combination we have 
separately carried out the least square fit. The thus 
obtained distribution of  e-values is displayed in fig. 3. 

"6 

1.5 1.9 -El 1.15 1.7 1.8 

Fig. 3. Distribution of 27 e-values, which are calculated as ex- 
plained in the text. 

It is approximately gaussian and gives confidence in 
the stability of  the final result. Taking the average 
over these 27 least square fits gives e = -1 .725  and 
the bias, as compared with eq. (11), is well within the 
given error. The error bar of  eq. (11) is obtained by 
looking for each set of  large surfaces at the 3 diagonal 
b in-b in  combinations with the set of  "small" sur- 
faces. 

Together with the scaling laws (5) and (7) our re- 
sults (9) and (11) imply: 

v = 1 / 4 ,  7 = 0 . 2 4 + 0 . 0 3 ,  r / = 1 . 0 4 + 0 . 1 2 .  (12) 

Eq. (12) is the precise formulation of  the results 
stated already in the abstract, and for the Hausdorff 
dimension we have assumed that it takes on an inte- 
ger value. 

To strengthen the reliability of  our method, we 
have carried out a similar analysis for closed random 
walks without spikes. In previous equations the area 
A = ISI of  a surface has to be replaced by the length L 
= [col of  a path. We obtain the numerical results d H = 
2.07 + 0.03 and e = - 1 . 9 7  + 0.02. Within expected 
small systematic errors this is in good agreement with 
exact results d H = 2 and e = - 2  [9]. 

In summary our numerical investigation overcomes 
various shortcomings of  previous numerical work [5, 
10] concerning lattice surfaces. 

The result (11) is to some extent surprising, be- 
cause naively one may have argued PRSWS to be in 
the same universality class as PRS. Then ref. [3] 
would imply either e = - 1 . 5  or e < - 2 .  But universal- 
ity classes of  random surfaces are not at all well-under. 
stood, mainly because there is no straightforward 
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method to determine the corresponding lagrangian 
field theory (if there is any). It  is instructive to pin 
down the reason, why the proof  of  ref. [3] collapses 
for PRSWS. Let now 

G0(b, b ' )  = G0(7(b), 7 (b ' ) )  

be a PRS two-loop function with loops located on the 
links b, b' .  The key step in the proof  of  ref. [3] is to 
write 

Go(b, b ' )  = ~ e-OISI 
S~d(b ,b ' )  

argue e = - 1 . 5  for PRSWS in eight dimensions. To 
calculate e in eight dimensions is a straightforward ex- 
tension of our present calculation, which we plan to 
carry out as a next step. 

In conclusion we claim to have identified the sim- 
plest non-trivial lattice model of  random surfaces. Al- 
though our PRSWS do not interact, the correspond- 
ing field theory is non-trivial as can be concluded from 
the anomalous dimension of the two-point function. It 
is a theoretical challenge to identify the lagrangian ver- 
sion (if there is any) of the corresponding euclidean 
quantum field theory. 

= ~ e-fllRI H ( l  + ~ e-fllSI) 
R~C~ (b,b') ~ R  SEe5 (~) ' 

= [1 + G(/3)I 2 ~ e-aefflRI (13) 
R~C~(b,b,) 

where G(/3) = G#(b) and/3eff =/3 --2 log(l + G(/3)). 
Here C~(b, b ' )  C c3 (b, b ' )  is such that the surfaces R 

q? (b, b ' )  are partially two-link irreducible. The pre- 
cise definition is: c~ (b, b',) contains all surfaces, which 
by cutting any two links either remain connected or 
decay in surfaces S 1 E c3 (b, £) and S 2 E c3 (b', £) 
where ~ is the link along which is cutted. All surfaces 
S E c3(b, b ' )  are obtained by glueing to surfaces R E 
c~ (b, b ' )  at each link £ E R all possible surfaces S 
c5(£) or the zero-area surface. For each link £ E R w e  
always get the same factor independently of  the local 
geometry. This is of  central importance and precisely 
not true in case of  PRSWS. As spikes are forbidden 
we have to distinguish between links at edges and at 
flat pieces of R. Consequently the equation for/3eft 
breaks down. This is decisive as for deriving r/= 0 one 
needs/3eff =/3 - 2  log(1 + c + (fl - fie) 1 -7 ) ,  (/3 "-> fie) 
and for PRSWS the contribution (/3 - tic) 1 - 7  for/3 --> 
/3c cannot be guaranteed anymore. 

One may imagine that for large enough d the fiat 
pieces of  PRSWS R E c/~(b, b ' )  are no longer impor- 
tant. Then only edges would matter  and a similar re- 
cursion like eq. (13) would hold. This is satisfactory 
because the large d expansion [3,11] predicts free 
field theory behaviour. The upper critical dimension 
has conjectured [8] to be d = 8, and it is tempting to 
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