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Random number generators based on the congruence method have long range correlations which can severely influence 
Monte Carlo simulations of lattice theories, especially in critical regions. We investigate the nature of these correlations both 
theoretically and in test simulations. We propose practical ways to avoid that random number correlations affect the simulation 
results. 

1. I n t r o d u c t i o n .  It has been recently reported by 
several authors [1 -3 ]  that Monte Carlo (MC) simula- 
tions o f  lattice models in critical regions might be af- 
fected by long range correlations in the random num- 
ber generator (RNG) used. These effects tum out to 
be strongly dependent on the lattice size and occur 
typically for large lattices. 

An important class o f  RNG's is based on the con- 
gruence method [4]. Many high-speed computers offer 
RNG's o f  the type 

ni+ 1 = a n i ( m o d  2m), ri+ 1 = n i + l / 2 m  , (1.1) 

where a is a fixed odd integer called multiplier, 2 m is 
called the modulus, the numbers n i are integers and 
the actual random number r i is obtained by dividing 
n i by the modulus. The integer n o is called the seed 
of  a sequence o f  random numbers. 

RNG's o f  the type (1.1) always have correlations 
at distances o f  powers o f  2 which are independent of  
the special multiplier and seed chosen and only de- 
pend on the modulus. These correlations are especially 
dangerous for MC renormalization group calculations 
[5] that use lattice sizes o f  powers of  2. 
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It is easy to find explicit formulas for these corre- 
lations. In this paper we investigate their influence on 
various MC simulations and propose methods to cir- 
cumvent the problems they cause. 

In section 2 we present several MC calculations for 
a four-dimensional Z 2 gauge theory and for the four- 
dimensional Ising model, where we first encountered 
the problem that RNG correlations drastically alter 
the results. These calculations have been performed 
on a CRAY 1/M computer using RANF and RNG. 
RANF is generally considered to have good statistical 
properties. The difference between the "wrong" and 
the "correct" results was already striking in simula- 
tions that used 228 random numbers (the period o f  
RANF is 246). 

In section 3 we show that RNG correlations at dis- 
tances o f  powers of  2 are inherent in the congruence 
method by explicitly deriving correlation formulas. 

In section 4 we discuss several tests we made in 
order to study the influence o f  RNG correlations on 
MC simulations in more detail. In particular we f'md 
that the Metropolis algorithm is much less sensitive to 
these correlations than the heat bath algorithm (for 
Z 2 models). 
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Fig. 1. The phase diagram of the four-dimensional Z2 gauge theory with matter fields (from ref. [8]). 

2. Irregularities in Monte Carlo simulations. We in- 
vestigated numerically the four-dimensional Z 2 gauge 
theory with matter field [6,7] and found a line o f  
second-order phase transitions separating the screening 
from the free charge regions of  the phase diagram of  
fig. 1 (the results o f  these calculations are reported 
elsewhere [8]). In order to check finite size scaling 
relations and calculate critical exponents, we meas- 
ured the l ink-l ink susceptibility (the integral over 
l ink-l ink correlations) for fig = 0.5 and lattice sizes 
L = 4, 6, 8, 12 and 16. We used the heat bath algo- 
rithm [9,10] which requires one random number per 
update. So 5L 4 random numbers are needed for one 
full sweep (there are L 4 point variables and 4L 4 link 
variables in the model). The results for L = 16 were 
completely different from what weexpected by ex- 
trapolating the results for smaller lattice sizes, as 
shown in fig. 2. 

Then we performed thermal sweeps [9] (fill was 
slowly varied through the critical region, 3g was kept 
fixed at 0.5) fo rL  -- 10, 12, 14, 16, 18 and 22. The 
results'for the link expectation value for L = 12, 16 

and 22 are shown in fig. 3. The curves fo rL  = I0, 14 
and 18 are practically the same as for L = 12 and 22. 
Again L = 16 does not agree with the other results. 

For fig = 0.6 the thermal sweeps show the same 
discrepancy between L = 16 and all other values o f L .  
For fig -~ ~ the model goes into the four-dimensional 
Ising model. The link expectation value becomes the 
energy density in this limit. Here too thermal sweeps 
show the same irregular behaviour for L = 16. Note 
that in the Ising limit only L 4 random numbers are 
needed for each sweep. 

Since successive updates at the same lattice site oc- 
cur every L4 ' th  random number we suspected that 
the RNG has correlations over distances o f  164 = 216 
which somehow interact with the correlations occur- 
ing in the MC simulation o f  the model in the critical 
region. In order to disturb these correlations we 
omitted after each sweep a certain number of  random 
numbers. The results for L = 16 were drastically 
changed (for all values of  fig considered) whereas the 
results for the other values of  L remained unchanged. 
In fig. 2 the new values for L = 16 (the "correct" 
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Fig .  2. L i n k - l i n k  s u s c e p t i b i l i t y  in  t h e  p e a k  r eg ion  f o r  v a r i o u s  l a t t i ce  sizes L ( f r o m  ref .  [ 8 ] ) .  T h e  " c o r r e c t "  va lues  f o r  L = 16,  as  op -  
p o s e d  t o  t h e  " w r o n g "  va lues ,  w e r e  o b t a i n e d  b y  o m i t t i n g  r a n d o m  n u m b e r s  a f t e r  e a c h  sweep .  

values) perfectly fit into the series o f  results obtained 
for the other lattice sizes. Moreover, the new results 
were independent o f  the number n r o f  random num- 
bers omitted after each sweep (n r = 1, 2, 3, 4 or 
randomly chosen between 1 and 100). In fig. 4 we 
compare for the four-dimensional Ising model the 
thermal sweep behaviour o f  the energy with and with- 
out the omitted numbers. For all values of/3g con- 
sidered, the correct L = 16 thermal sweep curves prac- 
tically overlap with those fo rL  = 12 and 22. 

The results are shown in fig. 4. The newL = 16 re- 
mits perfectly fit into the series of  results obtained 
for the other lattice sizes. 

3. Correlations in congruential random number 
generators. In order to understand the problems caus- 
ed by RNG's based on the congruence method, we 

take a closer look at eq. (1.1). We are interested in 
the subseries 

n! k) := ni2k,  (3.1) 

which is generated by the relation 

n(k) i+1 := ak n! k) (mod 2 m) ,  a k := a 2k (mod 2 m). (3.2) 

The relevance o f  such subseries for MC calculations 
has already been emphasized in ref. [ 1 ]. 

The multiplier a is always chosen to be odd; other- 
wise a m = 0 (mod 2 m) and the original series would 
degenerate after m steps. Thus a I-+ 1 are even numbers 
for each positive integer l, and either a - 1 or a + 1 is 
a multiple o f  4. Therefore, using the factorization 

k - 1  

a 2/c - 1 = ( a -  1) I-I (a 2l + 1), (3.3) 
/=0 
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Fig. 3. Thermal sweeps for #g = 0.5, with no random numbers omitted. 
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we conclude that (a2k _ 1)is a multiple o f  2 k+2, and 
the same holds for (a k - 1) i fk  + 2 ~<m. Further- 
more, if a -+ I is not a multiple of  8, then 

a k - 1 = Ck 2k+2 , (3.4) 

with c k odd. 
In spite o f  the fact that the number of  digits in the 

binary representation of  c k may be large (for the dis- 
cussion in section 2, m = 48 and k = 16, so c k still has 
30 digits), the statistical properties o f  the series (3.1) 
can be very poor. This fact can be described in terms 
of  the "potency" ofa/c [4]. The potency o f a  k is de- 
fined to be the smallest natural number s with 

(a k - 1) s = 0 (mod 2m) .  (3.5) 

For the considerations above, s is the smallest integer 
larger than or equal to m / ( k  + 2), hence in the case o f  
rn = 48 and k --- 16 the potency o f a  k is 3. Eq. (3.5) 

implies the following formula, which relates s + 1 
subsequent numbers o f  the series (3.1): 

(s. 1 (-1V'n(k) = 0(mod 2 m) (3.6) 
/ = 0 \ 1 / "  " i+j 

Thus in our case (m = 48, k = 16, s = 3) 4 subsequent 
random numbers always fulfil the equation 

r (16) - 3 r  (16) + 3r  (16) - r !  16) = 0 (mod 1) (3.7) 
i+3 i+2 i+ 1 

In general (see the discussion in ref. [4]) a potency 
of  at least 5 seems to be necessary for the series (3.1) 
to have good statistical properties. 

I f  m / ( k  + 2) is only slightly larger than an integer, 
another type of  correlations, relating s subsequent 
numbers in the series (3.1), becomes important. One 
has: 
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Fig. 4. Thermal sweeps for the four-dimensional Ising model with and without omitting random numbers after each sweep. 

s -1  
2m_(s_l)(k+2) ~ (s  1) /=0 ; n}+k~ = 0 ( m o d 2 m ) .  (3.8) 

In the original series (1.1) there are lots Of other 
correlations related to the discussion above. They can 
be derived from fomulas o f  the type 

(aka -- 1) ... (ak2 -- 1) = O(mod 2m) ,  (3.9) 

with Z[=lk i + 2l >1 m. 
All these correlations exist independently o f  the 

choice of  the multiplier a. In addition, for a given a (for 
RANF a = 44485709377909) there are other correla- 
tions. All o f  them follow from equations of  the form 

n 

biai = 0(mod 2m) ,  (3.10) 
i=0 

with integer bi, and their strength may be estimated 
by computing the quantity d = (Zb2) -1/2 [4] (larger 
values o f d  imply stronger correlations). 

4. Numerical tests and conclusions. The detailed 
mechanism according to which a lattice model reacts 
to the correlations (3.6)-(3.8)  is not yet completely 
understood. However, the results presented so far 
suggest that the RNG correlations have a larger impact 
on a MC simulation when the correlations in MC time 
[ 10] are longer. We made the following tests in order to 
investigate this problem more thoroughly and to get a 
feeling o f  what might happen. 

First we performed thermal sweeps on the four- 
dimensional Ising model on a 164 lattice (heat-bath 
method), deleting random numbers only after n = 4, 
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6, 8 and 16 sweeps. The results were correct for n =4 
(see fig. 4), while for n = 8 and 16 they were wrong 
(n = 6 was unclear). This is consistent with our obser- 
vation that the results without  omitting random hum 
bers at all differed from the correct ones only for 
temperatures where the MC time correlation length 
was of  the order o f  10 or larger. 

Next we investigated the effect o f  the RNG corre- 
lations using the Metropolis algorithm [9 -11 ]  (the 
program generated one random number per spin up- 
date, so the periodicity was the same as before). In 
this case the MC time correlations are much shorter 
than for the heat bath method.  It turned out  that  the 
discrepancy between the correct and the wrong re- 
suits is roughly ten times smaller than for the heat 
bath method.  

In order to check the period 2 k in a simple model, 
we simulated the two-dimensional Ising model  on a 
20 × 20 lattice (heat bath)  omitting (2 k - 400) random 
numbers after each sweep. The system turned out to 
be sensitive to the correlations (3.6)--(3.8) for k />  20. 
As in the four-dimensional case the results became 
correct if  additional random numbers were omitted 
after each sweep. We repeated the two-dimensional 
calculation on an IBM 3081 using ZPF as RNG (ZPF 
is o f  the type (1.1) with m = 31 ; it is the standard 
RNG offered by  the DESY program library). The re- 
suits were wrong for k 1> 14. 

At  this stage we have gained some insight into the 
interplay between RNG correlations at a f'txed lattice 
point  and MC time correlations. On the other hand, 
correlations between different lattice points seem not  
to contribute to the observed effects. Otherwise the 
results should have changed when varying the number 
of  random numbers omit ted after each sweep. More- 
over, permutations o f  the order in which the lattice 
sites are updated did not  alter the results either. 

Presumably this is not  the most general case. It is 

to be expected that in the deep critical region the cor- 
relations o f  the model itself interact with the RNG 
correlations. In general one would have to check, for 
each particular algorithm, whether highly correlated 
points in the (lattice-variable X MC time)-space are 
updated by correlated random numbers. An empirical 
check would be the stability o f  the simulation against 
changes in lattice size and against omission o f  differ- 
ent numbers o f  random numbers. In any case a perio- 
dicity o f  the updating process with a large power of  2 
should be avoided. 
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