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it is shown that the guantum fluctuations around an interacting instanton-anti-instanton field configuration induce
negative vacuum energy in supersymmetric Yang-Mills theory.

Supersymmetry [1] as a possible fundamental symmetry of bosons and fermions has been siudied
extensively in the past few years. It appears to cure the gauge hierarchy [2} problem in the grand unified
heories {3,4]. It may also provide an sxplanation as to why the mass scales are so widely separated in these
models. However, at ordinary energy scales, this symmetry is not exact. Whereas perturbative guanium
effects respect supersymmetry, it would be desirable if non-perturbative fluctuations were to break it. To
that effect it is important to analyse the quantum fluctuations of the instanton [5] type in the vacuum. The
role of instantons in supersymmetric gauge theories has been extensively studied recently [6,71.

in Yang-Milis theory there exisis an infinity of degenerate classical ground states characterized by an
integer topological charge. Instantons provide a description of guantum mechanical tunnelling between
ground states of different topological charge, thereby contributing non-trivially to the vacuam energy
density {8]. However, when massiess fermions are introduced, the tunnelling is compietely suppressed due
1w the zero modes of the relevant Dirac operator in the topologically non-trivial background 9} {with
Pontryagin index non-zero). Therefore in supersymumetry, where there are rmassiess fermions, single
instantons or anti-instantions {or any other ficld configuration with non-zero Poniryagin index) do not
coniribute to the vacuum energy. These cannot break supersymmetry and the vacuum energy stays at zero.
However, topologicaily trivial but non-perturbative configurations, for which there are no exact fermionic
zero modes, may contribute to the vacuum energy. An instanton—anti-instanton configuration wouid be an
example of this type.

indeed, in an earlier publication {10}, it was shown that far separated non-interacting instanton-anti-in-
stanton field configurations induce negative vacuum energy. The interaction action was used only to
estimate the minimal distance of separation between the instanton and the anti-insiantion up to which the
approximation is valid. In this work we study the same gquantum fluctuations but with interactions
mchuded. We find a lower bound on the contribution of these guantum fuctuations to the functional
integral. They induce a negative vacuum energy in an agreement with the results found before {101 The
induced vacuum energy is very small but non-zero. I it is not canceled by other non-perturbative effects it
suggests an explicit breaking of supersymmetry.

To be more definite, consider a supersymmetric Yang-Mills theory with SU(2) as a gauge group. The
euctidean action is given by
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D= 8% 5, + ge“"°W,? is the covariant derivative, W, (@ =1, 2, 3) are the gauge vector potentials and A°
are the ‘via iorana fermzo 1s. They are expressed in chdeams@d Weyl basis with the Dirac matrices
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The vacuum in this model is given by [8) =12 __ e"?1n), where { n)} label the degenerate ground
states with Poniryagin index n. Tamreimg between vacua differing by one unit of topological charge is
provided by the single instanton or single anti-instanton {5}
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Here 7,,,, Hayu are the 't Hooft symbols [9], x:, x,, 0y, g, are the locations and sizes of the instanton and
anti-instanton, respectively.

As was mentioned earlier {101 the gquantom mechanical ,mn@ﬁmg around these field configurationsin a
supersymmetric model is completely suppressed due to the existence of the fermionic zero modes of the
Dirac operator (iv,D,) in the background of these confsguraaoms. For the instanton we have four
ieft-handed zero modes
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and for the anti-instanton four right-handed zerc modes:
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In eg. (3), (4), %’ and 57 are unit vectors given by either (1, §) or (G, 1

in the absence of tunpeiling by configurations with non-zero ?omryagm md@x, we are led to consider
the tunnellings by the non-perturbative configurations with zerc topological charge such as an
instanton—gnti-instanton field configuration. Without loss of generality we may iske the distance between
the instanton and the anti-instanton in the tirme-iike direction 4, ={(x;— x;}, =48, Later we will
integrate over its divection. Then the instanton-anti-instanton configuration is given by

wil=wig(R—1)+ W9t - R), {5)

where R, = Hx, + X0, =R &, and gene "ality is not lost by taking the locations o be such that
x; = x, = 0. We later integrate over R, as well. Quantum fluctuations around W,” consist of the gaussian
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approximation of Q; = W — W"” When @ is integrated over the functional integral, we get the square
root of the ratic of the fermemc over the bosonic determinants. The fermionic determinant has eight
approximate fermionic zero modes which are associated with the zero modes (3}, {4} of the instanton and
the anti-instanton. In the lmit of infinite separation they become exact zero modes. The bosonic
determinant has 16 approximate zero modes associated with the invariance under transiations, dilatations
and group orientations of the instanton and the anti-instanton. Thess will be factored out and will b
treated by the coliective coordinate method. Factoring out also the approximate zero modes of fhs
fermionic determinant we finaily get the sguare root of the ratio of the non-zero modes fermionic
determinant over the non-zero modes bosonic determinant in the background of an instanton—anti-instan-
ton. In the approximation of far separatlor, this determinantal factor can be approximated by the product
of the determinantal factors of the instanton and the anti-instanton, and each is egual to one [9} as
dictated by supersymmetry {11} ¥ As a resaii we may approximate the functional integral by
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In eg. {6} we have integrated over the locations x4, x, the sizes p,, 0, and the group orientations {2, 2y of

he instanton and the anti-instanton respectively. {2y is wc relative orientation of the anti-instanton
cormpared to the instanton and Ky{x; — x4, ¢, £y, 8y} is the fermionic determinant evaluated in the
subspace of the fermionic zero modes listed in (3} and {4}, with 6 in eq. (4) replaced by ¢ = Ris” and R
represents the anti-instanton relative orientation:
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But for the configuration {§)

{7)

jfd“x;'\(ﬂ“igpaﬁ%p:zf cn;fd’ x K%,(8 +gW”A‘_)+1f er x N, (8, + e WA
~—ij{d3x SHD/2, )R- D/2, 1), (8)

and we use the fact that A0, Ay are the zero modes of the Dirac operator in the background of an
mstanton and anti-instanton respectively. Using (3), (4}, (6) and (8} we gst for K,
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This is different from supersymmetric guanturn mechanics, where supersymmetry does not dictate the equality of the fermionic
and bosonic non-zero mode determinants, This is Hustrated in ref, {12}

327
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K, can be easily calculated and we get
52y V8 V2 g ay? <
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Denote by #, the unimodular four-vector which parametrizes the rotation matrix R, then
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Integrating over the relative orientation we finally find
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For widely separated instanton-anti-instanton we need to keep only the leading term in 472 in K.
This can be seen to be as
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We now have to substitute {(12) in eq. {6) and we get
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Using the renormalization group equation
8m/g* (e} =8n"/g (1} — 6 In{on}, (14

we may ignore the p dependence in the factors (872 /g°(0)1* because it is higher order in g, and we can
factor out a term exp{— 167 /g*(w)) from the integral. The interaction action for the instanton—anti-in-

stanton pair was caiculated in ref. [13} to yield
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Bvidently there is a strong suppression factor for small separation and we may consider the far separated
configuration in accordance with our approximation. For large separation
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and we get the bound
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%eeping only the leading order in g the integration over 4 yield:
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Here we can ses the consistency of our approximation; higher orders in 1 /(4% + p% + ¢35 contribute higher
orders in g after integration, and these we consistently ignore. Also we have ignored the contribution from
the lower Himit of integration over 4 because it is higher order in exp(—967?/g?), which for small g can
be ignored.

The p,, p, integration in eg. (17) is ultraviolet finite but diverges for large instanton and anti-instanto
sizes. However we integrate over g,, p, up 10 some average instanton and anti-instanton scale p,. To thi
end we write gy = 0 C0S @, p i = v sin o and integrate over v and « o obtain
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OF
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We would like now to compare this bound with the induced vacuum energy found in ref, {10}, We first
note that if instead of using (5} to represent the instanton--anti-instanton field configuration, we repiage
the covariant derivatives in {7} by ordinary derivatives we get the approximation of ref. {10]. Thers it was
shown that
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Using the bound (16) and integrating over 4, g, and p, as before we get the following bound:
£(8)/V < ~ {1072 /w)[8n? /g o) o ¢ exp] — 1672 /87 ()] FLg), (21)
where
i 3
F(g)= L a, 0" [827/5%(0.)] (22)
n=4g
and o= 3,61, o, = =5, 76 0y =315, ay= —0.67, a, = 0.05. The function F{g)> 0 for all g, however we

need to consider it ont ly in the region where our approximation is vakid, g?/47 <1 (In{8z2/g*) > 2),
bhecause we have consistently ignored hzgner order perturbative effects, In this *egim F{gy> 014 In fact
due to the exponen mi factor exp{ — 16w°/g*), which is strongly suppressing, it is enough to consider the
region 2 < 877 /g%y < 5 (D14 < Flg) < 4,31), because for smailer values of g the exponential factor is
too smail to give any meaningful number,

Thus the bounds (20) and {Z1) are consistent, and they are also consis istent with the result of ref. {10} for
the contribution to the vacuum energy when interactions are ignored. There it was shown that

E(8)/V=—{(6X%107%/210}[82% /5 (0.)] "o * exp] ~ 1672 /2% ()], (23
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which agrees with the above bounds in the range of the vahidity of the approximation. We expect, though,
that the final resuit should be closer 10 (23) than to (20} or (21) because the average in group space of the
interaction action is zero.

We thus have shown that there is an induced vacuum epergy by an instanton-—anti-instanion field
configuration even when interactions are included. It is small and may still be wiped out when othe
non-perturbative contributions to the path integral are included. If that does not happen, it suggests an
exphicit breaking of supersymmetry.

The induced vacuum energy, we found, is proporiional to the inverse of the fourth power of the scale
cut-off p,. Such a cut-off is needed in any scale invariant theory; supersymmetric Yang—Mills theory is
only one example. Indeed it was pointed out in ref. [9] that in a spontaneously bmxe'z gawc theory this
cut-off is not needed, because a'“e contribution of the scalar field to the action (in a background of an
instanton or anti-instanton) is 8§, = 47 °F %, which renders the p integration finite. Here F is a constant
associated with the vacuum expec-”aizon value of the scalar field. The same shouid heppen in the
supersymme:ric extension of this theory. We, however, used the pure supersymmetric Yang—Mills theory
for the sake of simplicitly, So in this theory one may take eg, ~ /‘15}09 the strong interaction scale of SU(2)
gauge theory.
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