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Abstract. We compare two renormalization schemes 
of the electroweak standard model: the on-shell 
scheme with e, M w, M z, M n ,  and the fermion mass- 
es {ms} as free parameters,  and an intermediate 
scheme where the W boson self energy is renormal- 
ized at q2=O instead of q 2 = M 2 .  The M w - M  z 
interdependence, and the differential e+e--- , /~+# - 
cross section including polarized beams are calculat- 
ed in both schemes to one-loop order. We find strik- 
ing differences between the forward-backward asym- 
metries and the polarization asymmetries near the Z 
resonance after inclusion of weak and QED cor- 
rections. 

1. Introduction 

Predictions of the electroweak standard model [1] 
have been confirmed by the discovery of the W and 
Z bosons with the expected masses [2]. The next 
step of precision tests of the standard model beyond 
the tree level requires theoretical predictions which 
are normally based on perturbative calculations of 
radiative corrections. The renormalizability of the 
model [3] ensures that this is possible by multiplica- 
t ire renormalization. Radiative corrections have 
been calculated to one-loop order for various pro- 
cesses: low energy processes (/~ lifetime, v scattering) 
[4-9] and high energy e+e - annihilation [10, 11]. 
For calculations beyond the tree level it is necessary 
to specify a renormalization scheme, which defines 
- the free parameters in the Lagrangian, 
- the renormalization conditions in order to express 
the bare parameters and fields in terms of the renor- 
malized ones, 
- the connection of the free parameters  with the 
experimental input data. 

One can distinguish between three types of renor- 
realization schemes applied in electroweak loop cal- 
culations: 

( i )  The on-shell scheme [4-6, 12] makes use of 
the masses M w, M z, M n, {ms} of the massive vector 
bosons, the scalar Higgs boson, and fermions as free 
parameters. The renormalization conditions fix the 
finite parts of the renormalization constants in a 
way that directly allows for the particle content of 

the theory. Besides the masses, e=l/47zc~ (e being 
the electromagnetic fine-structure constant) is com- 
monly used as a precisely measured coupling con- 
stant. 

( i i )  Instead of the gauge boson masses M w and 
M z, the renormalization can be based on the use of 
low energy parameters G v and Ow, where G F is the # 
decay constant and 0 w the weak mixing angle mea- 
sured e.g. in vue/gue scattering [7, 8]. The renormal- 
ization conditions ensure that G~ determines the /t 
lifetime z, and sin 20 w the contribution of electrom- 
agnetic current to the weak neutral current. M w and 
M z then can be derived by determination of the 
poles of the corresponding renormalized propa- 
gators. 

( i i i )  The MS scheme [9] has the advantage that 
all the renormalization constants are fixed by the 
simple prescription of subtracting the singular parts 
of the two- and three-point functions. However, after 
relating the parameters c~(#), mw(#), mz(/~), ran(#), 
and {ms(#) } to the corresponding physical quan- 
tities, this scheme becomes as complicated as (i) and 
(ii) [13]. 

For  a survey see [14]. 
Due to the renormalization group invariance all 

renormalization schemes are equivalent. However, as 
long as we can only approximate  physical observ- 
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ables by perturbative calculations these approxi- 
mations are renormalization scheme dependent: the 
results in a fixed order given in different schemes 
deviate from each other by higher order contri- 
butions. This, however, does not mean a quantitative 
numerical estimate. Consequently, for testing the re- 
liability of electroweak one-loop calculations, dif- 
ferent renormalization schemes have to be compared 
with respect to their numerical predictions for 
measurable quantities. 

The intention of this paper is to investigate the 
size of the renormalization scheme effect in the cal- 
culation of one-loop corrections to the following 
observables: 

(a) the relation between the masses M w and M z, 

(b) the cross section and forward-backward 
asymmetry in e + e---*#+/~-,  

(c) and the longitudinal polarization asymmetry 
in e+e---*#+ # - .  

To be concrete, we select two different renormal- 
ization schemes (RS1 and RS2), perform systemati- 
cally the renormalization procedure, and compare 
the (a), (b), and (c) results obtained in both 
schemes. 

These schemes are characterized as follows: 

RSI:  The free parameters are chosen as e, G v, M z, 
M H, {mf}. The renormalization conditions are the 
on-shell conditions for M z, M H, {mot }, but not for 
M w. Instead, the W boson self energy is renormal- 
ized at zero momentum transfer such that % is de- 
termined by G F in the same way as in the Fermi 
theory. M z will be measured in near future with a 
precision of at least 50 MeV at LEP/SLC [15]. To- 
gether with e and Gv, this scheme directly contains 
those quantities which are known with best pre- 
cision as free parameters. The physical W mass M w 
is predicted by the pole (real part) of the renormal- 
ized W propagator.  Since this scheme is a mixture of 
the types ( i )  and ( i i )  we shall also call it the "in- 
termediate scheme". 

RS2: This is the on-shell scheme with the free pa- 
rameters e, M w ,  M z ,  MH, {m f}. Now the on-shell 
condition is also imposed on the W self energy. The 
value for M w can be related to the other parameters 
by calculating %(e, M w ,  M z ,  MH, {ms} ) in one-loop 
order. For  the details we refer to [16]. 

either of the schemes, we can get an insight to which 
extent these contributions compensate the lowest- 
order differences between both schemes. This will be 
of special interest in cases where the lowest-order 
differences become large, for example in the 
e § e - ~ ) T f  forward-backward asymmetry near the Z 
resonance. We restrict ourselves to the simplest pro- 
cess e §  - in order to exclude additional 
uncertainties e.g. due to quark fragmentation. 

The result of our investigation is that in the 
critical region around the Z resonance the RS1 and 
RS2 forward-backward asymmetries are sizable dif- 
ferent also after inclusion of one-loop corrections. 
The polarization asymmetries with weak one-loop 
corrections are only marginally influenced by the 
renormalization schemes; however, with QED cor- 
rections they are also sizably different in that case. 

In Sect. 2 of this paper the renormalization con- 
ditions defining both schemes are collated. Section 3 
summarizes essential features of the one-loop Green 
functions, and Sect. 4 contains the comparison of the 
M w - M  z correlation. The integrated cross section 
and the asymmetries calculated in RS1 and RS2 are 
discussed in Sect. 5. 

2. The Schemes 

Both schemes are identical with respect to the gener- 
ation of counterterms yielding finite Green functions. 
The input parameters e, M z, MH, {my} are used as 
free physical parameters in either of the schemes. 
We list the renormalization condition as follows*: 

- T h e  electric charge e=l/4rcc~ is defined by the 
nonrelativistic Thomson limit of the Compton  scat- 
tering. 

ff~ee(k2 = 0 ;  t4=r (2.1) 

- In the limit k 2 ~ 0  the photon-Z-mixing energy has 
to vanish, i.e. on-shell photons couple to fermions as 
in pure QED. 

Re 2T}z(0) = 0. (2.2) 

- The residue of the photon propagator  is 1 : 

1 k2= k~ Re2~)(k 2) =0. (2.3) 
0 

Due to the different physical input parameters, 
the mixing angles as well as the neutral current 
couplings are different in lowest order. This reflects 
the fact that the separation of S matrix elements into 
Born terms and radiative corrections is not free of 
ambiguities. By studying one-loop corrections in 

- The physical masses given as the poles of the 
propagators  are equal to their lowest order values 
by fixing the mass counterterms 6M 2, cSM~, {6m}} 
according to 

* 2~, f denote renormalized self energies and vertices 
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Re XZ(M2) = 0, Re ZS(M2) = 0, 

Re 2~f(m~)=0. (2.4) 

- To determine the wave function renormalization 
constants, we take into account additional residue 
conditions: 

1 Re-~i -  (p) p = 
l~_mi_ ,.,- =0, (2.5) 

0 Re2~,(p2 ) p2=M~,=0" (2.6) @2 

i -  means the I a = - 1 / 2  component of the fermion 
doublet i. In both schemes we have only one renor- 
malization constant for each field multiplet and 
therefore we are not able to demand a propagator 
residue 1 for all particles. 

The next renormalization condition distinguishes 
between the two schemes: 

(i) Intermediate Scheme. This scheme uses the 
Fermi constant G F that is related to the muon life- 
time z u as physical parameter. The numerical value 
of z u is one of the input data and experimentally 
measured with high precision. It is calculated by 
considering all electroweak corrections to muon de- 
cay. The result can be split into a "weak" four- 
fermion interaction part with coupling G v and, on 
the other side, its electromagnetic corrections which 
are ultraviolet convergent and gauge invariant. In 
particular one has up to the first order in the expan- 
sion parameter ~. [17] 

_ 2 m, s ( l _ 8 m ~ ]  1 c~ 

and G F comes out at 

GF=1.16634_+0.00002 10 5 GeV-2.  

Taking this condition one gets the relation 

GF < g2 z 

1/ =8v 2 

which can be expressed in free parameters as 

2 1 211_t_(1 e2 ]1/21 M =~ M z (2.8 3 r J 

M is only used as a book-keeping quantity; it ap- 
proximates the mass M w of the charged vector bo- 
sons ~ in lowest order: 

M w = M +  ~ M, ed. (2.9) 
n = l  

Equation (2.7) also supplies us with a l-loop renor- 
malization condition containing the renormalized W 
self energy and the renormalization constants 3Z w, 
cSZ w for the SU(2) coupling g2 and the gauge field 
triplet: 

fZrw(0) ~ 6 _ 1 - - 4 s i n 2 0  ~--~) 
R e l ~ + 4 ~ _  (sin~ ~ 7 In 2 sin 4 0 z 

c~ 4 --lny - I n  +2(6ZW-6ZW)4 ~-  sin20 ~ ) 

To lowest order the weak mixing angle 0 diagonaliz- 
ing the 7Z mass matrix is given by 

M 
cos 0 = Mz. (2.11) 

(ii) On-Shell Scheme. In this scheme the charged 
vector bosons W e are renormalized on their mass 
shells. By means of the renormalization condition 

^W 2 R e X r ( M w ) = 0  (2.12) 

the physical mass M w is incorporated into the 
scheme as a free and renormalized parameter. It is 
an essential attribute of the on-shell scheme that it 
treats the neutral and charged vector bosons identi- 
cally. We define the Weinberg angle Ow by the mass 
ratio 

cos0 - M w  (2.133 
w -  Mz .  

Note that the mixing angles are introduced for con- 
venience only. They are no independent parameters 
in either of the schemes. 

As far as the renormalization of the "unphysical" 
(longitudinal gauge boson, unphysical Higgs, ghost) 
self energies is concerned, the above list of con- 
ditions is not complete. For our purpose of calculat- 
ing radiative corrections to scattering processes be- 
tween light fermions ( m ~ M 2 ) ,  however, it is suf- 
ficient to deal within the framework defined above. 
We have passed through the complete program but 
do not give the somewhat lengthy details at this 
place 1-12, 18]. 

3. Comparison of  Green Functions 

Differences between Green functions calculated in 
both schemes can be traced back to two sources: 

(a) The values of parameters like W mass, mixing 
angle, or neutral couplings are different in both 
schemes. 
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(b) The counterterms depend in their finite parts 
on the renormalization conditions. 

The imaginary parts of one-loop self energy- and 
vertex-functions are finite by themselves and con- 
sequently do not give any information about point 
(b). Therefore we shall discuss only real parts here. 
For  the vector boson self energies, it is convenient to 
introduce the relative quantities 

F/~ _ R e  s  2) U~ z _ R e  s  2) 
k 2 ' k 2 

H W  _ Re 27W(k 2) i l Z  _ Re,S, ZT(k2 ) 
k 2 - M ~ w  ~' k 2 _ M  2 �9 

(3.1) 

The main results can be summarized as follows: 
- The photon self energies of the two schemes are 
nearly identical except of their different thresholds 
k 2 ~---4 M 2 resp. k 2 : 4  M~v corresponding to the pro- 
cess 7 ~ W  + W - .  
- The W-boson self energy corrections I I  w in the 
intermediate scheme are generally smaller than those 
in the on-shell scheme, with the exception of the 
region around the pole k 2 = M  2, in which HRW1 is ill 
defined because of non vanishing radiative correc- 
tions ReZW(M2)4:0. For  PETRA energies (40GeV) 
we have ( M  Z N 93 GeV) 

~ -0 .006;  
H R ~ - [ - 0 . 0 0 7 ;  

~ -0 .070;  
/--/R~2--[ -0 .079;  

M n = 10 GeV 

M R = 300 GeV, 

M R = 10 GeV 

M R = 300 GeV. 

- T h e  counterterms contributing to ReXZ(k 2) are 
proportional to ( k 2 - M  2) in both schemes. Thus 
HZsl differs from HZs2 mainly by a different renor- 
malization constant 6Z z. If we chose M z = 9 3  GeV, 
we obtain 

z z 
HRS 1 - - H R s  2 ~ 0.07 - -0 .08 .  

In particular for P E T R A  energies: 

z {+0.003;  
//RSl ~ +0.004; 

z { -0 .068;  
HRS2--~ --0.076; 

M R = 10 GeV 

M R = 300 GeV, 

M R = 10 GeV 

M n = 300 GeV. 

- In a similar way, the mixing energy corrections 
7Z "~Z / / .Sl  and F/RS 2 are mainly distinguished by a con- 

stant around -0.05.  But now the one-loop correc- 
tions are larger in the intermediate scheme. For ex- 
ample, in the P E T R A  region: 

~z f -0 .052;  M n = 10 GeV 
HRS i ~ , -- 0.055 ; M R = 300 GeV, 

~z ~" -0 .003;  M R = 10 GeV 
H"s2~- ' [+4  10-6; M n = 3 0 0 G e V .  

Consider the neutral couplings 

vl = I{ - 2Q I sin 20 I3 I (3.2) 

2s in0cos0  ' a I = 2 s i n O c o s O  

of the Z-boson to fermions f. In case of 13-- - 1 / 2  
leptons, the numerator  of v I is small and very sen- 
sitive to sin20. As a consequence, the difference be- 
tween the mixing angles sin20 and sin20w is suf- 
ficient to make (Ve)RS 1 nearly twice as large as (Ve)RS 2. 
The axial vector couplings a~ are not very different 
in both schemes. The differences in the vector cou- 
plings are essentially removed by the 7Z mixing 
energy, whereas the Z self energy leaves the ratio 
v l / a  ~ unchanged. 

- Differences between the real one-loop parts of the 
renormalized gauge-boson fermion vertex functions 
calculated in our two schemes are smaller than 10 -3 
in the range [kZl_<(150GeV) 2 and are therefore of 
minor importance. 

4. T h e  M w -  M z I n t e r d e p e n d e n c e  

( i )  I n t e r m e d i a t e  Scheme.  Consider the transverse 
part of the two-point (one-particle irreducible) Green 
function 

r W ( k  2) = k 2 - M 2 + s  (4.1) 

The mass M w of the charged vector bosons is de- 
termined by the zero of F w. This means that the 
propagator  [FW(k2)] -1 has a pole at the physical 

2 2 mass k = M  w required by the interpretation of the 
theory in terms of particles. It should be emphasized 
that the zero of (4.1) depends on the order of the 
radiative corrections collected in 2~ w. If we substitute 
(2.9) into (4.1) and take into account only parts up 
to the first order in a, we will find 

M w = M + ~ M  1 (4.2) 

with 

1 
c~M 1 - Re s 

2M 

The results given by this formula are very close to 
those determined numerically from (4.1). 

( i i )  On-She l l  Scheme.  The renormalization con- 
dition (2.12) ensures that the parameter  M w has the 
meaning of the charged vector boson mass. It can be 
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Table 1. The W boson mass M w in GeV for given masses Mz, 
M u (RS: renormalization scheme) 

M z RS M n (GeV) 
(GeV) 

10 100 300 1,000 

88 1 75.812 75.737 75.675 75.593 
2 75.778 75.706 75.645 75.565 

90 1 78.387 78.314 78.253 78.172 
2 78.366 78.298 78.240 78.163 

92 1 80.890 80.819 80.759 80.679 
2 80.880 80.814 80.757 80.683 

93 1 82.120 82.050 81.990 81.911 
2 82.114 82.049 81.993 81.920 

94 1 83.338 83.268 83.208 83.130 
2 83.334 83.270 83.216 83.143 

96 1 85.739 85.670 85.612 85.533 
2 85.742 85.679 85.625 85.554 

98 1 88.103 88.035 87.977 87.898 
2 88.110 88.049 87.996 87.925 

used, together with c~ and the other masses, to calcu- 
late the/~-  lifetime in one-loop order [16]: 

t _ m, 1 - 8  
z u 384n (MwsinOw) 4 m2! 

SrW(O), c~ 1 
1 + 2  ~,~w - t ~  2n sinZOw 

I 

[ )} �9 6-~ 2sin20w lnM~z2 + 2 n  - n  2 . (4.3) 

Identifying (4.3) with (2.7), we are able to relate M w 

numerically to the parameter  set e, G v, M z, M n, and 
{my}. The value of M w obtained in this way replaces 
the directly measured W mass as long as the experi- 
mental accuracy of M w is not comparable with that 
of M z. 

Table 1 shows M w for given Z and Higgs masses 
in the two schemes. The other masses are the same 
as in [16]. The deviations of both schemes amount  
between 10 and 50 MeV. Thus they are much smaller 
than those due to variation of the Higgs mass within 
each scheme. For the present experimental average 
of M z = 9 3 . 0 G e V  the difference is even smaller than 
10 MeV if MI: t <= 1000 GeV. 

5. Comparison of  Cross Sections and Asymmetries  

We have calculated the virtual l - loop corrections to 
the e + e -  annihilation into muon pairs in both the 
intermediate and the on-shell scheme. To remove the 
infrared problem bremsstrahlung diagrams have 
been taken into account. The resulting inclusive 

Table 2. Lowest order parameters 

RS1 RS2 

129 

W mass parameter M =  83.121 M w =  82.049 

Mixing angle sin200= 0.2012 sin20w = 0.2216 

Vector coupling re= -0.1219 r e =  -0.0683 
Axial vector coupling a e = -0.6237 ae= -0.6019 

cross section is free of infrared divergencies, but it 
depends on an energy cut A E/E and/or acollinearity 
cuts. We have used the soft photon approximation 
[19] and therefore AE/E=O.1 will be reasonable. 
Beside the parameters used in [16], we have chosen 
the masses 

M z = 93 GeV, M n = 100 GeV 

which imply the mixing angles and neutral current 
couplings given in Table 2. 

5.1. Unpolarized Beams 

( i )  P E T R A  Energies. The differential cross sections 
calculated in RS1 and RS2 are in excellent agree- 

ment for center of mass energies ] / s  lower than 
60GeV. Electromagnetic contributions depend cru- 
cially on the experimental cuts. For  our AE/E, they 
are the dominant corrections to the Born approxi- 
mation. Within small deviations, they are the same 
in both schemes. The weak corrections to (da/df2)kS 1 
are vanishingly small. In the on-shell scheme, how- 
ever, the Born term ~ a  2 is enhanced by the Z 
boson energy (O = <(e- , /~- ) )  

~2 

(1 - R e H  z) RS2 4~S ae2 2COS O 

~2 S RS2 ~- 4ss 2ae2 cos O Re s - M 2 + s 

with H z from (3.1). This is numerically very close to 

~2 S 
22COS O - -  

4SS a e  S - M 2 RSl" 

Table 3 shows the forward-backward asymmetry 

j ' d c o s O  - ~ d c o s O  
A F B ( X ) =  0 . . . .  (5.1) 

5dcosO + ~ dcosO  da 
0 --x 

and the contributions of the various corrections (x 

= 1, 34.5 GeV) .  
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Table 3. The forward-backward asymmetry AvB for ] /s  
= 34.5 GeV and l cos O1< 1.0. The bremsstrahlung is included with 
AE <0.1 Ebeam 

A~Sl (%) kS2 o AFB (%) 

Born -9.271 - 8.642 

Photon self energy + 0.0005 + 0.0005 
(without fermion loops) 
Z self energy +0.034 -0.617 
7Z mixing -0.003 --5 10 -6 
Vertex corrections +0.013 +0.012 
Box diagrams -0.012 -0.010 

Born + weak - 9.238 - 9.257 

QED + 1.904 + 1.744 

Full 7.334 -7.513 

(ii) Integrated Cross Section. In the energy 

range 4 0 G e V < ] / s < 1 4 0 G e V  the in tegra ted  cross 
sect ions of RS1 and  RS2, a l though  different in low- 
est order ,  agree well after inc luding weak and elec- 
t romagne t i c  correct ions.  This holds  especial ly on 

resonance  ] / ~ = M z ,  where the difference 0 "RS1 - - 0  "RS2 

is smal ler  than  1 pb. 

(iii) Forward-Backward Asymmetry. The two for- 
w a r d - b a c k w a r d  asymmet r ies  nRSl and ARS2 "'FB --FR are plot -  

ted as funct ions of the center  of mass  energy ] / s  in 
Fig. 1 (lowest order)  and  in Fig. 2 ( including l - l o o p  
and  b remss t r ah lung  correct ions) .  Obvious ly  the 
agreement  between bo th  schemes is good  outs ide  the 
resonance  region. Therefore  we shall  restr ict  our-  
selves to discuss only the resonance  region,  in par t ic-  

ular  the interval  I :  I ] / s - M z l < 1 0 G e V .  In lowest  
order ,  AFB can a p p r o x i m a t e l y  be d iv ided  into two 

1.0 

0 ,5  

O.O 

-0 .5  
~~~"RSZ'"'-'"" RSI /' 

- 1 . o  I I I I 
i t0,  02 60 -02  8 0 . 0  ~ 100 ,0  ~ I 2 0 . 0 2  S l t l 0 . 0 2  

OeV 2 

Fig. 1. The forward-backward asymmetry to e+e ~p+/~ calcu- 
lated in lowest order in the intermediate scheme (RS1) and the 
on-shell scheme (RS2) 

1.0 

0 .5  

0,13 

-0 .5  

i i i ' ' i 

RS2(Bor.~.) 

A Born+weak+OgD ~ ........... 
FB / 

RS2 / 

- 1 . 0  I I I I 

0,0,02 6 0 . 0  ~ 80 .02  100 .02  120 .0  a S l q 0 - 0 2  

OeV 2 

Fig. 2. The forward-backward asymmetry with full electroweak 
one-loop corrections in the schemes RS1 and RS2. The photonic 
corrections belong to AE/E=O.1. The dotted curve "RS2(Born)" 
is the on-shell scheme asymmetry in Born approximation, known 
from Fig. 1 

components*  : 

AB . . . . .  X 2a 2 Re(zo)+4v2a2lZo[2 
FB tX)= 1 1 2 + s X  l + 2 v  2 Re(zo)+(v2+a2)2[Zol2  

x ( 2a  2 
. . . . - - B o r n e  x] l l  

A F B  IX) I--I_[_Ix 2 +(v2+a2)2lZoi2 R e ( Z o )  

4•2a2 } 

-t- 1 + (92 -t- a2) 2 IZol 2 Iz~ ' (5 .2)  

Their  con t r ibu t ions  to the difference of the asym- 
metr ies  given in bo th  schemes have the same sign 

be low ] / s = M  z bu t  oppos i te  signs above. It turns  
out  that  the dev ia t ion  of  the RS1 and RS2 curves 
shown in Fig. 1 vanishes at the upper  b o u n d  of  I 

and  rises smoo th ly  up to m a x i m u m  value as ] / s  
app roaches  the lower bound.  

The  ma in  effects of the weak  radia t ive  correc-  
t ions may  be unde r s tood  in terms of the fol lowing 
fo rmula  

x A Born + weak 
vB 11--~l+�89 

2aZRe(z)+4v2a 2(1 2 v R e H , Z )  IZIz 

4v R e / / r z  ) 1~12 1 + ( v 2 + a 2 )  2 (1 V2 _k_ a 2 

(5.3) 

* The reduced propagators Zo are defined as 

S 

Zo(S) s_M2 +iMzFz 

with the total widths Fz=2.825 GeV for RS1 and Fz=2.562GeV 
for RS2 
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T a b l e  4. The forward-backward asymmetry AFB for ]/s 
=93.0 GeV and [cos O] < 1.0. The bremsstrahlung is included with 
AE <O.1 Eb~m 

RS1 RS2 o AFB (%) AFB (%) 

Born 10.565 3.741 

Photon self energy -0.0001 -2  10 -s 
(without fermion loops) 
Z self energy +_ 0.000 +_ 0.000 
7 Z mixing - 8.399 + 0.262 
Vertex corrections -0.514 -0.245 
Box diagrams -0.090 -0.075 

Born + weak 1.562 3.683 

QED -8.676 -2.215 

Full - 7.114 1.468 

in which the Z self energy is absorbed by correcting 
Zo to 

S 

X(s)= s _ M 2  + ~z(s)" 

The dominating contribution to the antisymmetric 
Re(z ) part comes from the Z self energy, while it is 
the 7Z mixing that governs the symmetric IZI 2 part. 
Having in mind our comparison of Green functions, 
the on-resonance asymmetry gets large corrections 
from the 7Z mixing part  in the intermediate scheme, 
whereas in the on-shell scheme the corrections to 
AFB(M~) are small. Because of its magnitude, the 7Z 
mixing energy, although yielding 

1- 1 Z 2 q . R S 2  re"s1 -'~e"s~ [ 1 -  E nLs l(Mz)] --- Ue , 

is not able to correct the powers of the neutral 
vector coupling .RSl in (5.3) as good as expected. U e 

The seperate corrections of the on-resonance asym- 
metry are listed in Table 4. The big difference be- 
tween the lowest order asymmetries ARSland "'FBaRS2 is 
diminished by inclusion of the weak one-loop cor- 
rections, but still a non-negligible difference survices. 
Taking into account also two-loop contributions to 
I m S  z, the results are changed only very slightly 
(<0.01 ~). The separation between the Ava values 
becomes even larger if the QED corrections are in- 
cluded: 
- The Born resonance term 4vZa 2 2cosOlz] 2 in the 
forward-backward asymmetry is proportional  to the 
lowest order vector coupling Ve 2, which gets very 
different values in both schemes. Thus the Q E D  
asymmetry corrections of order e3 will show a clear 
renormalization scheme dependence. 
- F u r t h e r m o r e ,  the QED contributions also de- 

crease the integrated cross section in the denomi- 
aB~ will be nator of (5.1). All weak corrections to --FB 

increased by an amount  involved in the value of the 
QED correction in Table 4. 

5.2. Longitudinally Polarized Beams 

With the degrees of longitudinal polarization PL -+ for 
e • the differential cross section has the form 

d~ (~+, ~_)=(1 -PZ ~-) ~dO) +(PZ - ~-) ~(0). 
dO 

(5.4) 

It is sufficient to discuss the case of electron polar- 
ization only: PL + =0,  PC +0.  The observables of in- 
terest are: 
- the (integrated) polarization asymmetry 

AL= ~L, oL, v= Id~ ,v (O)  (5.5) 

- the forward polarization asymmetry 

As =;y,as o{,v = I df2aL, V(O) (5.6) 
(7 U 0 < ~ /  2 

- t h e  forward-backward asymmetry ~'FB'nP~ replace 
da/d~2 in (5.1) by the polarized cross section (5.4). 

The integrated polarization asymmetries (5.5) are 

shown in Figs. 3-5 as functions of V~ including 
successively the weak and Q E D  corrections. The big 
differences in lowest order are largely removed by 
inclusion of the weak corrections (Fig. 4). The results 
after including also the Q E D  corrections, however, 
are very different: In the on-shell scheme RS2 the 
corrections are essentially smaller than in RS1; in 
particular, the radiative tail effect is much more 

0 . 5  

0 . t t  

A BOr~ 

o.~ L 

0,2 

O. 1 R S !  

RS2  
0 . 0  

- 0 . 1  I I I I , 

qO.O ~ 6 0 . 0 2  8 0 . 0  ~ 1 0 0 . 0 2  1 2 0 . 0 2  s ILtO, 0 ~ 

GeV 2 

Fig. 3. The integrated asymmetry AL(e + e-~p+ #-) in lowest or- 
der. RSI and RS2 denote the renormalization schemes underlying 
the curves 
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0 . 5  

0 . q  

0 . 3  

0 . 2  

0.I 

0.0 

-0. I 

Bofz~+~eak  

A L RS2 

_ , , , I I I I 

qO.O e 6 0 . 0 2  8 0 . 0  e 1 0 0 . 0  z 120 ,0  z s lqO.O e 

GeV 2 

Fig. 4. The integrated asymmetry AL(e+e-~#+# -) a~er taking 
into account the weak one-loop corrections 

0 . 5  

A BOr~+~ueoAc+OED 

0.3 ~ L  

0 . 2  

O. 1 R S 2  / / / ,  

0 . 0  / ' <  

0,  I I 1 I I 

qO.O 2 6 0 . 0  ~ 8 0 . 0 2  1 0 0 . 0  ~ 120 .0  ~ s lqO,O 2 

OeV 2 

Fig. 5. The one-loop corrected integrated asymmetry 
Am(e+e-~#+l~- ). The photonic contributions belong to AE/E 
=0.1 

pronounced in RS1. This behaviour can be under- 
stood by the fact that the QED corrections to the 
unpolarized (av) and the polarized (aL) parts of the 
cross section are rather big, but they cancel largely 
in the ratio A L = a L / a  v in RS2. In RS1 this cancel- 
lation does not work since the Born values are too 
much different. 

In Table 5 we put together the on-resonance val- 
ues for the various asymmetries A L, A~ and ,,vat~ L~p~ 
= -  1). It can be seen that the corrections (weak as 
well as QED) are rather small in the on-shell scheme 
but large in RS1. 

The size of our given values for the QED cor- 
rections (polarized and unpolarized) was derived 
from the specific choice of A E / E = O . 1 .  For realistic 
experimental situations, however, other cuts needing 
also the complete hard bremsstrahlung part may be 
more appropriate. The quantitative results with such 
QED corrections will in general be different from 

Table5. The integrated asymmetries AL, A~, AP]~ for ]/s 
=93.0 GeV and [cosO[ __< 1.0. The bremsstrahlung is included with 

A E < = O . I  E b e a m  

RS Born Born FulI 
+ weak 

A L 1 37.427 21.429 9.540 
(%) 2 22.271 22.222 21.893 

AL y 1 59.238 36.904 17.816 
(%) 2 37.569 37.489 37.671 

pol AFB(P m = --1) 1 28.113 14.505 --0.096 
(%) 2 16.721 16.635 14.602 

our values. However, the qualitative result that they 
are influenced by the electroweak renormalization 
scheme should show up also in other experimental 
situations. 

In conclusion, we have investigated the renor- 
malization scheme dependence of one-loop elec- 
troweak corrections by means of two different 
schemes explicitly specified. We have found that the 
relation between M w and M z is practically the same 
in both schemes. Also the integrated cross section 
and the forward-backward asymmetry for 
e §  at PETRA energies are quantities 
which essentially do not depend on the choice of a 
specific scheme. For the forward-backward asym- 
metry around the Z, in particular the on-resonance 
asymmetry, however, strikingly different predictions 
are obtained according to the underlying renormal- 
ization scheme. The polarization asymmetries show 
a much weaker scheme dependence as far as only 
the weak corrections are included; the QED cor- 
rections again deviate considerably from each other. 

The presence of large scheme dependence effects 
signals need of next order contributions. Since the 
one-loop corrections to the asymmetries are relative- 
ly small in the on-shell scheme (very small for polar- 
ization asymmetries) it seems a reasonable assump- 
tion that next order effects will play only a sub- 
ordinate role in RS2. This conjecture is supported 
by the fact that the inclusion of the 7 - Z  mixing in 
the bremsstrahlung (virtual+real) diagrams absorbs 
the main part of the deviations in the QED cor- 
rections and brings the RS1 near to the RS2 result. 
In order to get a finally satisfactory answer more 
systematic studies on the next order contributions 
will be necessary. 
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