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:~t is shown that the quantum fluctuations around an interacting instanton-anti-instan;on field configuration induce 
negative vacuum energy i.n supersymmetric Yang-MiI~s theory. 

Supersymmetry [1] as a possible fundamental symmet,:7 of borons and fermiotas has bee~ studied 
extensively in the past few" years~ it appears to cure the gauge hierarchy [2] problem iv, the grand unified 
theories [3~4]. it may also provide an explanation as to why the mass scales are so widely separated in these 
models. However, at ordinary energy scales, this symmetry is not exact. Whereas perturbative quantum 
effects respect supersymmetry, it would be desirable if non-perturbative fluctuations were to break it. To 
that effect it is important to analyse the quantum fluctuations of the instanton [5] type in the vacuum. The 
role of instantons in supersymmetric gauge theories has been extorts'rely studied recently [6,7]. 

In Yang-Mills theory there exists an infinity of degenerate classical ground states characterized by an 
integer topological d~arge, instantons provide a description of quantum mechanicN tunneIiing between 
ground states of differem topological charge, thereby contributing non-triviaily to the vacuum energy 
density [8]. However, when massless fermions are introduced, the tunnelling is completely suppressed due 
to the zero modes of the relevant Dirac operator in the topologically non-trivial background [9] (with 
Pontryagin index non-zero)o Therefore in supersymmetry, where there are massless fermions, singie 
instantons or antiAnstantons (or any other field configuration with non-zero  Pontryagin index) do not 
cozatribute to the vacuum energy. These cannot break supersymmetry and the vacuum euergy stays at zero. 
However, topologically trivial but non-perturbative configurations, for which there are no exact fermionic 
zero modes, may contribute to the vacuum energy. An instantoa-ant i4nstanton configuration wouid be an 
example of this type. 

Indeed, in an earlier publication [10], it was shown that far separated non-interacting instanton-anti-in- 
stantoa field configurations induce negative vacuum energy. The interaction action was used only to 
estimate the minimal distance of separatio~a between the instanton and the anti-instanton up to which the 
approximation is valid. In this work we study the same quantum fluctuations but with interactions 
included. We find a lower bound on the contribution of these quantum flt~ctuations to the functional 
integral They induce a negative vacuum energy in an agreement with the results found before [10]. The 
induced vacuum energy is very small but non-zero. If it is not canceled by other non-perturbative effects it 
suggests an explicit breaking of supersymmetry. 

To be more definite, consider a supersymmetric Yang-Mills theory with SU(2) as a gauge group. The 
euc!idean action is given by 

~ a  * - -  a 

J 

Here F~.~ is the field strength, 

" = ° - + v Z ; ,  
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D.!} c = ~'~" oa + g d b C ' ~  a is the covariant  derivative, "~'~ (a  = t~ 2, 3) are t~o_.~ gauge vecm,~ ~ potemiaIs  and X" 
are the Majorana  fermio?,.s. They are expressed in eucIideanised Weyl basis with the Dirac  matrices 

!° 
r~= i2, ,  " , ~ =  (i~, ~), 2~= ( - i~ , ,  ~) 

and 

: L 2 ,  + ~,2~, = 2.G~, 2~x,, + 2 ,  G = 2 G t .  

The vacuum in tin,_ reodet is given by [8)  = z,~= _ ~  e~"e i n ), where { ~}} ~abeI the degenerate  ground 
states with Pontryagin index n. Tunnelt ing be.;ween vacua differing by one unit  of  topological charge is 
_~rovided by the single instanton or single an t iqns tan ton  ~.='~ 

~-G:-" -2.2 %,~,,(x - xI),, W] ~ = 2 ~,~u,(x - x2)  ~ (2) 
: ~ _  ~ o~' g ( ~ _ x ~ ) ~ + p ~  " 

Here  ~ , - * . .,~p~,, :q~,~ are ~he ' t  Hoof~ symbols  [91, x: ,  x a, .o~, p; are ~be !ocafions and sizes of the ins tanton and 
anfi-instan~on, respec~iveiy. 

r I As was ment ioned earlier ~10, the quan tum mechaniea!  t~nneiling a roand  these field configurat ions in a 
supersymmetr ic  mode1 is comp!e~ety suppressed due to the existence of the fen'nionic zero modes of ~he 
Dirac  opera ,or  (i'/~D~) in the background of ~hese configurations.  For  ~he ins.:anton we have four 
1eft-handed zero modes 

Oss je = - ~ -  2 

0SCTe gY X - -  3~2) 2 + D 

and for the anti-Lns~anton four r ight-handed zero modes:  

~x,-,x ° _ 2 °Y~ ° 

in eq. (3), (4), u < ±; and ~¢ -+) are uni~ vectors given by  either (1, 0) or (0, 1). 
In  *he absence of tunneiling by configurations with non-zero Pon. :wagm index, we are led to consider 

~he mnne!lings by  the non-pergurbadve configurat ions with zero gopologicai charge such as an 
ins tan ton-an t i - ins tan ton  field configuration.  Wi~hou~ !oss of generali~y we m a y  take ';he distance between 
tSe ins tanton and flue ant i- instanton in the mne-;~ke direction 2% (x z - x ~ - d s 8 ~ o o  Later  we will 
imegra~e over its direction. Then the i n s t a n t o n - a m i d n s t a n m n  configurat ion is given by  

= r  : , ' w } e ( t -  

where R , , =  ½(x: + x : ) ~ =  R 8~0, and generality is no{ Iost by  taking ~:he iocadons  to be such that  
x: = x2 = 0o We ia~er integrate over  R ,  as we!i° Q u a n t u m  fluctuations a round W~ ~ consist of ~he gaussian 
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approximation of Q~' = W,,~ ~ - W. "q,~ o When Qr~ is integrated over the functional integral, we get the seuare. 
root of the ratio of the fermionic over the bosonic determinants. The fermionic determinant has eight 
approximate ferraionic zero modes which are associated with the zero modes (3), (4) of the instanton and 
the anti-instantono In tee {imit of infinite separation they become exact zero modes. The bosonic 
determinant has 16 approximate zero modes associated with the invariance under translations, dilatations 
and group orientations of the instanton and the ami-instanton~ These wi11 be factored out and will be 
treated by the col!ective coordinate method. Factoring out also the approximate zero modes of the 
fermionic deter,mnant we finaily get the square root of the ratio of the non-zero modes fermionic 
determinant over the non-zero modes bosonic determinant in the background of an instanton-anti- instan- 
ton~ In the approximation of far separation, this determinantal factor can be approximated by the product 
of the determinantai factors of the instanton and the anfi-instanton, and each is equal to one [9] as 
dictated by supersymmetry [II]  ~". As a result we may approximate the functional integrai by 

do: 
:, i0) i i  8 (8  "~( 4 2 ,4 d 4 x a - - - ~ d f l  df2R 

P~ P2 

X [ 8 , W g ~ ( # ~ ) ] 4 [ s ~ V g 2 ( a ) ] % ( x ~  , - x 2 ,  p~,, a ,  ~ )  

x e @ -  s ~ / g ~ ( a )  - 8 , ,~ /g~( ;~)  - so,!o,, 4," ' 

in eq. (6) we have integrated over the locations x~, x 2 the sizes p,, o a and the group orientations ~, $ ~  of 
the instanton and t~e antMnstanton respectivdy. ~ u  is the relative orientation of the anti-instanton 

, / compared to the instanton and Kotx  ~ - x , ,  O,, #~, f2R) is the fermionic determinant evaluated in the 
subspace of the fermionic zero modes fisted in (3) and (4), with e ~ in eq. (4) replaced by o~ = R;o ~ and R~ 
represents the anti-instanton relative orientation: 

0 s s  ~ ~ ~-'~tz t'~ ()ss ~ ~ 0 s s  ~z'*~ b~ ~ / ~  0 s o  

No= det x(+)iw ~ V - >  ~(+>;v D V - )  (7) 

But for the configuration (5) 

- :j  . . . .  0 v ~ . o ,  x ) x 0  ~-D/2, ~), (s)  

and we use the fact that X{0 +~, ~'(o; are the zero modes of the Dirac operator in the background of an 
¢ ¢-, • ,~ vns,amo~, and anti-instanton ~espe,4iv,Ay. Using (3), (4), (6) and (8) we get for K0, 

/ O ;  , ~ ^ 5 / 2 ^ 5 / 2 ~  ~ ,a 

Ko deti': _ ;  ~ ,f4-~s/2^5/2~ da%o~,. 

where 

: [ i x 2  a \  3 / 2  3 / 2  a t ~ 
~ z a  a -  o)p: P2 %oR/ 

1 e °c X 2 dX j ~  
. = -  ~ b = -  t 

t~ + An~ 4 + o~ : 

x 4 dx  

( x  2 ÷ a 2 / 4  + pl )2(x  2 + ~= /~  + .d )  =° 
(9) 

*~ This is d~fferent from supers~met6C quaP, tam mechanicS, where supersymmetry does not dictate the equality of the fermionic 
and bosomc non-zero mode determinants. T~ds is i~iustrated in ref. it2]. 
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K o can be easily calcuIated and we get 

a ,~2 
Ko = 322(~.~32)8(ab) 2 det(~.~pa~ - 

De~ote by ,@ {he un'_.'rnodu~ar four-vector which parametrizes the ro{a0.o~ matrix ~:;/~, then 

= _ ~ ~ a = 8U2 R~,,, ~,~ + 2[%;,cu~.u 4 + (u~u;, 3ah~2)] det(~(,~R) t + 

integrating over the relative orientation we finally find 

(!o) 

f d ~  R Ko = 26~r2(B2)2(p~p2)S(ab) 2. (11) d 

For widely separated ins tan ton-an tMns tan ton  we need to keep only the leadi~3g term in A -2 in K 0. "F" 
ms can be seen to be as 

26vr 2 X 64(0;02)  8 , ~ 
, " " . ~,lzy 

We now have to substitute (i2) in eq. (6) and we get 

(81e_HT i ~),,.~ ,.~ gT  64 X 2¢f2 X 26¢r2 ~£ dP'~-- - - c ~  24~ 
( 8 ~ )  ~ ~ ~ ¢2 

>( [ ~2 (,O ; 5 ) i  g2(02) ]~' i ~2 -@ p 2¢ A- p2 i exp I g2/~, ~31 }~' ~2 (p2) S,~, .j (13) 

Using the renorma~izadon group equation 

2 2/ 3, ]D(pi/.) (14) 87r / g  V p ~ = S v r 2 / g 2 ( > ) - - 6  . , 

we may ignore the p deper~der~ce in the factors [Sgr2/g2(p)] 4 because it is higher order in g, arid we ca~ 
factor out a mrm e × p [ - t 6 v 2 / g 2 ( > ) ]  from the integral. The interaction act ioa for the ins tan ton-ant i - ia -  
s m m o n  pair was calculated iv. refo [I3] to yield 

&iv. = 4 ~n(&p2/~2) ,  for ~ << p~, 02 

g2 £x2+p2+o~/ 

Evidently there is a strong suppression factor for smal~ separation and we may consider the far separated 
configuratio~a i~ accordance with our approximation.  For  large separation 

I <] 96~r 2 [ P~P2 (16) 
e × p ( - & . )  > e~p I - g~ i a ~ + ,~ + ,~ 

and we get the bound 

/O i;e ;4?" {8>I~> ~ VT(52/cr4)[8,;q.2/g2(>)]8 exp[_i6¢r2/g2(p.)]  

/d~ol dP2 d4L~(P~P2) (PiP ~) (P217.) 6 [ 
x (1;) 

. k g : (~ ' )  \ a ~ + ~ + ' ~  / 
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Keeping oniy the leading order in g the integration over 2~ yield: 

d4~ exp[ 96rr2 ( P l P 2 ) 2 1 ~  Vr2 / g2([-~) i3 /~ 
f ( a 2 + • + , 2 2 ) s  k g2(~)  a 2 + # 2 + 9 2  2(0:p:)6 ~ 9 6 ~ r 2 ] .  V:8) 

Here we can see the consistency of our approximation; higher orders in t / ( k  2 + 9~ + 92) contrib,ate N gi-er 
orders in g after integration, and these we consistently ignore. Also we have ignored the contribution from 
the lower limit of integration over ,1 because it is higher order in e x p ( -  96rr2/g2), which for small g caP, 
be ignored. 

The p:, & in.tegration in eq. (17) is uitravioiet finite but diverges for large instanton and anti-iastanton 
sizes. However we integrate over p:, 02 up to some average instanton and antMnstanto:3 scale 9~. To this 
end we write p:,a = e cos a, p2i~ = v sin c~ and integrate over v and a to obtain 

(e i e - " r l S ) ~  >1 VTg4~(p~#)a[8~r2/g2(~O] 5 ( i 3 / 1 2 ' . 2 )  exp[ - t6~r2/g2(#)]  (19) 

or 

E ( 8 ) / V ~  - (0.94 × lO-3/~r2)[Sv2/g2(9:)]hp?4 e x p [ -  i6qr2/g2(&)] .  (20) 

We wouid iike now to compare this bound with the induced vacuum energy found in ref. [10]. We first 
note that if instead of using (5) to represent the instanton-anti-instanton field configuration, we reptace 
the covariant derivatives in (7) by ordinary derivatives we get the approximation of ref. [I0]. There it was 
shown that 

r 1 [ ln2p 2 1r~492 
= 4 5 × 1 2 1 - 5 1 0  91 + I 3  ~. --7 j d~a/G 8 ( ~  + 9~ + 9~)8 [ 0~ 

1 , --r" P2 + 248 tn 2 9 2  _ 4 0  X 329 In ;;  + p~ !n 2 92 t ,n 2 / z12 + ,~ ' 2 ,z  2 P:P2 J + 26, 67-- ~ !! i 
\ 9: : \ 9:.% ./ 

- 2 4 8 i ~  3 z~2 + 0 2 + 9 2  i + 1 3 1 n  4 . P , . 
\ PlP2 ] \ 9"~92 

Using the bound (16) and integrating over ~, 91 and 92 as before we get the following bound: 

E ( O ) / V . ~  -- ( 1 0 - 2 / ~ 2 ) [  g'fl'2/g2(gc'~1511 & 4 exp[_16vr2/g2(&)]F(g),  ,,21?, 

where 

4 
F(g) = .~ a. i r : [S r r2 /g2(&) ]  (22) 

n = O  

and % = 3.61, a: = -5 .76,  a 2 = 3A5, ~3 = -0 .67 ,  a 4 = 0.05. The function F(g) > 0 for ali g, however we 
need to consider it only in the region where our approximation is valid, g2/4rr < ! (ln(8~r2/g 2) > 2), 
because we have consistently ignored higher order perturbative effects. ~n this region F(g) >f 0.!4. In fact 
due to the exponential factor e x p ( - 1 6 v 2 / g 2 ) ,  which is strongly suppressing, it is enough to consider the 
region 2 ~< INSvr2/g 2) ~< 5 (0.i4 ~ F(g) <~ 4.31), because for smaller values of g the exponential factor is 
too small to give any meaningful number. 

Thus the bounds (20) and (21) are consistent, and they are aiso consistent with the result of ref. [i0] for 
the contribution to the vacuum energy when interactions are ignored. There it was show~ that 

E ( O ) / V =  - (6 × lO-4/21rr2)[8~r2/g2(9~)] ~'~0£ 4 exp[ - 16~r2/g2(.G) ] , (23) 
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which agrees with ti~e above bounds in the rarage of the vafidity of the approximation. We expect, though, 
that the final result she~.td be c!oser to (23) tha~ to (20) or (21) because the average ir~ group space of ~he 
interaction actior~ is zero. 

We thus have shown that there is aa induced vacuum energy by an iastantow-anti- instamon field 
configuration ever~ whe~ interactions are included. It is small and may stiil be wiped out when other 
no~-perturbative contributions to the path integral are ip~duded. [f that does r~ot happen° it suggests an 
expIicit breaking of supersymmetry. 

The induced vacuum energy, we found, is proportional to the inverse of the fourth power of the scale 
cut--off p~. Such a cut-off is needed i~ any scale is varia~t theory; supersymmetric Yar~g-Mitls theory is 
oniy one example. Indeed it was pointed out in ref. [9] that in a spoatarleous~y broken gauge theory this 
cut-off is not needed, because the cor~tribution of the scaiar field to the action (in a background of a~ 
instanto~ or anti-instaatoe) is S~_~ = 4e'2F2p 2, which renders the p integration fiaiteo Here F is a coas tam 
associated with the vacuam expectatior~ value of the scalar field. The same should happen in the 
supersymmetric extension of tNs theory. We, however, used the p~re supersymmetric Yang-MiI~s theory 
for the sake of simpticitly~ So in this theory one may take e~. -~ A~:~, the strong interactio~ scale of SU(2) 
gauge theory. 

1 wish to thank Romesh Kaul for very stimulating discussioas~ ,:" would also like to thank Professor M. 
Guenin for support. 
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