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Abstract. Wilson loops in SU(2) lattice gauge theory 
without fermions are determined on lattices of size 
124 , 164 and 244 at /3=2.4, 2.5 and 2.6. At /3=2.6 
the static quark-antiquark potential is extracted 
for distances up to 8 lattice units. A string tension 
smaller by a factor 2 than in previous investigations 
is found. Deviations from asymptotic scaling for multi- 
plicatively improved Creutz ratios are certain, and 
their magnitude depends on the geometrical size of 
the ratios. This implies deviations from scaling. 

1. Introduction 

Although Monte Carlo measurements of planar Wil- 
son loops in pure lattice gauge theory are a straight- 
forward procedure, more effort may still be worth- 
while. Especially to find the magnitude of nonper- 
turbative effects, above all of the string tension, re- 
quires high precision in the region of small coupling 
constants g2. The same is true for the scaling prop- 
erties of the static qcT-potential (or, more generally, 
of Creutz ratios [1]). These give, as we believe, pre- 
sently the most accurate information on how close 
we are to the continuum limit. We therefore present 
an investigation of this potential on large lattices 
with a few thousand Monte Carlo iterations per 
value of/3 = 4/g 2. Large spatial extensions are, as it 
is well known, needed to avoid finite size effects for 
Wilson loops of large extension, which we need to 
determine the potential reliably at large distances. 
Furthermore we have to avoid to cross the finite 
temperature deconfining phase transition 1-2], which 
occurs at a fixed lattice size for increasing /3. We 
shall present evidence that finite size effects are very 
small at /3=2.4 for lattice sizes L=> 12, at least for 
objects (Wilson loops, Creutz ratios etc.) of size 4 or 

less. Since a shift from /3 = 2.4 to /3= 2.6 corresponds 
(as we shall see) to a change in scale by a factor 2, it 
is save to use L = 24 at p--2.6 for objects of size 8 or 
less. On the other hand, there are good indications 
that at /3=2.4 there is some suppression of Creutz 
ratios of length >3 on a 84-lattice. Therefore our 
choice of L is necessary for a determination of the 
potential. We also believe that meaningful scaling 
tests require large lattices, since it is not excluded 
that there exist several dimensionful quantities which 
scale differently. 

It has become customary to describe the scaling 
properties of a physical quantity by quoting A/3, i.e. 
the shift in /3 necessary to change the scale by a 
factor 2. It is by now well established [3-6, 10, 11] 
that, contrary to early optimism I-1, 7-9], A/3 differs 
substantially from the values predicted by two loop 
perturbation theory both in SU(2) and SU(3). There 
is a tendency to approach these values around /3 
=6.6 in SU(3). The question remains whether this 
deviation from asymptotic scaling is uniform, i.e. 
whether scaling of quantities at small and at large 
distances (and also of different nature) can be de- 
scribed by the same A/3. If not, the relation of finite 
/3 lattice studies to continuum physics is obscure. 

For such scaling tests, the string tension turns out 
to be an imperfect candidate, simply because it is 
rather small in our region of/3. The necessary sub- 
traction of nonleading terms of the potential at large 
R introduces severe systematic errors. On the other 
hand, scaling of Creutz ratios at finite lattice dis- 
tances suffers from sizable finite "a"  distortions 1-5] 
(a=lattice unit). It may be possible to remove these 
distortions by forming linear combinations of Creutz 
ratios and their generalizations 1-5, 19]. This, how- 
ever, makes it difficult, (as a consequence of reg- 
ularities of these scaling violations), to study scaling 
of objects of essentially different sizes, given the pre- 
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sently restricted region of available extensions. 
Therefore we apply a correction for finite "a" effects 
multiplicatively to individual ratios. We then find a 
significant dependence of A/? on the object size in 
the sense that small ratios change scale closer in 
accordance with two loop perturbation theory than 
large ones. 

2. Monte Carlo Summary 

In Table 1 we summarize the statistics collected for 
various /~ and lattice sizes. The action is the stan- 
dard one plaquette action, boundary conditions are 
periodic. F o r / ? =  2.4 and/~=2 .5  the icosahedral sub- 
group was used with Metropolis updating. One 
fourth of all Wilson loops was calculated after each 
sweep. At /~=2.6 2,000 iterations were performed 
with the same technique, then the configuration was 
converted to the continuous group (truncated to 
16 bit accuracy) and updated further with the heat- 
bath algorithm. The configuration had to be stored 
on disc and processed in sequence of timeslices. This 
might generate certain regularities when passing 
through the lattice during updating. In order to re- 
duce possible correlations, the lattice was turned 
after every 12 sweeps. Within the timeslices, a three- 
dimensional chessboard sequence was followed to 
update links. After 60 sweeps all Wilson loops in 
planes orthogonal to the current time direction were 
measured with the help of the multihit method [12]. 

The errors of the Wilson loops, which are listed 
in Table 2, are based on the bin sizes given in Ta- 
ble 1. For f l=2.6 it turned out that when each 
measurement was considered as being independent, 
only the errors of the smallest loops decreased. A 
comparison with 84 data from [13] with our 124 
data indicates moderate finite size effects at /? = 2.4, 
but none between 124 and 164 for Creutz ratios of 
size 4 x 4  at the level of 2%. This can be seen in 
Table 3, where Creutz ratios are given, with errors 
derived from averaging Creutz ratios. The ratios are 
in good agreement with those of [3], and they show 
little evidence for convergence as function of increas- 
ing size, especially at ]~=2.6. This was observed at 
first in [3], and it is now established up to size 6 x 6 

Table 2a-f. Expectation values of Wilson loops (with statistical 
errors) 

Table 2a: fl = 2.4 , L=I2, icosahedral group.Binning: 1000 sweeps. 
................................................................... 

R= 1 2 3 4 5 6 7 

T =I  0.629944 O. 424972 O. 291130 O. 200169 O. 137751 0.094822 O. 065266 
0.000033 0.000058 0.000067 0.000070 0.000067 0,000060 0.000054 

2 0,222318 0.123476 0.069802 0,039664 0.022593 0,012865 
0.000087 0.000091 0.000082 0.000066 0.000053 0.000043 

3 0.059058 0 . 0 2 9 3 5 1  0.014750 0.007456 0.003760 
0.000086 0.000071 0.000053 0.000044 0.000036 

4 0.013130 0.005977 0.002735 0.001280 

0.000059 0,000041 0.000031 0.000021 

5 0.002499 0.001036 0.000409 
0.000032 0.000027 0.000025 

............................................................... 

Table 2b: fl = 2.4 , L=16, icosahedral group.Binning: I00 mveeps. 
................................................................... 

R = I 2 3 4 

T=I 0 . 6 2 9 9 6 5  0 . 4 2 5 0 1 3  0.291195 0 . 2 0 0 2 2 9  
0 . 0 0 0 0 3 4  0 . 0 0 0 0 6 1  0 . 0 0 0 0 7 4  0 . 0 0 0 0 7 4  

2 0 . 2 2 2 4 1 7  O, 123580 0 . 0 6 9 8 6 7  
0 . 0 0 0 0 9 8  0 , 0 0 0 1 0 2  0 . 0 0 0 0 8 3  

3 0.059100 0.029345 
O. 000097 0,000072 

4 0 . 0 1 3 0 9 2  
O. 000054 

5 

5 6 7 

0 , 1 3 7 7 9 5  0 . 0 9 4 8 5 4  0 , 0 6 5 2 7 9  
0 . 0 0 0 0 7 0  0 . 0 0 0 0 6 2  0 , 0 0 0 0 5 4  

0 . 0 3 9 7 1 2  0 . 0 2 2 6 0 6  0 . 0 1 2 8 4 1  
0 . 0 0 0 0 6 7  0 . 0 0 0 0 5 1  0 . 0 0 0 0 4 0  

0 . 0 1 4 7 4 7  0 . 0 0 7 4 8 2  0 . 0 0 3 7 9 2  
0.000050 0.000038 0.000028 

0.005977 0.002712 0.001249 
0.000038 0.000031 0.000021 

0.002513 0.001061 0,000410 
0.000029 0.000023 0.000017 

T a b l e  2 c :  fl = 2 . 5  , L=12,  i c o s a h e d r a l  g r o u p .  Binning: I000 m~,eeps. 
................................................................... 

R = 1 2 3 4 

T=I 0 . 6 5 1 9 7 5  0 . 4 5 6 4 3 8  0 . 3 2 4 7 2 6  0 . 2 3 1 9 3 3  
O. 000032  O. 000057  O. 000077  O. 000084  

2 O. 258065  O. 154995 0 . 0 9 4 7 5 9  

0 . 0 0 0 1 0 6  0 0 0 0 1 2 5  0 . 0 0 0 1 2 2  

3 0 , 0 8 3 3 0 0  0 . 0 4 6 4 3 7  

0 . 0 0 0 1 2 8  0 . 0 0 0 1 2 1  

4 0 . 0 2 4 1 2 4  

0 . 0 0 0 1 1 2  

5 

5 6 7 

0.165820 0.118597 0.084838 

0.000082 0.000075 0.000068 

0,058252 0.035870 0.022140 

0,000109 0.000086 0.000066 

0.026203 0.014889 0.008507 

0.000109 0.000083 0.000057 

0.012773 0.006843 0.003675 

0.000086 0.000059 0 , 0 0 0 0 4 4  

0 . 0 0 6 4 5 1  0 . 0 0 3 3 1 8  0 . 0 0 1 7 0 0  

0 . 0 0 0 0 6 4  0 . 0 0 0 0 3 7  0 , 0 0 0 0 4 1  

0.001561 0.000751 
0 . 0 0 0 0 4 3  0 0 0 0 0 2 7  

Table 2d: ~ = 2.5 , L=24. icosahedral group. Binning: 150 sweeps. 
................................................................... 

R = I  2 3 4 5 6 7 

T=I 0.651968 0.456450 0.324731 0.231917 0,165798 0.118563 0.084811 

0.000020 0.000040 0,000031 0.000018 0000020  0.000035 0.000031 

Table 1. Statistics collected at various fl and lattice sizes 

B L Oroup ~o. o~ sweeps binning 
sweeps discarded 

2.4 12 Icos. 27 000 I000 I000 
16 Icos. 6 700 1500 100 

2.5 12 Icos. 22 000 1000 1000 

24 Icos. 3 000 I000 150 
(several lattices in parallel) 

2.6 24 Cont. 8 000 2000 (4000) 480 
(2 000 with icosabedral group) 

.................................................. 

2 0.258062 0.154998 0.094738 0.058215 0.035850 0 . 0 2 2 0 8 7  

0 . 0 0 0 0 7 5  0 . 0 0 0 0 5 5  0 . 0 0 0 0 6 8  0 . 0 0 0 0 6 3  0 . 0 0 0 0 5 7  0 . 0 0 0 0 4 4  

3 0.083319 0.046425 0.026171 0.014813 0.008405 

0.000080 0.000067 0.000057 0.000047 0.000050 

4 0.024077 0.012714 0.006798 0.003514 

0.000061 0.000045 0.000033 0.000016 

5 0.006368 0.003243 0,001636 

0.000039 0.000022 0.000023 
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T a b l e  2 e :  ~ = 2 . 6  , L=24,  f u l l  g roup .  
Binning: 480 sweeps, first 2000 sweeps included. 

................................................................... 

R=I 2 3 4 5 6 7 8 
T 
1 .669947 0.482145 0.352568 0.258798 0.190183 0.139804 0.102777 0.075558 

.000055 0.000052 0.000063 0,000059 0.000059 0.000053 0.000046 0.000040 

2 0 . 2 8 7 5 5 8  0.181825 0 . 1 1 6 9 1 5  0 . 0 7 5 5 9 0  0 . 0 4 8 9 7 8  0 . 0 3 1 7 6 2  0 . 0 2 0 6 0 3  
0 . 0 0 0 0 6 2  0 . 0 0 0 0 7 0  0 . 0 0 0 0 6 5  0 . 0 0 0 0 5 4  0 . 0 0 0 0 4 2  0 . 0 0 0 0 3 4  0 . 0 0 0 0 2 6  

3 0 . 1 0 5 0 1 0  0 . 0 6 2 7 8 2  0 . 0 3 7 9 8 1  0 . 0 2 3 0 8 4  0 . 0 1 4 0 5 3  0 . 0 0 8 5 6 1  
0 . 0 0 0 0 7 2  0 . 0 0 0 0 6 2  0 . 0 0 0 0 4 6  0 . 0 0 0 0 3 6  0 . 0 0 0 0 2 7  0 , 0 0 0 0 1 9  

4 0.035578 0.020552 0.011958 0.006982 0.004082 
0.000050 0.000037 0.000027 0.000019 0.000013 

5 0.011426 0.006418 0.003623 0 . 0 0 2 0 4 8  
0.000027 0.000021 0.000015 0.000010 

6 0.003493 0.001915 0.001053 
0.000016 0.000011 0.000008 

7 0.001022 0 . 0 0 0 5 4 8  
0 . 0 0 0 0 0 7  0 . 0 0 0 0 0 5  

8 0 . 0 0 0 2 8 9  
0,000003 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T a b l e  2 f :  B = 2 . 6  , L = 24 ,  f u l l  g roup .  
Binning: 480 sweeps, first 2000 s~:eeps omitted. 

........................................................................ 

R=I 2 3 4 5 6 7 8 
T 
1 . 669941  0 . 4 8 2 1 0 0  0 . 3 5 2 5 2 0  O. 258742  O. 190138 O. 139779  O. 102760 0 . 0 7 5 5 4 4  

. 0 0 0 0 6 3  O. 000067  O. 000077  O. 000087  0 . 0 0 0 0 8 3  O. 000068  0 . 0 0 0 0 6 3  0 . 0 0 0 0 5 0  

2 0 . 2 8 7 4 9 7  0 . 1 8 1 7 8 7  0 . 1 1 6 8 7 4  0 . 0 7 5 5 6 1  0 . 0 4 8 9 5 8  0 . 0 3 1 7 4 8  0 . 0 2 0 5 9 4  
0 . 0 0 0 0 7 4  0 . 0 0 0 0 9 3  0 . 0 0 0 0 8 8  0 . 0 0 0 0 7 2  0 . 0 0 0 0 5 8  0 . 0 0 0 0 4 6  0 . 0 0 0 0 3 5  

3 O. 104981 O. 062750  O. 037956  O. 023067  O. 014044  O. 008556  
0 . 0 0 0 1 0 2  0 . 0 0 0 0 8 7  0 . 0 0 0 0 6 5  0 . 0 0 0 0 5 0  0 . 0 0 0 0 3 7  0 . 0 0 0 0 2 6  

4 0 . 0 3 5 5 5 6  0 . 0 2 0 5 3 5  0 . 0 1 1 9 5 0  0 . 0 0 6 9 8 0  0 . 0 0 4 0 8 2  
0 . 0 0 0 0 7 0  0 . 0 0 0 0 5 0  0 . 0 0 0 0 3 6  0 . 0 0 0 0 2 6  0 . 0 0 0 0 1 7  

5 0 . 0 1 1 4 1 6  0 . 0 0 6 4 1 6  0 . 0 0 3 6 2 4  0 . 0 0 2 0 5 1  
0 . 0 0 0 0 3 4  0.000025 0.000018 0 . 0 0 0 0 1 2  

6 0 . 0 0 3 4 9 5  0 . 0 0 1 9 1 8  0 . 0 0 1 0 5 7  
0.000017 0.000013 0.000009 

7 0.001024 0.000553 
0 . 0 0 0 0 0 8  O. 000006  

.0002924  

.0000034  
8 

T a b l e  3b:  ~ = 2 . 4 ,  L = 16 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

R = 2 3 4 5 

T=2 0 . 2 5 4 0 2  
0 . 0 0 0 2 3  

3 0 . 2 0 9 5 4  0 . 1 5 0 0 0  

0.00030 0.00055 

4 0.1958 0.1298 0.1070 
0.0003 0.0007 0.0020 

5 0 . 1 9 1 2 4  0 . 1 2 3 2  0 . 0 9 6 0  0 . 0 8 2  

0 . 0 0 0 5 6  0 . 0 0 1 2  0 . 0 0 3 4  0 , 0 1 2  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Table 3c: ~ = 2 . 5 ,  L = 12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

R= 2 3 4 5 

T=2 0 . 2 1 3 6 9  
0 . 0 0 0 2 2  

3 0 . 1 6 9 3 5  0 . 1 1 1 1 5  
0 . 0 0 0 3 0  0 . 0 0 0 3 7  

4 0.15553 0.0923 0.0707 
0,00037 0.0007 0,0012 

5 0.15103 0.0856 0.0638 0.0476 
0.00048 0.0012 0.0013 0.0037 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T a b l e  3d: $ = 2 . 5 ,  L = 24 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

R = 2 3 4 5 

T=2 0 . 2 1 3 7 6  
0.00016 

3 0.16954 0.11085 

0 . 0 0 0 3 7  0 . 0 0 0 5 4  

4 0 . 1 5 5 5 5  0 . 0 9 3 2  0 . 0 7 1 1  
0 . 0 0 0 3 2  0 . 0 0 0 8  0 . 0 0 1 1  

5 0.15138 0.0860 0.0652 0,0513 
0.00041 0.0011 0.0017 0.0029 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Table 3a~e. Creutz ratios z(R, T) with statistical errors 

T a b l e  3a :  $ = 2 . 4 ,  L = 12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

R = 2 3 4 5 

T=2 0 . 2 5 4 3 1  

0 . 0 0 0 1 8  

3 0 . 2 0 9 8 1  0 . 1 4 9 4 6  
0 . 0 0 0 2 6  0 . 0 0 0 4 6  

4 0 . 1 9 5 7 6  0 . 1 2 8 8 0  0 . 1 0 5 8  
0 . 0 0 0 3 7  0 . 0 0 0 6 3  0 . 0 0 1 7  

5 0 . 1 9 1 5 1  0 . 1 2 2 9  0 . 0 9 8 8  0 . 0 8 5 1  

0 . 0 0 0 4 3  0 . 0 0 1 0  0 . 0 0 2 6  0 . 0 0 9 3  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Table 3e: $ = 2.6, L = 24 , first 2000 sweeps omitted 
............................................................. 

3 4 5 6 7 8 R~ 2 

T=2 0 . 1 8 7 9 0  
0 . 0 0 0 1 2  

3 0 . 1 4 5 3 4  0 . 0 9 0 6 8  
0 . 0 0 0 1 6  0 . 0 0 0 1 9  

4 0 . 1 3 2 4 6  0 . 0 7 2 9 0  
0 . 0 0 0 1 6  0 . 0 0 0 2 4  

5 0 . 1 2 8 0 8  0 . 0 6 6 5 9  
0 . 0 0 0 1 5  0 . 0 0 0 2 4  

6 0 . 1 2 6 2 9  0 . 0 6 4 0 9  
0 . 0 0 0 1 8  0 . 0 0 0 2 4  

7 0 . 1 2 5 4 7  0 . 0 6 3 0 6  
0 . 0 0 0 2 1  0 . 0 0 0 2 9  

8 0.12516 0 . 0 6 2 8 4  

0 . 0 5 3 4 7  
0 . 0 0 0 3 4  

0 . 0 4 6 2 8  0 . 0 3 8 1 8  
0 . 0 0 0 3 4  0 . 0 0 0 5 0  

0.04336 0.03491 0.03153 

0.00038 0.00050 0.00086 

0 . 0 4 1 6 3  0 . 0 3 3 4 9  0 . 0 2 9 1  0 . 0 2 7 3  
0 . 0 0 0 4 8  0 . 0 0 0 5 7  0 . 0 0 1 1  0 . 0 0 2 0  

0 . 0 4 0 7 8  0 . 0 3 2 9 7  0 . 0 2 6 7  0 . 0 2 1 5  0 . 0 2 0 4  
0.00024 0.00040 0.00057 0.00090 0.0014 0.0021 0.0046 

............................................................. 
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Table 4a-f. Ratios Vr(R ) defined in (1) with statistical errors 

T a b l e  4 a :  fi = 2.4, L = 12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T = 2 3 4 5 6 7 

R = I ,  0.39361 0.37825 0.37461 0.37371 0.37344 0.37353 
0 . 0 0 0 0 9  0 . 0 0 0 1 0  0 . 0 0 0 1 3  0 . 0 0 0 1 5  0 . 0 0 0 1 8  0 . 0 0 0 2 4  

2 0.64791 0.58806 0.57037 0.56522 0.56280 0.5631 
0.00026 0.00035 0.00047 0,00053 0.00092 0.0013 

3 0.85773 0.73753 0.6992 0.6881 0.6822 0.6846 
0.00051 0.00075 0.0010 0.0013 0,0029 0.0046 

4 1 . 0 5 3 4 9  0.8663 0.8045 0.7869 0.7817 0.760 

0.00085 0.0013 0.0023 0.0032 0.0063 0.012 

5 1.2450 0.9892 0.9033 0.872 0.881 0.929 
0.0012 0.0021 0.0042 0.010 0.019 0.045 

Table 4b: ]9 = 2 . 4 ,  L = 16 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T = 2 3 4 5 6 7 

R=l 0 . 3 9 3 5 5  0 . 3 7 8 1 3  0 . 3 7 4 5 3  0 . 3 7 3 7 0  0.37343 0 . 3 7 3 6 6  

0 . 0 0 0 0 9  0 . 0 0 0 1 2  0~00013  0 . 0 0 0 1 7  0 . 0 0 0 1 9  0 . 0 0 0 2 5  

2 0 . 6 4 7 5 6  0 . 5 8 7 6 6  0 . 5 7 0 3 0  0 . 5 6 4 9 4  0 . 5 6 3 4 3  0 . 5 6 5 6  

0 . 0 0 0 3 1  0 . 0 0 0 4 0  0 . 0 0 0 4 1  0 . 0 0 0 6 2  0 . 0 0 0 9 1  0 . 0 0 1 4  

3 0.85710 0.73767 0.70011 0.6881 0.6785 0.6795 
0.00059 0.00087 0.00095 0.0015 0.0025 0.0051 

4 1 . 0 5 2 8 7  0 . 8 6 7 5  0 . 8 0 7 1  0 . 7 8 4 1  0 . 7 9 0 4  0 . 7 7 5  

0 . 0 0 0 8 6  0 . 0 0 1 4  0 . 0 0 2 3  0 . 0 0 3 7  0 . 0 0 7 7  0 . 0 1 4  

5 1 . 2 4 4 1  0 . 9 9 0 6  0 . 9 0 8 1  0 . 8 6 6  0 . 8 6 3  0 . 9 5 0  

0 . 0 0 1 3  0 . 0 0 2 0  0 . 0 0 4 4  O.Olt 0 . 0 2 2  0 . 0 4 5  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T a b l e  4c:  fl = 2 . 5 .  i = 12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T = 2 3 4 5 6 7 

R=I 0.35655 0.34047 0.33654 0.33554 0.33518 0.33499 
0.00008 0.00012 0.00013 0.00015 0.00017 0.00022 

2 0.57024 0.50982 0.49207 0.48657 0.48491 0.48257 

0.00029 0.00041 0,00049 0.00060 0.00065 0,00093 

3 0 . 7 3 9 6  0 . 6 2 1 0  0.5844 0 . 5 7 2 3  0.5654 0.5598 

0.0006 0.0007 0,0011 0.0017 0.0017 0.0024 

4 0,8951 0.7133 0.6551 0.6361 0 . 6 2 4 4  0.6223 
0.0010 0.0014 0.0022 0.0024 0.0034 0.0059 

5 1.0466 0.7990 0.7189 0,6837 0.6651 0.674 
0 . 0 0 1 4  0 . 0 0 2 4  0.0028 0 , 0 0 4 6  0.0050 0.016 

6 1.1959 0,8796 0.7778 0,7244 0,761 0.736 
0.0018 0.0033 0.0040 0.0056 0.020 0.027 

...................................................... 

Table 4d: ~ = 2.5, L = 24 
....................................................... 

T = 2 3 4 5 6 7 

R=I 0.35652 0.34059 0,33649 0.33562 0.33533 0.33502 
0.00009 0.00015 0.00015 0.00011 0.00020 0.00015 

2 0.57028 0.51013 0.49205 0.48700 0.48468 0.48436 
0.00021 0,00050 0.00035 0,00048 0.00061 0.00052 

3 0.73982 0.62098 0.58521 0.57303 0.5697 0.5684 
0.00048 0.00078 0.00078 0.00077 0.0015 0.0041 

4 0.89537 0.71414 0.65626 0.6383 0.6260 0.6302 

0.00069 0.00145 0.00092 0.0022 0.0023 0.0055 

5 1.0468 0.8002 0.7215 0.6896 0.6751 0.6844 

0.0011 0.0016 0.0011 0 . 0 0 4 3  0 . 0 0 1 4  0.0096 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T a b l e  4 e :  ~ = 2 . 6 ,  L = 24 ,  I i x s t  2000 i t e r a t i o n s  i n c l u d e d  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T = 2 3 4 5 6 7 8 

R=I 0.32895 0.31300 0,30920 0.30806 0.30774 0.30768 0,30766 
0.00005 0.00006 0.00008 0.00008 0.00009 0.00010 0.00011 

2 0 . 5 1 6 8 2  0 . 4 5 8 3 8  0 . 4 4 1 6 0  0 . 4 3 6 1 3  0 . 4 3 3 9 4  0 , 4 3 3 1 0  0 . 4 3 2 8 4  

0 . 0 0 0 1 3  0 , 0 0 0 1 6  0 . 0 0 0 1 7  0 . 0 0 0 1 6  0 . 0 0 0 1 7  0 . 0 0 0 2 1  0 . 0 0 0 2 1  

3 0.66220 0.54899 0.51438 0.50257 0.49794 0.49631 0.49562 
0.00022 0.00029 0.00032 0.00032 0.00034 0.00035 0.00044 

4 0.79460 0.62178 0,56795 0.54877 0.54159 0.53798 0.53678 
0.00032 0,00044 0.00053 0.00054 0.00053 0.00062 0.00067 

5 0.92267 0.68822 0.61415 0.5871 0.5768 0.5718 0.5704 

0.00042 0.00059 0.00074 0~0009 0.0009 0.0009 0.0011 

6 1.04887 0.75222 0,65780 0.6223 0.6082 0.6010 0.5979 

0.00054 0.00075 0.00092 0.0012 0,0014 0.0012 0.0017 

7 1.17429 0.81543 0.6995 0.6562 0.6373 0.6285 0.6225 
0.00069 0.00088 0.0012 0.0015 0.0016 0.0021 0.0027 

8 1.29947 0.8782 0.7406 0.6898 0.6648 0.6531 0.6411 
0.00083 0.0011 0.0014 0.0018 0.0022 0.0030 0.0049 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Table 4f: ~ = 2.6, L = 24, first 2000 itera%ions excluded 
.............................................................. 

T- 2 3 4 5 6 7 8 

R=l 0.32904 0131305 0.30927 0.30808 0.30769 0,30767 0.30768 
0.00005 0.00008 0.00009 0.00009 0,00010 0.00011 0.00012 

2 0.51694 0.45838 0.44173 0.43616 0.43398 0.43313 0 43283 
0.00015 0.00021 ODO021 0.00019 0.00021 0.00025 0.00025 

3 0.56227 0.54905 0.51462 0.50274 049804  0.49616 0.49563 
0 . 0 0 0 2 9  0 . 0 0 0 3 7  0 0 0 0 4 1  0 , 0 0 0 3 9  0 . 0 0 0 4 0  0 , 0 0 0 4 4  0 . 0 0 0 5 5  

4 0.79473 0.62194 0.56806 0.54898 0.54137 0.53774 0.53636 
0.00042 0.00057 0.00068 0,00064 0.00061 0.00071 0.00081 

5 0.92281 0.68851 0.61430 0.58710 0.57621 0.5711 0,5692 

0.00054 0.00075 0.00090 0.00089 0.00092 0.0011 0.0013 

6 1.04910 0.75258 0.6576 0.6219 0.6076 0.6001 0.5957 
0.00070 0.00093 0.0011 0.0012 0,0014 0.0015 0.0020 

7 1.1746 0.8156 0.6992 0.6553 0.6366 0.6272 0.6169 
0,0011 0.0012 0.0012 0.0014 0.0019 0.0022 0.0026 

8 1.2997 0.8784 0.7399 0.6882 0.6631 0.6484 0 6 3 6 6  
0 . 0 0 1 3  0 . 0 0 1 4  0 . 0 0 1 4  0 . 0 0 1 8  0 . 0 0 3 1  0 , 0 0 2 4  0 . 0 0 4 9  

beyond any doubt, and up to 7 x 7 with 90% con- 
fidence. 

At /3=2.6 we find, that large Wilson loops from 
the first 2,000 sweeps are systematically lower than 
those from the rest. This leads to a 2 standard 
deviation effect in Creutz ratios with size > 5 and to 
even larger differences for the ratios Vr(R ) consid- 
ered below. Although this trend is not fully signifi- 
cant by itself, we consider it as real as it shows up 
also in other runs. Therefore the results both for the 
full sample and for the sweeps after the first 2,000 
iterations are quoted separately in Tables 2 and 4. 

3. The q@Potential 

We now proceed to analyze the Wilson loop expec- 
tation values W(R, T) with respect to the static q~- 
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Table 5. Eigenvalues )~1(R), lattice potentials V(R) and fits to 
V(R). l/c(R)=lattice potential corrected for finite a effects. VcL(R ) 
=fit to gc(R ) of the form -e/R+C+K*R. VB(R)=two loop 
continuum potential with AR=20.78A L. VBT(R)=one parameter 
potential of [18] with K=0.008. fl=2.6, first 2,000 iterations 
included with half weight 

R ~,IR) ~(R) vc(R) Vcz(R) v,(R) v,~(R) 

1 0.3077 (1) 1.43(4) 0,3237 0.3217 0.3237 0.324 
2 0.4327 (2) 1.38(2) 0.4407 0.4432 0.4353 0,455 
3 0,4953 (5) 1.44(2) 0.4980 0.4979 0.4809 0,514 
4 0.5359 (7) 1.40(2) 0.5369 0.5359 0,5073 0,551 
5 0.5684(10) 1.42(3) 0.5688 0.5672 0.5252 0,579 
6 0.5950(16) 1.37(5) 0.5952 0,5951 0.5384 0.601 
7 0,6174(28) 1.31(7) 0.6175 0.6211 0.5486 0.620 
8 0.6303(55) I~25(9) 0.6309 0,6459 0.5574 0,637 

As(R) : 2.64(15) 

potential, concentrating on fl=2.6. In Tables 4d, e 
the logarithms of ratios are given which converge to 
V(R) for T ~  oo : 

VT(R)= - l n  W(R, T)/W(R, T -  1). (1) 

Clearly a limit is not reached within errors for T < 8 
and R=>4. We extrapolate to T--*oo by the ansatz 
[-14] 

N 

W(R, T) = y, c,(R) e x p ( -  2,(R) T). (2) 
n=J. 

The exponents 2,(R) are the eigenvalues of the trans- 
fer matrix [-15] with 21(R)= V(R). The smallness of 
our errors just allows for a fit with N = 3 ,  including 
all T <8. The fit favours the largest eigenvalue 23(R ) 
to be independent of R. This can be understood by 
assuming that for very asymmetric W(R, T) the vari- 
ation with respect to the length of the smaller side is 
given only by short range correlations among links 
on the larger side. In Table 5 the values 2,(R) are 
shown. The analysis includes the first 2,000 iter- 
ations with half statistical weight. The errors quoted 
in Table 5 were obtained by subdividing the sample 
into 6 subsets. They agree within 20}/0 with those 
obtained if we leave 23(R ) free and vary 2~(R) such 
that the fit misses Vs(R ) by 1 s.d. 

It is impossible to assign systematical downward 
errors to V(R), since we never can exclude contri- 
butions from an eigenvalue ,~,(R) close to 2j(R) 
which would allow to lower 21(R ) and cl(R ). The 
upward systematical errors are not independent of 
the statistical ones. The positivity of the c,(R) re- 
quires that the differences between successive VT(R ) 
decrease at most exponentially. This does not allow 
to extrapolate to values V(R) higher than those 
given in Table 5 while reproducing the Vr(R ). 

Before turning to an interpretation of V(R), a 
correction for finite lattice spacing should be ap- 

Vc(R) 

0.7 VGM(R) 
/ 

. /  
/ 

/ . . / l l  

.//>;" 0.6 

#,~ VBIR } 
/<7 

/ /2" 

/ / ~  ~ V e {R) 

04 / /  i s V~(R)-V~(R 

0.3 ~ ~ ~ I • 

I I I I I I I [ 
1 2 3 /, 5 6 7 8 >R 

Fig. 1. Lattice potential Vc(R), compared to a) Ycz(R), see (5), 
b) VGM(r), see (5) with the parameters of [3], c) VB(R), see (9) and 
d) VBr(R), see text and [18] 

plied. The propagator, for infinite volume, departs 
from the Coulomb form 1/R by a few percent at 
small R: 

AL(R)=~ i d3k 
(2~) 3 

cosklR 

sin2 kj 
i = 1 , 3  2 

1.081 R = I  

=~1 /1 1 .),  R>2 .  (3) 
t + 7  +.. 

Since all fits to V(R) will lead to a short range 
Coulomb contribution of the form - (0.20_+ 0.02)/R, 
we add 

A V(R) = 0.2(At(R)-  1/R) (4) 

to obtain a potential Vc(R), which is presumably 
closer to the continuum potential than V(R). This 
potential is listed in the third column of Table 5. 

The potential Vc(R ) is sufficiently accurate to 
exclude the standard Coulomb plus linear approxi- 
mation 

VcL(R) = -- ~/g + C + KR (5) 

as a good interpolation. In Fig. 1 we show the differ- 
ence between this ansatz and Vc(R), where e=0.201 
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+0.003 and K=0.0213_+0.0003. Better fits are ob- 
tained after inclusion of a logarithmic correction to 
the Coulomb term, which corresponds to a coupling 
constant increasing with R: 

VL(R ) = -- a(1 + 7 lnR)/R + C + KR. (6) 

This ansatz leads to a noticably smaller string ten- 
sion, namely K = 0.0164 +0.0003 with a = 0.254 
+0.003 and 7=0.3. The increased value of a is due 
to the fact, that the inclusion of the logarithmic term 
decreases the force for small R. 

The interpolation VG~(R ) of the form (5), ob- 
tained in [3] with K=0.0287, is also included in 
Fig. 1 and is seen to be in strong disagreement with 
V~(R) for R >5 .  Obviously the string tension K is 
considerably smaller than previous estimates. 

The interpretation of V~(R) by a fluctuating string 
[16] suggests to use the ansatz 

Vs(R)= - rc/12R + C + KR (7) 

only for R > R  o with R o not too small. We obtain 

~0.0156 ___ 0.0015 R o = 4  
K = (0.0145 +0.0019 R0=5" (8) 

The fit, however, is not very good, and for a free one 
obtains c~ = 0.45 ___ 0.07 instead of 7r/12. We observe 
that the fluctuating string picture has little phenome- 

nological support at these distances. Accepting I / K  

=0.12/a and 1 /K=0 .42  GeV we have a=0.06 Fermi 
at fi=2.6. Now ( P . ) ,  the transverse momentum of 
hadrons generated by a breaking of the string is of 
the order of 1/c5, where 6 is the thickness of the 
string. From ( P •  we obtain ~ 0 . 5  Fer- 
mi, i.e. for R = 8 the string would be as long as thick. 
Therefore the nonleading expansion terms of V(R) 
for R ~ o o  are unknown, leading to considerable 
uncertainty in K. It may be, however, that the in- 
clusion of fermions changes the scale in such a way 
that our arguments no longer apply. 

The potential difference Vc(2 ) -  Vc(1 ) is already 
quite close to the two-loop, renormatization group 
improved result for the force, 

V'(R) = - czR/4~zR 2 (rio ln(RAR)- 2 

+ fla/flo lnln(RAR) 2} (9) 

with 

C2R = 3/4, fi0 = 22/3 (2 re) 2, fit = 136/3 (2 n) 4. (10) 

The scale parameter A R is related to the standard 
lattice scale parameter A L by [17] 

A R =20.78 AL, (11) 

where 

AL=a-  1(fiog2)-lL/2~o2 exp(-- 1/2fi092). (12) 

In order to suppress the singularity of (9) for RA L 
= 1, we have substituted RAR--,RAR/(1 +RAR). With 
this modification we show the integrated form of (9) 
in Fig. 1 as the curve VB(R ), normalized to Vc(R ) at 
R =  1. When the difference between this curve and 
Vc(R ) is interpreted as being due to an almost linear 
piece in Vc(R ) for R > 4, we obtain 

K =0.011 _+0.0015. (13) 

Finally in the last column of Table 5 the one param- 
eter potential VBr(R ) of Buchmiiller and Tye [18] is 
listed, with K optimized to K=0.008.  This small 
value should not be taken seriously, since VBr(R ) 
fails to describe Vc(R ) quantitatively, as it is ap- 
parent in Fig. 1. The deviations may be understood 
qualitatively by the large A parameter characteristic 
for the BT-potential. 

Although it is remarkable, how close the lattice 
potential is to reasonable phenomenological poten- 
tials, the importance of this should not be over- 
estimated. In the next section we present evidence 
that the potential does not scale, and therefore the 
potential for very large/ /  may have a form different 
from the present one. 

4. Scaling 

The improved accuracy of Creutz ratios, as com- 
pared to [3], will allow more precise statements 
about deviations from "asymptotic scaling", which 
means e.g. a fl-dependence of K/A~. We further- 
more are in the position to test scaling itself, al- 
though the systematic uncertainties due to finite "a"  
effects are a series problem. Previously [3] we at- 
tempted to test scaling of the potential in the follow- 
ing way: If VI(fl, R) are interpolating functions to 
V(fl, R) at two different fl, we searched for a ~12 such 
that 

~2 V/(fil, R ~  2)= Vz(fi2, R). (14) 

With the new data this test works qualitatively for 
fi1=2.6 and fi2=2.5, if we use VcL(R ) as interpolat- 
ing function. There are, however, discrepancies in 
the order of 5 + 10~o between both sides of (14), and 
we obtain a larger 412 when restricting the fit to 
R > 3  as when we take R > I .  Although this is, we 
believe, significant evidence for scale breaking, we 
shall not elaborate on it, since the interpolation of 
Vc(R ) by VcL(R ) is not good enough, and further- 
more the corrections due to lattice artifacts are quite 
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complicated here. We therefore turn to the ratio test 
for scale changes by a factor 2, using Wilson loops 
at /3=2.6 and, for comparison, loops interpolated 
between those a t /3=  2.3, 2.35 and 2.4. 

The general Creutz ratios )~(1) with l=  {11...18}, 

)/(1) = - in [W(I1, 12) W(I a, 14)/W(15 , 16) W(17, 18)] (15) 

and 

ll +12+I3+I4=15+16+17+18, 

do not scale in perturbation theory [5] for finite 1. 
The pattern of the scaling violations can be, at least 
for elongated loops (11>12 etc), read off from the 
tree level potential (3). For  the force at R > 3  one 
obtains a nonscaling factor 1 + 3/4R 2 with respect to 
the scaling 1/R potential, which leads to a "positive" 
violation: An elongated ratio corresponding to a 
potential difference between R and R - 1  will, for 
R > 2 ,  be larger than the ratio of size 2R. On the 
contrary, between R = I  and R = 2  the violation is 
negative due to the irregular behaviour of the prop- 
agator at R = I .  This pattern of scaling violation 
holds also for square ratios and survives in one loop 
approximation, as an analysis of the results of [19] 
shows. 

In the "improved ratio method" one linearly 
combines, on the one loop level, ratios with positive 
coefficients [5], 

~(l,/3)= ~ Q,h),~(li,/3). (16) 
i = 1 , 3  

One demands that scaling holds for perturbatively 
calculated ratios ~p(l,/3) up to O(g4): 

)~p(l,/3) = Zp(2 l,/3 + A/3p) (17) 

and 

AL(/3 ) = 2 AL(/3 + A tip). (18) 

The hope is that the same linear combinations of 
:~(1,/3), determined by Monte Carlo simulation, are 
free of lattice artifacts. Now the general argument 
given above tells us that in this method we have to 
combine such ratios, where at least one side has 
length one, with larger ratios. Thus possible scaling 
violations will be washed out. Presently only sizes 
up to 3 • 4 (6 x 8 on the large lattice) are available 
with good accuracy, which leaves, after superpo- 
sition of various sizes, little room to look for a size 
dependence of A ft. 

In order to overcome this, we shall make a 
somewhat stronger assumption. Let us define %(1,/3) 
by 

C p(l, /3) Zp(l, fl) = Zp(21, /3 + A tip) (19) 

Table 6. Ratio test for small loops at fi=2.6. Unimproved ratios 
(Cp= 1), tree level improved (Ce.~r~,) and one loop level improved 
ratios (Ceaoop) 

l j - 1 4  l s - l s  
2211 2121 
22 31 
2221 4111 
2222 4121 
3122 4121 
3211 2221 

C r = l  CF =Cp.trec Cp =Cp.*.Ol, 
0.2627 0.2339 0.2413(14) 
0.2910 0.2545 0.2409(15) 
0.3230 0.2821 0.2480(16) 
0.2918 0.2572 0.2428(15) 
0.2927 0.2598 0.2448(14) 
0.1931 0.1975 0.2481(16) 

at the one loop level (in tree approximation one has 
to take A/3p=0). We now assume that the Monte 
Carlo ratios obey the same scaling relations, i.e. that 
the nonperturbative contributions to ratios violate 
scaling (due to lattice artifacts) by the same factor as 
the perturbative Zv do. This may be called multipli- 
cative improvement. The assumption is as ad hoc as 
the linear superposition procedure is. Of course, it 
may happen that higher order perturbative contri- 
butions show no scaling violations at all. In this case 
(17) still holds, whereas our %(1,/3) deviate from 1 
stronger than the correct ones. We shall discuss the 
consequence of this possibility below. 

In the following we shall test scaling under the 
hypothesis that multiplicative improvement is al- 
lowed. Then we can test scaling for individual l 
without the need to combine small 1 and large l 
ratios. It is, however, still somewhat arbitrary how 
to define the )~p(l, fi), given [19] the W(i,j) up to 
O(g4). Here we first convert the expansion for W(i,j) 
into one for In W(i,j) and then "Paddize" the xp(l, fl) 
according to 

zp(l, fi) = g2 Z~2)(l) + g4 Z<p4)(1) + 0 (g6) 
~ g ~  Z~)(/)/(1 - g~ Z~'~(t)/z~(t)). (20) 

In this form the %(l, fl) differ from the tree level 
%(I, fl) in most cases by only few percent. 

Our procedure can be shown a posteriori to work 
reasonably well by comparing scaling for ratios of 
similar small size. In Table 6 we list Aft for ratios 
involving the smallest loops, where A/~ is now de- 
fined by 

%(I, fia) Z( l, 2.6 -- A fi) = Z(2 l, fi = 2.6). (21) 

Here flA=2.323 is the fl-value related to fl=2.6 by 
asymptotic scaling. The ratios at f l = 2 . 6 - A f i  are 
derived from linear interpolations between our data 
at f i=2.4 and those from [13] at fi=2.35. We note 
substantial improvement in the consistency of the 
resulting Afl by using %(1, fi) at the one loop level as 
compared to the tree level or the uncorrected case. 
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Table 7. Scaling test for improved ratios at /?=2.6, L=24. The 
numbers 11-18 are defined in (15), A/3 in (21), AA=difference of 
areas of numerator and denominator of ratio. Numbers in second 
line are errors. First 2,000 iterations included with half weight 

11 - 14 15 18 A A  A ~  X ( 2 / )  C p  * X(l) Cr.t~,, ,  Cp.t,,,,v 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 2 1 i 2 1 2 1 I 0 . 2 4 1 3  0 1 2 8 9 7  0 . 3 1 4 9  1 . 0 5 9 7  1 . 0 4 3 1  

0 . 0 0 1 5  0 . 0 0 0 9  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S 3 2 2 3 2 3 2 1 0 . 2 1 8 2  0 . 1 4 0 0  0 . 1 7 4 2  0 , 8 8 5 9  0 . 8 7 5 5  

0 . 0 0 3 4  0 . 0 0 1 7  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 4 3 3 4 3 4 3 i 0 . 1 9 2 1  0 . 0 9 3 7  0 . 1 3 6 9  0 . 9 1 2 8  0 . 9 1 6 9  

0 . 0 0 9 0  0 . 0 0 4 6  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 2 1 1 2 2 2 1 1 0 . 2 4 8 1  0 . 1 9 0 3  0 . 2 0 9 2  0 . 9 8 6 4  0 . 8 5 2 1  

0 . 0 0 1 6  0 . 0 0 0 8  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 3 2 2 3 3 3 2 I 0 . 2 0 9 6  0 . i 0 7 1  0 . 1 4 9 4  0 . 9 5 3 6  0 . 9 1 2 5  

0 . 0 0 5 2  0 . 0 0 2 8  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 2 2 1 3 1 2 2 1 0 . 2 2 7 0  0 . 2 2 0 3  0 . 2 5 3 5  1 . 0 1 4 9  0 . 9 7 6 6  

0 . 0 0 1 5  0 . 0 0 0 8  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 3 3 2 4 2 3 3 I 0 . 2 1 4 3  0 . 1 2 3 1  0 . 1 6 1 2  0 . 8 9 5 8  0 . 8 9 4 6  

0 . 0 0 5 0  0 . 0 0 2 7  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 3 1 1 3 2 2 1 2 0 . 2 3 5 6  0 . 3 3 0 3  0 . 3 8 0 9  0 . 9 4 7 1  0 . 8 5 6 9  

0 . 0 0 2 2  0 , 0 0 2 2  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 4 2 2 4 3 3 2 2 0 . 2 0 1 2  0 . 2 0 0 8  0 . 2 8 6 3  0 . 9 3 3 2  0 , 9 1 4 4  

0.0054 0 . 0 0 5 6  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 2 2 1 3 2 3 1 1 0 , 2 1 9 2  0 . 2 0 4 3  0 . 2 4 4 0  1 . 0 5 0 6  1 . 0 0 3 6  

0 . 0 0 1 9  0 . 0 0 1 1  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 2 3 1 4 1 3 2 i 0 , 2 2 2 4  0 . 2 0 8 4  0 . 2 4 5 4  1 . 0 3 5 7  0 , 9 9 7 4  

0 . 0 0 1 8  0 . 0 0 1 0  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

In column 3 of Table 7 we finally collect values 
of A/3 (with errors) for square ratios and for such 
elongated ratios, which are not too different from 
potential differences*. Those ratios, which differ by 
increasing all lengths by one unit, are grouped to- 
gether. The ratios themselves are listed in column 4, 
and in column 5 the quantities cp(l,/3A)Z(l,/3A). They 
are related to the Z(2/,/3=2.6) by "improved" as- 
ymptotic scaling, and they were gained by interpo- 
lation among the data of [13]. We notice a clear 
tendency of A/3 to decrease with increasing size of 
the ratios. This is significant, for the comparison of 
length 2 and length 3 square ratios, on the level of 
7 s.d. and, between 3 and 4 on the level of 3 s.d. For 
elongated ratios the deviations are also on the level 
of 3 s.d. 

Since the differences between A/3's are fully sig- 
nificant for the square ratios, where furthermore the 
differences between cp(tree) and cp(one loop) are very 

* The ratios at fl=2.6 include the contributions from the first 
2,000 iterations with half weight 

small (see last 2 columns of Table 7), we have to 
interpret these results. We notice, that the differences 
between Z(2/,2.6) and cp(1)z(l,/3A) are increasing with 
1 within the various groups. For ratios with large 
loops this difference is about AX=0.042_+0.003. 
Since Az=4AV for elongated ratios, we see that AV 
is not far from the lower results for K obtained in 
the last section. A possible interpretation of the ob- 
served nonscaling behaviour is therefore, that the 
ratios and the potential are a superposition of an 
asymptotically scaling and asymptotically free Cou- 
lomb term plus an approximately linear term, which 
does not scale asymptotically but decreases between 
/3=2.323 and/3=2.6  faster than A~ by a factor close 
to 2. If scaling would hold both for the Coulomb 
term and for the linear term with a single/3-function 
differing from the asymptotic one, the differences AZ 
ought to be larger for small I than for large 1. This is 
so because via the decreasing coupling constant also 
the Coulomb term will contribute to AZ, but dom- 
inantly at small I. We observe the opposite. If in- 
sufficient corrections for finite "a"  effects are to be 
blamed for this effect, the small ratios are the most 
suspicious ones. In order to make the differences A z 
consistent with scaling, the Cp would have to be 
increased by about 10% for the smallest loops, 
which is against the trend of the changes from 
cp(tree) to cp(one loop). If higher order contributions 
have smaller scaling violations than those up to 
O(g4), the corresponding cp would be closer to 1, 
which would increase the scaling violations for 
square ratios. 

Finally we note that a return to asymptotic scal- 
ing for objects of size 8 or less is expected for 
/3 > 2.8, since if the linear term continues to decrease 
rapidly, it will then be smaller then the Coulomb 
term. 

5. Discussion 

If we can rely on the error estimates based on 
grouping the data at /3= 2.6 into bins containing up 
to 500 sweeps, the statistical accuracy of the Monte 
Carlo data presented here is quite good. If on the 
other hand the deviations observed for the first 2,000 
iterations are real, our total of 8,000 iterations (in- 
cluding the 2,000 iterations with the icosahedral 
group) may be insufficient. Accepting the quoted 
errors we can conclude the following: 

For R__>4 and T < 8  planar Wilson loops have 
not yet converged to the exponentially decreasing 
form exp( -V(R)T) ,  and our extrapolated values for 
V(R) are, strictly speaking, upper limits only for the 
correct potential. Since the fit with three exponen- 
tials works successfully, we can be optimistic and 
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use V(R) as the real qcT-potential (in SU(2) without 
quarks of course). From these potential values again 
an upper limit for the string tension can be obtained 
by forming potential differences. Doing so between 
R = 5 and R = 7 gives 

K < 0.0245 -+ 0.0016 (22) 

at fi=2.6. Since, however, the potential is not linear 
between R = 4 and R = 8, a subtraction of nonleading 
terms is necessary, yielding values 

~0.015 +0.0019 (23) 
K = ~0.011 -+0.0015. 

The first value is due to the fluctuating string pic- 
ture, the second one to the continuum two loop 
potential. Taking the average value of K=0.013 
_+0.003, we obtain 

A c = (0.027 + 0.003)]/K. (24) 

This is twice as large as old estimates 1-1, 7] and 
50 ~ higher than the value given in [3]. 

Tests for scaling require to correct ratios for 
finite "a" effects, which is possible only in low order 
perturbation theory. If we perform the corrections 
multiplicatively, we find significantly different varia- 
tion with fi for ratios with small areas and with 
large areas. The pattern of scaling violations is such 
that ratios at large fi are too small (as compared to 
the value predicted by asymptotic scaling) by an 
amount which slightly increases with the area of the 
ratios and which is close to the lower value of K 
given in (23). A possible description of this is that 
the string tension vanishes relatively to the short 
distance A-parameter of the potential. 

Whether this observation is a consequence of not 
completely removed finite "a" effects, cannot be an- 
swered convincingly until high statistical accuracy of 
loops with sizes 8 x 8 up to 10 x 10 becomes avail- 
able. Then the dangerous loops with small lengths 
can be omitted from the scaling test. In the present 
situation we have to rely on the small loops, and we 
only can remark that for small loops perturbative 
improvement seems to work quantitatively well. 
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