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In a Monte Carlo calculation, numerical evidence is found for metastable coexisting phases in the variable length (h = 1.01 
and fixed length (h = oo) SU(2) Higgs model with doublet scalar field. This supports earlier conjectures about the first ordei 
nature of the phase transition for finite gauge coupling (fl) and an arbitrary scalar self-coupling (X). 

Introduction. The SU(2) Higgs model with a scalar 
doublet Higgs field ("standard Higgs model") is an im- 
portant part of the standard SU(3) ® SU(2) ® U(1) 
model of strong and electroweak interactions. The vac- 
uum expectation value of the Higgs field renders the 
W- and Z-bosons a mass and is responsible also for the 
fermion masses via the fermion Yukawa couplings. 
From the point of view of possible high energy exten- 
sions of  the standard model, it is important to know, 
what happens if one tries to decrease the lattice spac- 
ing in order to reach a continuum limit in the l~ttice 
formulation of the standard Higgs model. In addition, 
as a prototype Higgs model with non-abelian gauge 
symmetry, SU(2) Higgs models can serve as a working 
laboratory for the understanding of more complicated 
(and more complete) Higgs models, like the Higgs sec- 
tor in an SU(5)-like grand unified theory. 

In a previous paper of one of us [1] some numeri- 
cal evidence was obtained, from the study of the cor- 
relations and static energies, for the existence of 
asymptotically free critical points at vanishing bare 
gauge coupling (g - 0 or 13 = 4/g 2 = ~)  and arbitrarily 
tLxed scalar self-coupling (X = const.). (For a discus- 
sion and summary see also ref. [2] .) This means that 
it is possible to define a non-trivial continuum limit of 
the standard Higgs model by keeping X constant. The 
resulting continuum theory is possibly X-independent. 
The X-independence implies that the continuum theo- 
ry has one free parameter less, therefore, if the contin- 

0370-2693/85/$ 03.30 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

uum limit is assumed to be relevant for phenomenol- 
ogy, then the physical value of the Higgs boson mass 
(mH) can be predicted from the value of the W-boson 
mass (mw) and of the renormalized gauge coupling. 
The first Monte Carlo measurement gave m H ~ 6 m w 
[2]. Assuming that the classical Higgs potential is a 
good approximation also in this situation, the high 
Higgs boson mass corresponds to a low energy effec- 
tive theory with strong physical Higgs self-coupling at 
the W-boson mass scale: kphys(/~ = mw) >> 1. (Note, 
however, that the triviality of the pure ~4 theory and 
the asymptotic freedom of the gauge coupling suggest 
t h a t  Xphys(//) vanishes at asymptotically high energies: 
lilTlv_+** Xphys(~tt ) = 0 . )  

In the standard Higgs model, besides the conven- 
tionally assumed "Higgs-phase" there is also a "confin- 
hag phase" corresponding to a QCD4ike theory with a 
scalar matter field. In the lattice regularization scheme 
there is a phase transition between these two phases. 
The position and order of this phase transition has al. 
ready been studied in the first numerical Monte Carlo 
investigations [3 -6 ] .  The phase transition was first 
considered second order for f'mite/3 and large enough 
X-values, but f'mite size scaling studies [5] and the 
abrupt change of the correlation lengths near the phase 
transition [1] prefer a first-order transition for all val- 
ues of k. In a strong gauge-coupling approximation, 
the extension of the calculations in ref. [7] to the case 
of the fundamental Higgs field also indicates a first-or- 
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der transition for every ?~ [7].  A recent, more detailed 
Monte Carlo investigation by the Aachen-Graz group 
[8] established the ftrst-order nature for small ?~-values 
(X ~< 0.03), but still left open the question of  the order 
at larger X (and in particular at X = oo). In general, it is 
clear that the transition weakens for increasing X and 
therefore it becomes increasingly more difficult to tell 
the order at large X. 

The order of  the conf'mement-Higgs phase transi- 
Uon is relevant also for the existence and properties o f  
the critical points at/3 = oo. In the case of  a second-or- 
der phase transition line in the X = const, planes the 
correlation lengths are infinite along this line. This al- 
lows for the expected exponential rise o f  the correla- 
tion lengths exp(const, t )  along the renormalization 
group trajectories (RGT's) going to the critical point 
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Fig. 1. (a) The schematic picture of RGT's in a X = const, plane 
in the case of a second-order phase transition line (full line). 
The  dashed-dotted lines are the RGT's in the Higgs phase, the 
dashed ones the RGT's in the confinement phase. The correla- 
tion lengths diverge for 3 --* **. (b) The same as (a) in the case 
of a first-order phase transition line (full line) ending in a sec- 
ond-order point fl = **, Ker(?,), provided that the correlation 
length along the phase transition line is not increasing fast 
enough for # ~ **. 

at fl = oo near the phase transition line. The picture of  
the RGT's in the ~ ,  g)-plane is then qualitatively given, 
as suggested in refs. [1,2],  by fig. la. If, however, the 
phase transition line is first order everywhere except 
for the endpoint at fl = oo (where it is second order), 
then there is no reason for the correlation lengths to 
diverge for Finite ft. I f  the maximum of  the correlation 
lengths does not increase sufficiently fast for fl -* oo, 

then the (approximate) RGT's do not  reach the criti- 
cal point at fl = oo: they are going to the discontinuity 
at the first-order line for some f'mite correlation length, 
like it is shown by fig. lb. In this case the critical 
point at 3 = oo is likely to be trivial (i.e. equivalent to 
the pure gauge theory in the confinement phase and to 
a free theory o f  massive bosons in the Higgs phase). 
Therefore, in the case of  a first-order phase transition 
line, the sufficiently fast increase o f  the maximum cor- 
relation length along the line is a non-trivial require- 
ment for the existence of  a non-trivial continuum limit 
in the fl = ~ critical point. A theoretically appealing 
situation would be, if the confmement-Higgs phase 
transition would everywhere be first order for finite fl 
and X but second order for int'mite fl or X. In this case 
the RGT's could safely reach fl = oo at ), = oo. 

In this letter, as a f'trst result o f  a high-statistics 
Monte Carlo investigation o f  the standard Higgs model, 
we show strong evidence for coexisting phases at 
= 1.0 and a somewhat weaker evidence at X = ~ .  This in- 
dicates, that the phase transition is probably f'trst or. 
der everywhere at the chosen 3 value ~ = 2.3). In addi. 
tion, we also performed precise correlation length 
measurements close to the phase transition. More de- 
tails and a comparison between high-statistics data on 
124 and 84 lattices will be published in a forthcoming 
paper [9].  

Monte Carlo calculation. The numerical calculation 
was performed on a 124 lattice for the full SU(2) 
group. The lattice action in the gauge invariant vari- 
ables on sites (Px > 0) and on links (V(x, Ia) E SU(2)) 
is [1,2] 

S=[3~( I&~TrVp)+~x  

4 \ 

+ h ( p  2 - 1) 2 - g  ~ px+uPxTr V(x,la)) . (1) 
/~=1 

The first term (a sum over plaquettes P) is the pure 
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SU(2) gauge action. The third coupling parameter, 
besides X and/3, is the "hopping parameter" x. In the 

- .  oo limit the Higgs field length Px is frozen to Px 
= 1, and we are left with 

Sx=oo=f3~(l " ~ T r V p ) - x ~  TrV(x,u). (2) 
P x,ta 

The value o f  the gauge coupling was fixed to/3 = 2.3, 
where a large part of  the numerical calculation in ref. 
[1] was done. X was either 1 or oo. The points were 
chosen in the vicinity o f  the phase transition at the 
hopping parameter x = Xpt(X ,/3). The value of  x was 
tuned in the third or fourth digit. So close to the 
phase transition there are very long time correlations 
in the updating (we used the Metropolis updating pro- 
cedure with 6 hits per link or site). In order to over- 
come this, 8 0 - 1 2 0  000 sweeps per point were per- 
formed. The first 1 0 - 2 0  000 sweeps were left out 
from the statistics for equilibration. This turned out 
to be essential, because after changing the x-value from 
some neighbouring point, we observed a typical equi- 
libration process characterized by oscillatory collective 
changes of  the lattice configuration. In the latter 
stages o f  the updating such collective changes do occur, 
too, but usually with smaller amplitudes and less fre- 
quently. The effect of  the equilibration process is in- 
fluencing mainly the correlation length in the Higgs- 
boson (scalar, isoscalar) channels: including some part 
of  the first 1 0 - 2 0  000 sweeps into the final statistics 
reduces the Higgs mass (amH) considerably. This ef- 
fect is most substantial in the points wheream H is 
near its minimum. In view of  this, the number of  
sweeps we performed is by no means too large. On the 
contrary, still higher statistics would be desirable, espe- 
cially if one would try to go to larger lattices. 

Results. Some average quantities at ~, = oo are shown 
in table 1. The statistical errors given in the table are 
determined from estimates of  the standard deviation 
by binning the data in bins of  2 k (k = 0, 1, 2 .... ). The 
correlations in the Higgs-boson (scalar, isoscalar) chan- 
nel were measured by the quantities Px, Tr V(x, #) 
and ¢x+uPx Tr V(x, It). Those in the W-boson (vector, 
isovector) channel by Tr ( r  r V(x,/a)) and Px +~ Px 
X Tr {r r V(x, U)). 

The correlations in the three Higgs-boson, respec- 
tively, two W-boson channels are strongly correlated, 
that is the correlation lengths determined in the same 

Table 1 
Some average quantities calculated on  a 124 lattice at h -- ** 

. ' I 

and # = 2.3. The link expectation value L =- ~(Tr V(x, tO), 
1 

plaquette expectation valueP =- ( 1 - ~Tr Vp> and average ac- 
tion per site s ~ 6/3P + 1 + 8~(1 - L) is given. The errors in the 
last numerals are in parentheses. 

L P s 

0.390 0.2485(2) 0.39126(8) 8.744(2) 
0.392 0.2535(3) 0.39047(9) 8.729(2) 
0.394 0.2599(4) 0.38937(15) 8.706(4) 
0.395 0.2677(8) 0.3876(3) 8.663(7) 
0.396 0.2635(6) 0.3864(4) 8.634(9) 
0.397 0.2783(6) 0.3854(3) 8.610(8) 
0.398 0.2856(4) 0.38377(14) 8.570(4) 
0.400 0.2931(3) 0.38253(11) 8.541(4) 
0.410 0.3214(2) 0.37860(5) 8.450(2) 

channel by different quantities deviate from each oth- 
er much less than the individual statistical errors. (The 
statistical errors were obtained also here by 2 k bin- 
ning.) The errors are somewhat smaller in the case o f  
Px +u Px Tr V(x,l.t), respectively, Px +~ Px Tr {r r V(x, #)}, 
therefore these are slightly better to use if one wants 
to rely on a single quantity. 

The obtained masses (inverse correlation lengths) 
are shown in fig. 2 as a function o f  ({ Tr V(x, #)). In 
most cases the correlation between timeshces can be 
fitted well for time distances 3 - 6  by a single cosine- 
hyperbolicus (corresponding to a single mass). In the 
points, however, where the masses are around 0 .2-0 .3 ,  
there is still some appreciable contribution from high. 
er states. In these cases one has to use a single mass fit- 
to the distances 4 - 6  and/or a two-mass fit to the dis- 
tances 2 - 6 .  It is interesting, that near the phase transi- 
tion the effect o f  higher states is usually stronger in 
the W-channel than in the Higgs-boson channel. 

As one can see from fig. 2, the approximate univer- 
sality o f  the masses between X = oo and X = 1.0 is good 
within the present errors, therefore it is much better 
than it was shown by the lower-statistics 8 4 data in 
ref. [1].  This means that a low-order strong self-cou- 
pling expansion [2] works presumably well for the 
correlation lengths at X = 1.0. 

It can also be seen, that  below the minimum of  the 
masses there is a region in x, where both am n and 
am W are below or around 1. This is a hint for the exis- 
tence o f  a non-trivial confinement-like phase below the 
phase transition surface. (In ref. [ 1] no such points 
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Fig. 2. (a) The mass in lattice units in the W-boson channel as a function of the l ink expectation value L -= ~(Tr V(x,/~)). (For the 
corresponding K values see table 1.) (b) The same as (a) for the Higgs-boson mass. 

were found, because the steps in r were too large.) 
Defining the position of  the phase transition Kpt by 

the maximum of  the correlation lengths, we obtain on 
the 124 lattice 

rpt(fl = 2.3, ~, = oo) = 0.395 ~ 0.397, 

Kpt(fl = 2.3, • = 1.0) = 0.3041 --} 0.3045. (3) 

Above this region (i.e. in the Higgs phase) the mass ra- 
tio maim w is greater than (1.0 + 0.2), below it (in the 
confinement phase) we have mH/m w <~ 0.5. There is 
a rapid change of  mH/rn w in the phase transition re- 
gion itself, from a smaller value 0.3--0.5 at the lower 
edge to a value of  about 1 near the upper edge. 

In order to get more information about the phase 
transition, we extensively studied the fluctuations o f  
average quantities (like link expectation value, 
plaquette expectation value or average action per site 
etc.) during the updating. To reduce intrinsic fluctua- 
tions, the quantities were first averaged in a number of  

sweeps, typically 50 -200 .  The distribution of  the ob- 
tained average plaquette values is shown in the point 
), = 1, K = 0.3041 in fig. 3a, and for ), = 0% K = 0.395 
in fig. 3b. In the first point there is a clearly separated 
two-peak structure, which shows that the configura. 
tion is oscillating between two metastable states. 
This can, o f  course, also be seen as a function of  time 
(for more details, see ref. [9] ). The same can be ob- 
served also in the other average quantities [9] .  At a 
slightly larger x-value, K = 0.3042, the two peaks are 
at the same place, but there the left peak (at the 
smaller P-values) is stronger than the right one. The 
two-state signal becomes weak at K = 0.3045, and dis- 
appears for still higher K. In the case of  fixed length 
(;k = oo) at K = 0.395 there is a two-peak structure, too, 
but the distance of  the peaks is smaller, and the sys- 
tem does not stay very long in one state. (Changes be- 
tween the two metastable states occur on the 124 lat- 
tice typically after 1000-5000  sweeps.) 
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1 Fig. 3. (a) The distribution of the mean plaquette expectation value P ~ ( 1 - ~Tr Vp) averaged over 200 consecutive sweeps during 
the updating in the point h = 1.0,# = 2.3, r = 0.3041. (b) The same as (a) for h = ~*,# = 2.3, ~ = 0.395. 

Discussion. The most probable interpretation of 
fig. 3 is that the cont~mement-Higgs phase transition 
is weakly first order at X = 1.0 and X = 0% and there- 
fore it is first order for any ~ at the given gauge cou- 
pling (/~ = 2.3). The two-state signal is rather convinc- 
ing at ~ = 1. An indirect additional evidence for the 
first-order phase transition at ~ = o. is provided by the 
first-order nature at ~, = 1.0 and by the good universal- 
ity between X = 1.0 and X = ~ shown, for instance, by 
fig. 2. It is, nevertheless, not  fully excluded, that a sec- 
ond-order phase transition produces a fake two-state 
signal on our 124 lattice. Therefore, a first-order phase 
transition surface with an edge of second order at 
= ~ is still possible, although not  probable. 

We thank Anna and Peter Hasenfratz for helpful 
discussions. The numerical calculations for this paper 
were performed on CYBER 205 computers. We are 
indebted to the Computer Center of the University of 
Karlsruhe and to Professor K. Hasselmann and W. Sell 
at the Max Hanck Institute for Meteorology in 
Hamburg for their generous support. 

References 

[ 1] I. Montvay, Correlations and static energies in the standard 
Higgs model, DESY preprint 85-005 (1985), submitted for 
publication in Nucl. Phys. B. 

[2] I. Montvay, The standard Higgs model on the lattice, DESY 
prepdnt 85-050 (1985), in: Prec. Conf. on Advances in 
lattice gauge theory (TaUahassee, FL, April 1985), to be 
published. 

[3] C.B. Lang, C. Rebbi and M. Virasoro, Phys. Lett. 104B 
(1981) 294. 

[4] H. Kithnelt, C.B. Lang and G. Vones, Nucl. Phys. B230 
[FS10] (1984) 16. 

[5] M. Tomiya and T. Hattori, Phys. Lett. 140B (1984) 370. 
[6] I. Montvay, Phys. Lett. 150B (1985)441. 
[7] P. SurgLnyi, Effective action for adjoint representation 

Higgs-SU(N) systems on a lattice, Cincinnati preprint 
(1985), and private communication. 

[8] J. Jers~k, C.B. Lang, T. Neuhaus and G. Vones, Properties 
of phase transitions of the lattice SU(2) Higgs model, 
Aachen preprint PITHA 85/05 (1985). 

[9] W. Langguth, I. Montvay and P. Weisz, in preparation. 

139 


