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We consider 4D SU(2) lattice gauge theory and report a high statistics MC investigation of correlations between Polyakov 
loops in the adjoint SU(2) representation. For large t -values  and on lattices with small sized spatial volumes these correlations 
allow glueball estimates improving results of the literature by several orders of magnitude. Our data for the mass gap and the 
string tension exhibit a very sharp crossover between the small-volume limit and the infinite-volume limit. This is prohibitive to 
extracting physics from Liischer's weak coupling expansion by matching it with numerical data. 

Let us address the problem of  the spectrum of  4D 
SU(2) lattice gauge theory with the Wilson action 

S = ½/3 ~ (1 - Tr Up). (1) 
p 

Analytic methods allow calculating the spectrum in 
the strong coupling (SC)/3 ~ 0 limit [1,2]. The mass 
gap of  the theory is the mass of  the 0 + glueball. In 
the "crossover" region at/3 "" 2.0 the m(0 +) SC series 
of  ref. [2] breaks, however, down and Pad6 extrapo- 
lations [3] to the physical limit (first volume V ~  00 
then/3 ~ 00) are unreliable due to the complicated 
singularity structure. 

Monte Carlo variational (MCV) calculations [4] ,1 
on an L3N t lattice allow reliable mass gap calculations 
beyond the region where the SC expansion breaks 
down. More precisely: Upper bounds on the mass gap 
are obtained from correlations at rather small distances 
t = 0, 1,2 and to some extend also t = 3. These bounds 
are supposed to be reliable final estimates up to/3 

2.4. Beyond/3 ~ 2.4 the projection of  the consider- 
ed operators on the mass gap wave function becomes 
negligibly small. Consequently only a bad upper bound 
is obtained from short distance correlations, whereas 
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:l:l For a review see ref.  [5] .  

at larger distances the correlations disappear into the 
statistical noise. For the SU(3) gauge group some im- 
provement has been achieved by means of  a high sta- 
tistics MC cold wall calculation [6].  But at large/3- 
values the method becomes impractical again, because 
the cold wall projects no longer significantly onto 
the mass gap wave function. This method does not 
even give bounds on the true mass gap, as positivity 
is lost. 

The outlined shortcomings of  MC calculations 
prevented so far studying the crossover to another 
notable limit in which analytic mass gap calculations 
are feasible [7],  namely the limit/3 ~ 00 of  an L 3 X 00 
continuous box. The natural control parameter for 
the finite-volume theory is 

z = m(O+)L. (2) 

It may be thought of  as the box length in physical 
units of  the correlation length. For large L z rises 
linearly with L, but as L ~ 0 the weak coupling ex- 
pansion ~ ~ 00) applies and z goes to zero only loga- 
rithmically. Ltischer's [7] weak coupling calculation 
of  m(0+)/A~--~ breaks down around z ~ 1.5, and for 
decreasing z ~ 1.5 one finds m(0+)/A~--~ rising ex- 
tremely rapidly. Therefore the crossover to the asymp- 
totic behaviour m(0+)/A~-g ~ const, for z ~ 00 is 
probably very sharp. This is not  unexpected because 
of  the finite temperature phase transition, which ex- 
ists on an L X 002 X 0 0  system. 
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Table 1 
MC statistics (number of sweeps, 1 k = 1000)and used lattices. 

9 January 1986 

= 2.25 2.40 2.55 2.70 2.85 

120k 23X 32 120k 23x 32 130k 2 a x  32 120k 23x 60 
130k 4 a x  16 210k 4 a x  24 120k 4 a×  32 120k 4 a x  64 65k 43x 64 
60 k 6 a X 16 120 k 6 a × 24 120 k 6 a X 32 140 k 63 x 64 55 k 63 × 64 

In case of  the 2D 0(3)  o-model the gap between 
MC calculations and the finite volume weak coupling 
expansion has been bridged recently [8] .  In this let ter  
we make a similar a t tempt  for the 4D SU(2) lattice 
gauge theory.  In the o-model the MC calculation of  
ref. [8] is possible, because the spin field seems to 
have a reasonably good projection on the mass gap 
wave function at small a n d  at large/3-values (space- 
like lattice length fixed). By dimensional reasons no 
local operator with this proper ty  exists for 4D lattice 
gauge theories. We therefore consider correlations be- 
tween the simplest non-local operator which couples 
to the gluebaU wave function. This is the Polyakov 
loop in the adjoint SU(2) representation. An advan- 
tage of  this operator ,  relevant at intermediate t-values, 
is that  it  allows multi-hit  improved measurements [9].  
This has extensively been used for investigating the 
Polyakov loop in the fundamental  SU(2) representa- 
t ion [10] ,  where the Polyakov loop does not  couple 
to the glueball wave function, but  is related to the 
string tension. 

Let us denote the three spacelike directions of our 
lattice by  x,  y and z. By means of  the periodic bound- 
ary conditions we close the Polyakov loop in z-direc- 
tion. Summing over the x,  y-posit ions we project  out  
momentum p = 0, i.e. we have constructed a transla- 
t ion invadant operator pa ( t )  ( "a"  stands for adjoint).  

One may further project  on appropriate irreducible 
representations of  the cubic group [1,11].  For  this 
first s tudy,  however, we discard this opt ion and mea- 
sure directly the correlations 

c ( t )  = ( o I p a ( o ) p a ( t ) l O ) c o n n e c t e d  • (3) 

Previous results on the string tension are also improved 
by analysing the correlations between Polyakov loops 
in the fundamental  representation. 

Our MC calculations for various lattices and/3- 
values are summarized in table 1, where the final sta- 
tistics is given for each case. To reach equilibrium we 
have carried out  between 1000 and 2000 sweeps with- 
out  measurements. The SU(2) gauge group was ap- 
proximated by  using the 120 element icosaeder sub- 
group and multi-hit improved measurements were 
done every 10 sweeps. 

The multi .hi t  improvement is efficient when the 
dominant  fluctuations are short range. This is true 
when L is large as compared to the correlation length. 
At  the high B-values/3 = 2.70 (except  N = 6) and/3 = 
2.85 CPU time was saved by  doing only normal mea- 
surements. In any case normal measurements were 
done for the sake of  comparison. 

Our mass gap estimates are collected in table 2. 
We define the effective mass at distance t,  re(t),  
by the implicit  formula 

Table 2 
Final mass gap estimates in units of A L and in lattice units. The number in parenthesis gives the distance from which the final 
estimate was taken. 

Lattice # = 2.25 2.40 2.55 2.70 2.85 

2 aN t 186 ± 5 (3) 230 ± 13 (4) 228 ± 19 (5) 376 ± 28 (5) 
4 aN t 194 ± 5 (3) 176 ± 19 (4) 180 ± 10 (5) 260 ± 10 (6) 339 ± 7 (5) 
6aNt noise 180 ± 16 (4) 159 ± 10 (5) 204 ± 15 (4) 251 ± 14 (5) 

2 aN t 1.25 ± 0.03 (3) 1.06 ± 0.06 (4) 0.72 ± 0.06 (5) 0.81 ± 0.06 (5) 
4 aN t 1.30 ± 0.03 (3) 0.81 ± 0.04 (4) 0.57 ± 0.03 (5) 0.56 ± 0.02 (6) 0.50 ± 0.01 (5) 
63N t noise 0.83 ± 0.07 (4) 0.50 ± 0.03 (5) 0.44 ± 0.04 (4) 0.37 ± 0.02 (5) 

204 



Volume 166B, number 2 PHYSICS LETTERS 9 January 1986 

p ( t )  = c(OIc(t - 1) 

e -m(t) t  + e-m(t ) INt- t l  (4) 

= e_m(t)[t_l ] + e-m(t)[Nt -t+l] 

Neglect ing the "cosh  e f f ec t "  this reduces to the usual 

def in i t ion  

re(t) = In p(t) .  

In table 2 the n u m b e r  in parenthesis  gives the distance 

t f rom which  the final es t imate was taken.  In case o f  

stable correlat ions over  several distances the error bars 

can be correc ted  towards lower  values. Fo r  two  exam- 

ple points  (fl = 2.55,  43 X 32 and/3 = 2.70,  43 X 64)  

the thus obta ined  t -dependence  o f  mass gap est imates,  

m(0÷) ( t ) ,  is i l lustrated in table 3. F r o m  the v iewpoin t  
o f  t -* oo stabili ty the correlat ions at ~ = 2 .70 (43 X 64 

latt ice) are among our  nicest .  Al toge ther  the results 

Table 3 
t dependence of mass gap estimates m(0 +) (t) (given in lattice 
units). 

t /3 = 2.55, 43 x 32 # = 2.70, 4 3 X 64 

2 0.736 ~ 0.006 0.618 ± 0.004 
3 0.661 ± 0.010 0.568 ± 0.006 
4 0.63 ¢ 0.02 0.557 ± 0.009 
5 0.57 50.03 0.556 ± 0.011 
6 0.51 ~ 0.05 0.56 ± 0.02 
7 noise 0.56 ± 0.04 

final 0.57 -+ 0.03 0.56 ± 0.02 
estimate 

are very encouraging:  The signal can be fo l lowed to  

much  larger distances than in previous MCV calcula- 

t ions and we are able to obta in  also results at a m u c h  
larger corre la t ion length than before .  At/3 = 2.85 (63 

X 64 lat t ice) the corre la t ion length is close to ~ = 3, 
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Fig. 1. Mass gap m as a function o fz  in units o f A  L. Lattice sizes are indicated as follows: ~ 2 3Nt, ~ 4 3N t and ~ 6 3N t. The at- 
tached numbers give the #-values corresponding to the data points. The two full lines are from the small z-expansion of ref. [7], 
ff A~--g = 19.82A L is used. (a) relies on the estimates of table 2, whereas (b) depicts for comparison m(t = 4). Data points sup- 
porfi/i~ universal behaviour are encircled. 
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whereas previously the largest correlation length at 
which reliable results could be obtained was only 
slightly above ~ = 1. 

The z-dependence of our mass gap data is sum- 
marized in fig. la. For comparison we depict in fig. lb 
the mass gap results obtained at distance t = 4. (At 
small/3-values t = 4 gives of course rather large error 
bars.) In both figures the crossover from small z- 
behaviour to large z-behaviour is extremely sharp. 
Around z ~ 2 the mass gap rises rapidly for decreasing 
z and approaches the weak coupling expansion [7] 
from the right. In converting the results of  ref. [7] 
to the A L.scale we have used the one-loop perturba- 
rive result A~--g = 19.82 A L 03 = ~)  and neglected 1//3- 
corrections. Because of the extremely rapid increase 
of m for decreasing small z the picture would, how- 
ever, remain unaffected including 1//3-corrections, and 
a more detailed analysis like the one carried out in 
ref. [8] seems to be impossible for 4D lattice gauge 
theory. 

We have encircled MC data from different/3-values 
supporting a universal curve in the m-z-plane. Up to 
an instability of the/3 = 2.55 (43 X 32) result both 
figures are consistent and we obtain nearly identical 
shapes indicating the z-dependence of the mass gap. 
For large z the MC data approach 

m(0 +) = (175 + 25)A z , (5) 

in good agreement with previous MC estimates [4]. 
Fig. 1 clearly reveals that Li~scher's weak coupling ex- 
pansion does not yield information about the z -~ oo 
limit. In case of 2D o-models the situation is more 
subtle, see ref. [8]. 

Following the lines ofrefs. [9,10] we obtain the 
string tension K from correlations between Polyakov 
loops in the fundamental representation. Table 4 sum- 
marizes our final estimates for x/K [in analogy to ta- 
ble 2 for m(0+)], and table 5 illustrates for two ex- 
ample points (again/3 = 2.55, 43 X 32 and/3 = 2.70, 
43 × 64 lattice) the t-dependence of the string tension 
estimates K(t) (in analogy to table 3). The stability 
over many distances is quite impressive. Fig. 2 plots 

(in units of  AL) versus the variable 

z' = 3.5 vrg L. (6) 

The factor 3.5 is introduced to achieve 

z '  ~ z, (7) 

where z is defined by eq. (2). For completeness we 

206 



Table 5 
t dependence of string tension estimates K(t). 

t ~ = 2.55, 43 X 32 # = 2.70, 43 x 64 

2 0.0374 + 0.0006 0.0274 ± 0.0003 
3 0.0360 ± 0.0007 0.0262 ± 0.0003 
4 0.0359 + 0.0009 0.0260 + 0.0004 
5 0.0358 ± 0.0010 0.0259 ± 0.0005 
6 0.0359 ± 0.0012 0.0260 ~ 0.0006 
7 0.0360 ± 0.0013 0.0260 ± 0.0007 
8 0.0360 ± 0.0014 0.0261 ± 0.0009 
9 0.0357 ± 0.0016 0.0262 -+ 0.0011 

10 0.0356 ± 0.0019 0.0264 ± 0.0013 
i1 0.0357 ~ 0.0021 0.0267 ± 0.0015 
12 0.0357 ± 0.0024 0.0269 ± 0.0017 
13 0.0356 ± 0.0027 0.0270 ± 0.0020 
14 0.0356 ± 0.0030 0.0271 ± 0.0023 
15 0.0359 ± 0.0030 0.0272 ± 0.0028 
16 0.0355 ± 0.0040 0.0274 ± 0.0033 
17 0.0278 ± 0.0041 
18 0.0280 ± 0.0051 

final 0.0358 ± 0.0010 0.0259 ± 0.0005 
estimate 

have also included MC data o f  ref. [10] in fig. 2. The 

results are now as fol lows:  Fo r  decreasing z '  ~ 3 the 
string tension rises sharply, bu t  the crossover seems 

to be smoo the r  than in case o f  the mass gap. F o r  4 
< z '  < 5 our  MC data indicate universal behaviour  

and,a value 4 5 A  L < ~ < 5 0 A  L . For  larger z '  (up 
to z ~ 9.5) x / ~  rises smoo th ly  by  about  1 0 - 2 0 % .  It  
is, however ,  no t  comple te ly  clear whe the r  this behavi- 

our  is indeed universal or has to be a t t r ibu ted  to using 

too  small lattices. F o r  the sake o f  definiteness,  we 

have p lo t t ed  the z behaviour  o f  the finite size string 

tension implied by  the Cou lomb correc t ion  [13] 

= v , ~ {  1 _ rr [3(z, /3.5)2] -1}1/2 .  (8) 

Using our  data  for  z > 4, a least squares fit  to eq. (8) 

gives ~ = 61 A L . The est imate 

= (61 -+ 5 )A  L (9a) 

encloses all the data  used. Eq.  (8) relies on  unproven  

relations be tween  nonabel ian gauge theories and 

string theory.  Assuming instead o f  eq. (8) an expo-  
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Fig. 2. ~/String tension as a function of z' = 3.5 x /~  L in units of A L. Lattice sizes are indicated as in fig. 1. For completeness the 
following data points from ref. [10] axe included: ~ = 2.3 (63 X 24,8 a X 24),/~ = 2.4 (83 × 16) and/3 = 2.5 (63 × 24, 123 × 24). 

3 The 8 N t lattices are indicated by ~ and the 123 × 24 lattice by ~ .  
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nential approach to the asymptotic  value V ~  would 
lead to the estimate 

-- (54 + 5)A L (9b) 

and is in good agreement with previous results o f  ref. 
[10] ;see also refs. [4,13].  

Tables 2 and 4 show that  one may very well push 
for results at even larger/3-values and lattices. We plan 
to do  this in a similar investigation for the SU(3) gauge 
group, hoping that  the first-order deconfinement  phase 
transition which occurs on an L X oo  X o o  lattice will 
not  be an obstacle. 
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