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Starting from Monte Carlo generated equilibrium gauge field configurations at fl = 2.1 and 
2.2 on a 64 lattice, representing the physical vacuum, we systematically freeze the quantum 
fluctuations by means of successive relaxations. The result is that  we obtain (approximate) 
solutions of the classical equations of motion, which turn out to have discrete values of the action 

S'~fl2~r2N, N = 0 , 1 , 2  . . . . .  

in close agreement with the continuum (multi-) instanton solutions. We show that these "lattice 
(multi-) instantons" are localized in space-time, that they carry a topological charge IQ1 = N and 
that they give rise to a number of fermion zero modes in accordance with the Atiyah-Singer index 
theorem. Finally, we estimate the "background topological susceptibility" from the distribution of 
lattice (multi-) instantons. 

1. Introduction 

To "solve" QCD it is not enough to compute the mass spectrum, condensates, the 
topological susceptibility, etc. by lattice Monte Carlo methods [1]. It is equally 
impOrtant to get a qualitative understanding of confinement, chiral symmetry 
breaking and the like - i.e. of the QCD vacuum. 

A necessary and sufficient condition for confinement is the existence of random 
domains of  colour magnetic flux [2]. One would think that the energy it costs to 
patch up such a vacuum-  thinking of the vortices as being necessary to do 
so - outweights the energy that is gained in "growing" the domains. In QCD there 
is, however, the possibility of the formation of instantons [3] - i.e. semi-classical, 

* Address after I September 1985: NORDITA, Copenhagen, Denmark. 

0550-3213/86/$03.50©Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



694 E.-M. llgenfritz et aL / Existence of instantons 

dipole-like objects of minimal action with unit topological charge-  which could 
amalgamate the random domains with little cost in energy. 

Though, in this picture, instantons may not be the "driving force" of confinement, 
we believe that they play a key role in the physics of the QCD vacuum. This belief 
receives further support from the observation that, semi-classically, instantons may 
provide a resolution of the U(1) problem [4] as well as a mechanism for chiral 
symmetry breaking [5]. 

So far the question whether the QCD vacuum does possess an underlying 
instanton structure, has only found an indirect answer: it has been shown by lattice 
Monte Carlo calculations that the vacuum of the SU(2) gauge theory is topologically 
non-trivial and that the topological susceptibility is of the right order of magnitude 
as required for a quantitative resolution of the U(1) problem [6,7]. The early 
semi-classical calculations, on the other hand, have remained of uncertain validity in 
spite of great efforts undertaken during the last years [8] to cure its infrared 
problems. 

In the present paper we shall try to find a more direct answer to this question. The 
idea is to generate equilibrium lattice gauge field configurations, i.e. "snapshots" of 
the physical vacuum, and subsequently freeze their quantum fluctuations by succes- 
sive relaxations. If there are instantons underlying the vacuum, they should remain 
behind and become visible, as they are quasi-stable under relaxations, i.e. (ap- 
proximate) solutions of the classical equations ~Jf motion. A similar procedure has 
been applied previously to the 0(3) sigma model [9]. 

The paper is organized as follows. In sect. 2 we describe the procedure of 
relaxation and  ask the question, to what extent it leads to reproducible results. In 
sect. 3 we collect evidence that the resulting, quasi-stable field configurations 
represent (multi-) instantons. In sect. 4 we estimate the background topological 
susceptibility and in sect. 5 we draw our conclusion. 

2. Relaxation of lattice gauge field configurations 

We start from equilibrium SU(2) gauge field configurations, which we have 
generated by standard Monte Carlo methods using the Wilson action 

S=fl E (1 -½TrU, .~ , . )= f l  E [1-½Tr(U~.~U,+~..U,+~.~U,+~)] • (1) 

Now we replace successively each link matrix, U..~, by 

U..~ --, U,.~ = c E [ U,. ,U, +.. ~U~ + ~.~ + U +_ ,. ,<_~. y ,  + ~_~., ].  (2) 
I* 

(v.< v) 
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Fig. 1. The ratio S/fl  as a function of the number of iterations for 4 typical gauge field configurations at 
fl = 2.1. The first iterations with S/fl  >_ 120 are not shown. 

where c is a normalization constant such that 

e su(2). (3) 

When all link matrices have been changed once, we call this one iteration. This 
procedure will locally minimize the action. One can also think of other methods of 
"cooling" the gauge field configurations. A similar algorithm can also be given for 
SU(3) [10]. 

Our sample of vacuum configurations consist of 40 configurations at fl = 2.1 and 
18 configurations at fl -- 2.2 on a 64 lattice. In fig. 1 we have shown the history of 4 
typical gauge field configurations under successive relaxation. While configuration A 
decays into the trivial (S -- 0) vacuum, configurations B, C and D show a plateau, 
indicating the passage through a quasi-stable field configuration. On the plateaus the 
action takes the values 

S = f l ( 2 7 r 2 - A ) N ,  N = l , 2  . . . . .  (4) 

with a = 1. This is in close agreement with what one would expect for a continuum 
(multi-) instanton field configuration, i.e. S = fl2~r2N. The fact that the lattice action 
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TABLE 1 
The correlation matrix MN~ as defined in the text 

MN~ 

0 
1 
2 
3 
not 
identifiable 

N 

reverse ordering 

not ~ MNK' 
0 1 2 3 identifiable 

5 3 4 0 " 2 14 
1 8 1 0 2 12 
1 2 3 0 1 7 
0 1 0 1 0 2 

2 3 0 0 0 5 

9 17 8 1 5 40 

(4) is somewhat smaller than the continuum value is presumably due to the finite 
volume of the lattice [11]. 

In the following we shall call a configuration quasi-stable if after one iteration it 
changes its action by less than 2. The fact that the relaxation procedure employed 
here does not lead to absolutely stable lattice field configurations has already been 
observed in ref. [12]. We disagree, however, with the authors' conclusion that the 
Wilson action does not support the existence of instantons. 

If the observed quasi-stable lattice field configurations are an attribute of the 
equilibrium configuration they came from, their appearance should, by and large, 
not depend on the particular relaxation procedure used. One way of checking this is 
to apply a different algorithm to compute the new link matrix U,.~ from the old 
ones, e.g. by using the Langevin equation without noise or a modified Metropolis 
algorithm. In this paper we have performed a different test: we have "cooled" our 
sample of 40 configurations at fl --- 2.1, in addition, by sweeping through the lattice 
in the reverse order. To compare the outcome of the two procedures we have 
computed in table 1 the correlation matrix 

MNKr = 40(NN)-I<N~/>,  (5) 

where N, /V is the height of the first (quasi-stable) plateau in units of S/f l(2~r 2 - A )  

for the "forward" and the reverse ordering, respectively. We find that the two 
procedures give in 17 out of 35 (identifiable) cases the same answer. In order to 
underpin the statistical significance of this result we calculate 

= E 4 0 ( N N ) - '  (<NN> - <N>(.~>) 2 (6) 
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Fig. 2. The frequency 40 N-I(N) of finding a quasi-stable configuration with N = S/fl(2 ~r 2 - A )  for 
the configurations of table 1. 

which gives ~- = 31.9. For a X 2 distribution for 16 degrees of freedom there is only a 
1% probability that X2> ~', so that the possibility for both sets of values being 
statistically independent is extremely small. To check the stability of the results 
further, we have "cooled" the field configuration which gave N, ~ ' =  3 (and is 
relatively infrequent) a further 10 times by sweeping through the lattice in sequential 
order but starting from randomly chosen links. In all cases we found a N = 3 
plateau. All together we take this as (statistical) evidence for a real underlying 
semi-classical field structure already at fl = 2.1. 

In fig. 2 we have plotted the frequency 4 0 N - I ( N )  of finding a quasi-stable, 
N = S / f l ( 2~r  2 -  A )  field configuration among the configurations of table 1, where 
we have averaged the results for forward and reverse ordering. 

3. Do the quasi-stable configurations support the picture of an instanton? 

Before we can interpret the quasi-stable lattice configuration obtained in the last 
section as instantons, we must demonstrate that their action density is localized in 
space-time, that they are solutions of the classical (lattice) equations of motion, that 
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they have the fight topological charge and that they give rise to the right number of 
fermion zero modes. 

3.1. ACTION DENSITY 

During the process of relaxation we have monitored the action density, 

S.={fl E (1- ½TrU..,.). (7)  

As an example we have plotted in fig. 3a-c p. = [100S, J f l ]  for configuration B of 
fig. 1 after 30 successive iterations, where the dots indicate p, = 0. The time slices 
not shown have action densities p, = 0 everywhere. This shows that the action 
density is indeed localized. Similar plots for configurations C and D (on the 
plateaus) show that the action is concentrated in 2 and 3 well separated lumps which 
resembles the picture of a dilute instanton gas. 
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Fig. 3. The action density S. of configuration B (fig. 1) after 30 iterations. The integers plotted are 
p,, ffi [lOOS,,/fl]. The dots correspond to p,, ffi O. 
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Fig. 3 (continued). 
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3.2. LATTICE EQUATIONS OF MOTION 

The relaxation procedure does not guarantee that the resulting field configurations 
represent (always) a solution of the classical lattice field equations 

i.e. 

~S 
- - = 0 ,  (8) 

E(u. . . -  (9) 

To find out to what extent the quasi-stable configurations are solutions of the 
classical equations of motion, we define the local deviation of the actual link matrix 
U,,.~ from its replacement value U,,~ (cf. eq. (2)): 

(10) 

We have calculated ~ for all lattice sites after each iteration. We find that when we 
get down to the plateau, 8, becomes small for all n and remains so for typically the 
first half of the plateau. In the second half ~ then starts locally to increase and, as 
we approach the region where the action turns into another plateau or to zero, it 
develops a sharp peak at exactly the maximum (or one of the maxima) of S~ - which 
also becomes more pronounced as we move along. The "instanton" thus shrinks, 
becomes a dislocation [13] and finally is annihilated. 

3.3. TOPOLOGICAL CHARGE 

We have computed the topological charge Q of the quasi-stable field configura- 
tions using Li~scher's definition [6,14] of Q. On the plateaus- more precisely, 
throughout the whole plateaus until the configurations collapse, the secondary 
plateaus included - we found for all configurations 

Q= 5:N = 5:S//3(2rr2-A ) (11) 

(despite the fact that Liischer's bound [14], S,//3 < 0.015, is locally violated; cf. fig. 
3a-c where S J f l  <_ 0.14). This is exactly what we expect for a (multi-) instanton 
field configuration. We shall call this charge the background charge. 

In fig. 4 we have plotted the background charge distribution of our sample of 18 
equilibrium gauge field configurations at/3 = 2.2. The background charge distribu- 
tion of the 40 configurations at/3 = 2.1 can be read off from fig. 2 (for I QI though). 
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Fig. 4. Distribution of the background topological charge for the sample of configurations at fl = 2.2. 
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3.4. FERMION ZERO MODES 

The lattice action for massless Kogut-Susskind fermions in a background field 
configuration { U,..  } is given by 

SF--~(M(U)x = ~_, [X: . ( -1 ) " '+  "'" +""-lUn,~X.+~- h.c.],  (12) 

where ~,,, X, are single component, colour doublet Grassmann variables sitting at 
the sites n( = (n 1, n 2, n3, n4)). We assume antiperiodic boundary conditions in all 4 
directions. S F then has an explicit chiral symmetry for which (XX) is an order 
parameter. In the infinite (lattice) volume limit we have [15] 

(XX) -- 2~r(p(O)), (13) 

where p (~)  is the density of eigenvalues (~, } of the fermion matrix iM(U). It is thus 
the existence of zero modes that will determine whether chiral symmetry is broken 
spontaneously or not. 

In the continuum the Atiyah-Singer index theorem [16] states that the number of 
zero modes, Z, of self-dual or anti-self-dual gauge fields is equal to I Q]. To check 
this we have computed the eigenvalues of the fermion matrix associated with the 
quasi-stable field configurations using the Lanczos algorithm developed in ref. [15]. 
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On a finite lattice we will, of course, not find exact zero modes but (at most) small 
eigenvalues which are well separated from the rest of them. On the plateaus we 
found 

Z = I a l  = N (14) 

in accordance with the index theorem. To illustrate this, we have plotted p(X) 
for 3 typical field configurations in fig. 5a-c. Configuration E, which has 
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Q = 0, has also no "zero" mode. Configuration F, which has Q '-- 1, has one "zero" 
mode (not counting the degeneracy of the eigenvalues due to the fermion doubling), 
while configuration G, which has Q --- 2, supports exactly 2 "zero" modes. 

For comparison we have also shown p(X) for a typical equilibrium configuration 
(that of fig. 5b) in fig. 5d. The difference in the two eigenvalue spectra is striking: 
while p(h)  extends continuously to 7t--+ 0 for the equilibrium configuration, it 
develops a gap in the process of relaxation leaving behind the "zero" modes. 

To conclude this section, we may say that the quasi-stable field configurations 
underlying the equilibrium configurations have passed all tests so that they can be 
interpreted as (multi-) instantons. It would be interesting now to compare these 
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configurations with an analytic expression for an instanton field configuration. The 
construction of such an expression on the lattice is made difficult, however, because 
it has to be periodic in all 4 directions. In ref. [17] a construction of a lattice 
instanton was given, which had the right topological charge and exactly one "zero" 
mode. The basic idea was to map R 4 onto a finite lattice, which was divided into an 
inner and outer region. In the inner (outer) region the gauge fields were taken to be 
the discretized instanton solution of the continuum equations of motion in the 
regular (singular) gauge, and in the overlap region they were patched together by a 
gauge transformation. Unfortunately, we find that this construction violates the 
classical equations of motion in the overlap region, and therefore it collapses under 
relaxation. 

4. Estimate of the background topological susceptibility 

In ref. [6] the topological susceptibility, Xt = (Q2)/V, was found to be 

X t = (40.8 + 1.3A L)4 (15) 

for values of 13 ranging between 2.2 and 2.5, which, taking [6] A L --- 6 MeV, gives 

X t = (245 + 8 MeV) 4. (16) 

The question now is: can this be attributed to instantons? 
To answer this question, we have computed the topological charge of the equi- 

librium configurations and compared it to the corresponding background charge. 
We find that the equilibrium and the background charges are not strongly corre- 
lated. A similar test as that described in sect. 2 gives (for 32 degrees of freedom) a 
80% probability that the two sets of charges are statistically independent. For the 
background topological susceptibility we obtain 

/3 = 2.1: Xt = (20AL) 4 = (120 MeV)'*, 

/3 m 2 .2 :  Xt  m (21.7AL) 4 = (130  MeV) 4, (17 )  

which is one order of magnitude below the value (15), (16). 
This is, maybe, not surprising. It is possible that the 0 -  glueballs contribute to X t, 

which would be on the quantum level. But it could also be that at the present values 
of /3 the gauge fields are not smooth enough to allow for an unambiguous 
determination of  the topological charge. 
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5. Conclusion 

We have shown that even on small lattices and for values of fl at the edge of the 
continuum region the vacuum of the quantized (pure) SU(2) gauge theory does 
possess an underlying instanton Structure. 

The lattice size (and hence the range of fl values) was dictated to us by the fact 
that the computation of Q [6,14] is very time consuming. However, we are now in 
the possession of an algebraic expression for the topological charge on the lattice 
[18], which is fast to compute. This will allow us to repeat the investigation on larger 
lattices and for larger values of fl, which will be the subject of a future report. 

Note added in proof 

After this work had been completed we learnt that M. Teper [19] has done a 
similar investigation to ours. 
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