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Abstract. We consider equal-time commutat ion re- 
lations of chiral SU(N)L x SU(N)R charge densities in 
the non-linear a-model. These commutators  are de- 
rived using the cocycle formalism and from the 
usual canonical theory. Both methods give the same 
result. The charge density commuta tor  of the sym- 
metry currents contains operator valued Schwinger 
terms arising from the Wess-Zumino term. 

I. Introduction 

Many years ago, Wess and Zumino [1] derived a 
low energy effective action for pseudoscalar mesons 
in the presence of external gauge fields. The result 
was given in terms of a certain five-dimensional 
integral containing the Bardeen anomaly [2]. It was 
observed that the integral is non-vanishing, even 
when the gauge fields go to zero. This interac- 
tion term (in the following referred to as WZT) in- 
duced abnormal  parity interactions such as 
K+K-~r~+~ zc ~ and, if coupled to an external 
photon field, processes as n ~  7 and 7 ~ + ~  ~0 
etc. Further phenomenological discussion can be 
found in [3]. 

Witten [4] has given a simple intuitive reason 
for the presence of the Wess-Zumino action, namely, 
that it removes a certain symmetry from the non- 
linear a-model. This symmetry, z~i--*-~i, where ~i is 
the octet of pseudoscalar fields in the case of SU(3)L 
x SU(3)R chiral symmetry, for example, is not a sym- 
metry of QCD and, therefore, should not be present 
in the effective action. The term, which breaks this 
symmetry with the fewest number of derivatives, in 

* On leave of absence from Physikalisches Institut der 
Universit~it Bonn, D-5300 Bonn 1, F R G  

order to act as a low-energy effective action, is the 
Wess-Zumino action with gauge fields set equal to 
zero. In the equations of motion the WZT makes a 
local contribution, which, however, cannot be de- 
rived from a local Lagrangian. Witten [4] showed 
that it can be written more symmetrically as an 
integral over a five-disk. In this way it is seen that 
the action depends on the orientation of the five- 
disk. This leads to an ambiguity which depends on 
the winding number of the pseudoscalar meson con- 
figuration, and has the consequence that the overall 
coefficient is equal to an integer up to a known 
normalization constant. 
In the a-model the WZT induces modifications of 
the conventional SU(3)L X SU(3)R currents. The com- 
plete current JRu'L(X) is a sum of two parts, the old 

�9 R, L current j ,  (x) and the anomalous current fRu'L(X) 
originating from the WZT 

R,L "R,L ~'R,L J; (~)=j~ (~)+j~ (~). (1.1) 

T h e s e  complete currents have been written down by 
Witten [4] as a function of the non-linear field U. 
Their expansion in terms of physical particle states 
can be found in [3]. One might expect that the WZT 
anomaly not only modifies the currents but the 
equal-time current commutat ion relations as well. 
Several authors considered these commutators  for 
the non-linear a-model with WZT. Bars [5] has 
calculated the equal-time commutators  in two di- 
mensions and obtained the modified current algebra. 
In particular he obtained c-number Schwinger terms 
also in the local charge commutators.  They are pro- 
portional to the quantized interaction strength of the 
Wess-Zumino term. Rajeev [-6] has given the modifi- 
cation of the equal-time commutators  of the naive 
currents jR,'L(x) in the presence of a WZT in four 
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dimensions. Under the assumption that the Hamil- 
tonian for this theory has the Sugawara [7] form in 
terms of the jR, L be could show that his commu- 
tators lead to the correct equations of motion. These 
commutators  for the jR'L-currents contain anom- 
alous pieces proportional  to the WZT strength. His 
algebra, however, is not the algebra of the physical 
currents J,a'L(x), the currents that couple to the elec- 
troweak interactions and which enter into the usual 
current algebra formulation of low energy pro- 
cesses. One of us and Palmer [8] calculated 
[J~'L(X),Jff'L(y)] at  equal-time starting from the 
commuta tor  of J~'L(x) with the non-linear field U as 
given by the properties of U under SU(N)L x SU(N)R 
transformations. These modified commutators  have 
operator  values Schwinger terms which are function- 
als of the non-linear field U.* 

From a completely different viewpoint Fadeev 
and Shatashvili [9] have shown that a unified math- 
ematical description of anomalies can be given in 
terms of cocycles. Considering as underlying theory 
massless chiral fermions interacting with a Yang- 
Mills field the second cocycle, for example, is in 
infinitesimal form equal to the anomalous equal- 
time commuta tor  of the gauge generators in odd- 
dimensional space, if a Hamiltonian description in 
even-dimensional space is given. The odd-dimension- 
al second cocycle is derived from the Chern-Pon- 
tryagin density in three dimensions higher. This di- 
mensional descend is produced by the coboundary 
operation. It would be interesting to see how these 
different derivations of anomalous equal-time com- 
mutators  are related and whether they produce the 
same result for  [JoR'L(x),JoR'L(y)]. This is the purpose 
of this paper. 

First we study how the Schwinger terms for the 
non-linear a-model with WZ anomaly emerge in the 
approach of Fadeev and Shatashvili [9]. Then we 
derive the equal-time commutators  of the naive cur- 
r e n t s  jff,L starting from canonical commutat ion re- 
lations. This way we obtain Rajeev's commutators  
without any additional assumptions. They can be 
used to derive the commutators  of the full currents. 

The outline of the paper is as follows. In Sect. 2 
we derive the anomalous equal-time commutators  on 
the basis of the topological approach following clo- 
sely the work of Fadeev and Shatashvili [9]. The 
canonical theory is developed in Sect. 3. Here we 
rely on the differential geometric approach as in- 

* The anomalous contributions to the time-time component com- 
mutator of the current, under discussion here, are usually also 
called "Schwinger terms". This may be confusing, but is common 
practice now. Originally Schwinger studied non-canonical contri- 
butions to the commutator between time and space components 
of the current 

troduced by one of us many years ago [10]. The 
connection of the commutators  for the naive cur- 
rents jau'L(x) with the full current is also established 
in this section. We close with a summary and some 
concluding remarks in Sect. 4. 

2. Topology 

An anomalous term in the time-time commutator  of 
the current algebra is related to a projective repre- 
sentation of the gauge group on the space of func- 
tionals depending on gauge potentials in three-di- 
mensional space [9]. With U(g) implementing a rep- 
resentation of the gauge group element g the com- 
position law reads 

U(gl) U(g2) = exp(i~ g2)) U(gl g2). (2.1) 

A=AaX" is the gauge field with values in the Lie 
algebra su(N) of SU(N). We shall use an anti-Her- 
mitean basis X" of su(N) satisfying 

[Xa, Xb]=fabcxc; Tr(X"Xb) = -�89 "b. (2.2) 

(In terms of the Gell-Mann matrices 2" we have X a 
= 2"/2 i.) The expansion 

g(x) = 1 + Oa(x)X" + .... (2.3 a) 

U(g)= 1 -iSd3xO"(x)J~(x) +... (2.3 b) 

leads to the equal-time commutat ion relations [9] 

[J~(x), J0b(y)] 

= if"bcJ~(x) 6(X -- y) + S"b(A; x, y). (2.4) 

The anomalous Schwinger term S "b can be calculat- 
ed by expansion of the phase c~ 2 in (2.1). 

It has been shown that the phase a2(A;gl,gz) is 
a 2-cocycle with regard to the cohomology of the 
gauge group [9]. a2 can be traced back to a 0- 
cocycle c%(A) that does not depend on gauge group 
elements. The latter is a functional of gauge fields A 
in five-dimensional space. It can be expressed by the 
integral of a 5-form (2s(A) over five-dimensional 
space, 

ao(A ) = 2rcS O 5 (A). (2.5) 

0 5 is the so-called Chern-Simons density, related 
locally to the Chern density 0 6 by exterior deriva- 
tion 

i 
Q6~--- 487C 3 TrF3=d05, (2.6a) 

i 
0 5 - 48x3 Tr(AF2-�89 ). (2.6b) 
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In (2.6a, b) F is the curvature (field strength) of the 
connection (gauge field) A, 

F = dA + A / x  A (2.7) 

where AAA is a matrix product in su (N)  and a 
wedge product with respect to differential forms. The 
symbol /x is omitted in (2.6a, b) to simplify the 
notation. To make contact with WZT, which will be 
studied in the next section, we consider a flat con- 
nection with F = 0 .  Then gas is closed and is an 
element of the cohomology class HS(M) ,  where M is 
the five-dimensional base space of the S U ( N )  prin- 
cipal bundle. For a flat connection we have 

F = d A + A / x  A = 0  (2.8) 

so that the connection A is* 

A = U  l d U = o o ( R )  with U ~ S U ( N )  (2.9) 

i.e. we can identify the connection A with the left- 
invariant Maurer-Cartan form ~o(R) on the group- 
manifold of S U ( N )  restricted to a five-dimensional 
submanifold. Hence 

i 
gas(co) = - 4807r~ Tr co s. (2.10) 

The 0-cocycle co(co) is an integral number 

i 
- 4807t3 ~Troo s =n(U)~Z (2.11) 

n(U) is the degree of mapping U: M ~ S U ( N ) .  If we 
take M ~ - S  s we know from Bott's periodicity theo- 
rem that the homotopy group is isomorphic to the 
group of integral numbers: I I s ( S U ( N ) ) _ ~ Z ( N > 5 / 2  ). 
The normalization factor of gas in (2.10) corresponds 
to the axiomatic normalization of the Chern classes 
(see e.g. [11]). 

Starting from the 5-form gas(A ) in (2.6b) we ar- 
rive at the 3-form 

i 
g a 3 ( A ; g l ' g 2 ) =  12(2n)3 T r { A ( d g ~ d g 2 g 2 ~ g l  ~ 

- g l d g 2 g 2 1 g 7  ldgxg71 } +terms independent of A 

(2.12) 

by a twofold application of the group coboundary 
operator followed each time by an inversion of the 
spatial exterior derivative I-9]. Integrating 2uga a over 
three-dimensional space we obtain the 2-cocycle %, 

c~2(A ; gl, g2)= 27r 5 ga3(A; gl, gz). (2.13) 

* The notation e)(R) indicates that co(R) is changed under right 
chiral transformations 

Inserting the expansion (2.3a, b) yields the anom- 
alous Schwinger term 

1 
Sab(A;x ,Y)  - 24n2 T r { [ X a ,  Xb]+ Xc}  

�9 e~ i , j , k = l , 2 , 3  (2.14) 

or for the flat connection (2.9) 

s~ x, y) 

1 
- 247z 2 Tr { [ X  a, X b] + o)i~oj} eijkO~6(X -- y) (2.15) 

with o9i= U - l ~ i U .  The terms independent of A in 
(2.12) do not contribute. To obtain (2.15) from (2.14) 
we used ~ico~(x)=-c OleO j +  U - I ~ i O j U  (see also (3.3a) 
below). It is remarkable that the explicit form of the 
Schwinger term in the time-time component current 
commutator  can be obtained from topological struc- 
tures without going back to the explicit form of the 
Lagrangian. In the next section we shall see how this 
commutator can be derived from the Lagrangian on 
the basis of the canonical commutation relations for 
the pseudoscalar fields. 

3. Canonical Theory 

In the canonical theory we have to introduce coor- 
dinates on the group manifold S U ( N )  that parameter- 
ize the matrices U, e.g. we may use the perturbative 
expansion near the unit matrix 

U(rt) = exp ( - 4  naxa~. (3.1) 
\ /7, / 

For  the case of SU(3) symmetry {~o} (a--1 ,2 , . . . ,8)  
is the octet of pseudoscalar mesons and F~ 
=186 MeV. With respect to the coordinates 7r i the 
Maurer-Cartan form (2.9) can be decomposed as 

09 = U - 1 d U = X ~ o,) a = X a o) a d n i. (3.2) 

The coefficients co ~ are 1-forms on the group mani- 
fold and obey the structure relations 

&o = - co/x co, (3.3 a) 

dcoa = _ �89 fabc oob /X Of, (3.3 b) 

a a _ r o b e  b c (3.3C) "r O)il j --O)j l i --  J (Oi O.) j .  

From (3.1) we obtain the power series 

4 
6'~ + 8~2flbanb + . . . .  (3.4) 



320 G.  K r a m e r  

The duals of the left-invariant 1-forms oga are the 
left-invariant vector fields V ~, 

V a : ~ai ~ "ai b -~- bab. ~ i '  ~ ogl (3.5) 

They satisfy Lie-algebra commuta t ion  relations dual 
to (3.3 a-c) 

[V ., V b] = fabc V ~ (3.6 a) 

<::> ~aj" ~7~ j (~ ~bi__ ~bj ~TZ j ~ai= fabc ~ci. (3.6b) 

Let  us now turn to the Lagrangian.  We write 

L = L  0 + L  a �9 (3.7) 

where L o is the normal  and L,  the anomalous  part. 
The  normal  part  is based on the canonical  metric of 
SU(N) .  A convenient  normal izat ion of the metric g~j 
is 

F2 Tr(og/o)  = 3~j + (3.8) g , j (~ )  = - y  . . . .  

Hence we take 

Lo - F2 ~ d 4 x T r { U _ l a . U U _ , O u U }  
16 

_ F~ ~d4xTr{ogiogj}c?u~ia,#  (3.9) 
16 

= �89 ~ d4x  gij(n)c3uni aurd. 

The action L 0 leads to the field equations 

~#(ogi~u hi) = ~# O.)/, = 0 (3.10) 

with ogu=ogiOun( We obtain, of course, the same 
Lagrangian, if we use the right-invariant form 

o g ( L ) = d g U -  ~, dog(L)=og(L) A og(L) (3.11) 

instead of (3.2). The right-invariant  fields V"(L) sat- 
isfy 

[Va(L), Vb(L)] = _ f .b~ V~(L). (3.12) 

The Lagrangian L o is clearly invariant under the 
chiral group S U ( N ) L x S U ( N ) R - G  acting on the 
matrices U as follows 

G~(gl,  g 2 ) :  U---~gl Ug2  1 (3.13) 

The corresponding conserved right- and left-handed 
currents are 

j~ (R) = g,j 0 , n ~ t"J(R), (3.14 a) 

ja(L) = gq c~ u n i t~J(L) (3. l 4 b) 

where t "j are the components  of the tangent vectors 
to the t ransformations (3.13) 

a n d  K.  Mee tz :  C u r r e n t  C o m m u t a t o r s  for  the  N o n - L i n e a r  G-Mode l  

07Z j 
t aj - -  ~Oa,  g = 1 + o a x "  + . . . .  

One easily shows 

taJ(L) = ~aJ(L), taJ(R) = - caJ(R). 

We then have from (3.5) and (3.8) 

E~ .a,R ~ F .  2 
flu(R) = - ~  wut ~, j~(L) = ~ 6  ogu(L)" 

(3.15) 

(3.16) 

(3.17) 

The definitions (3.14a, b) correspond to those in [3], 
the axial current  A u is 

F~ a 
A u = ~  c3 n + . . . .  (3.18) 

The generators of the symmetry are Q~,L 
= Sd3xj~o(R, L), (see also (2.3b)). 

In the quantum theory the equal-time commu- 
tators for the currents can be reduced to the canoni- 
cal commuta t ion  relations 

[pj(x), nk(y)] = ~  3~3(x-- y) (3.19) 

by means of the structure relations (3.6) resp. (3.12). 
The conjugate field following from L 0 is 

pj(x) = gjk (307zk = C~ 0 nj. (3.20) 

We obtain for right- and left-handed currents [10] 

�9 a X "b [Jo( )do(Y)] = i ( ~ b j ~ j ~  a i -  ~aj~j~bi) 
0 o hi(x) cS(x - y) = i fabc :c ZXX C~ZX . , x  (3.21 a) " J J o t  ) t - - Y ) ,  

[J'g(x),jb(y)] = ifabCjp(X) b(X -- y) 

E 2 
+ i 6  ab-" 3;6(x- -  y), p =  1,2,3. (3.21 b) 

16 

The anomalous  part  in Witten's effective Lagrangian 
is related to the Chern-Simons density Q5 ((2.10)). 
According to Witten [4] we may write 

i N  
L , = 2 n N  S 0 5 ( 0 ) =  f Tro95 (3.22) 

Q5 240n 2 05 

where N is an integral number  equal to the number  
of colours and Q5 is a five-dimensional disk in the 
group manifold whose boundary  is four-dimensional  
space-time: ~QS=M4.  We know already that 0 5 is 
closed but  not  exact. Nevertheless we can assume 
that the submanifold Q5 c S U ( N )  is completely cov- 
ered by an allowable chart  of the group manifold. 
We then introduce a 4-form D 4 that satisfies on Q5 

dD 4 = Tr  o95 (3.23) 
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(D 4 is, of course, not unique). We obtain from (3.22) 
by Stoke's theorem 

- i N  
L~=2 ~ d D , : 2  ~ D4; 2=  (3.24) 

Q5 M 4 240n i" 

In terms of local coordinates n ~ (not necessarily 
those defined by (3.1)) D 4 can be expressed as 

D 4 = ~ Di jk tdn  i A dn j/x dn k A dn l 
i < j < k < l  

1 
= 4~. ~ Dijk ldni  A dn j/x dn k/x dn ~ (3.25) 

i , j , k , l  

where the coefficients of the second representation 
are totally antisymmetric. We parametrize the sub- 
manifold M 4 by {xu} (#=0,1,2,3) and write the 
Lagrangian (3.24) in terms of the fields n~(x), 

L~=2 ~ 0 4 =  2 ~d4xDijk;(n) 

�9 Ounic?~nJOpnkC?,~n%l'*PL (3.26) 

It is not difficult to show that the Lagrangian L = L o 
+ L ,  leads to the field equations 

0"(gij(n)~unJ ) + 5 2 Tr{o~icojo%o I ~o,,} 

" ~ u  7zj C~v g k  t~p TC l ~ a  7r'm e'u vp ~ = 0 .  (3.27) 

Because of (3.8) they are equivalent to the following 
coordinate-free form 

( -  ~ -  e).) + 5 2 o).c0~ c% o~e;'~P" = O. (3.28) 

Equation (3.28) means conservation of the total 
right-handed current J;(R) ([3]), 

J~,(R) = ~  Tr(X"c%(R)) 

+ 5 2 Tr{X~co~(R)co~ eu~o~ 

/ 16] 3 
=j~(R)+52 ~ F~] Tr{XaXbXr  

�9 b "c "d vpa  �9 j~(R)jp(R)j~(R) ~. (3.29) 

The corresponding expression for the left-handed 
current is [3] 

F~ 2 Tr(X.o~ u(L) ) J~(L) = - ~ -  

+ 52Tr{X~o)~(L)coP(L)co~(L)}e,~p~ 

?6? 
=j~(L)+52 \F~] Tr{X~XbXCXa}  

�9 b "c .d vpa  �9 j~(L)jp(L)ja(L)e;, . (3.30) 

The first terms in (3.29) and (3.30), respectively, are 
the normal currents and the second terms are the 
anomalous parts. 

Let us now turn to the equal-time commutator 
[Jg)(x),Job(y)]. We see from (3.29) and (3.30) that the 
latter can be reduced to the commutators 

[j~(x),j~(y)] and [j~o(X),jbp(y)] (p=1,2,3), 

which in turn can be calculated via the caonical 
commutation relations�9 To do so we need the mo- 
menta p~ for the full Lagrangian L = L o + L  ~. We 
obtain from (3�9 and (3�9 

2 
Pi = 0o ni + 3Y.. Dijkl~ nJC3Pnkc?Jde~ (3.31) 

The important point to note is that the momenta 
are no longer equal to the velocities. The additional 
term in (3.31) does not depend on the velocities and 
corresponds to the vector potential for a charged 
particle moving in an electromagnetic field�9 

Right- and left-handed components j~ are defined 
in terms of the velocities as before (3.14a, b). Con- 
sequently we get instead of (3.2ta) 

[j~(x),jb (y)] = if"bCfo(X ) 6(X -- y) 

+ ~a~(n(x)) [90 hi(x), ~30 n~(Y)] ~b~(n(Y)) (3.32) 

while the commutators (3.21b) remain unchanged. 
Because of (3.31) the commutator of the velocities 
does not vanish as in the case with no anomalous 
term. Using (3.31), (3.23) and the canonical com- 
mutation relations we obtain 

[~o hi(x), 0o n~(y) ] = 20 i2Tr{coLicojOOkOg;Co,,]} 

"O~nkOp~tO~nme~ (3.33) 

(The symbol L...J means total antisymmetrization of 
all indices between the brackets, i.e. application of 
1 / 5 ! ~ @  where P is the permutation of 5 elements 

P 

and @ is the signature of P). 
Inserting (3.33) into (3.32) and observing (3.5) we 

finally get 

.a "b �9 abc .r [jo(X),Jo(y)] = i f  J0(X)CS(x-y) 

+ 5 i2Tr{X~Xbc%opoJ~-  X%)~Xbo~pC% 

+ X %o~ coo Xb ~o o -  X %) ~ o) p o) oXb} e~162 6 ( x -  y). (3.34) 

These are exactly the commutation relations pro- 
posed by Rajeev [61. He assumed that the Hamil- 
tonian H corresponding to L = L o + L  ~ has the 
Sugawara form [71 in terms of the normal currents 
j~. With this assumption he showed that (3�9 and 
(3.21b) produce the correct equations of motion, i.e. 
(3.28)�9 
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Rajeev's assumption about the current times cur- 
rent form can easily be derived in the formalism 
presented here. Indeed, using (3�9 it can be seen 
that t h e  anomalous term in L cancels out and the 
Hamiltonian has the form 

g 3 'a ,a .a .a H = ~  ~d X{jo(X)Jo(X) +jp(X)jp(x)}. (3.35) 

Thus, although the structure of L = L o + L , ,  is quite 
complicated, i.e. L contains the anomalous Wess- 
Zumino term, the Hamiltonian expressed in terms of 
the normal currents looks extremely simple. The 
anomaly appears only in the commutation relations 
(3.34) which again can be expressed solely by the 
normal currents. 

Now we turn to the calculation of the equal-time 
commutator of the complete current J~(x). This is 
obtained from 

{ 16~ 3 
[J~(x), d0b(y)] = [j~(x),jb(y)] + 5 2 [ -- F~] e~ 

�9 a "b' "c' 'd' b b' c" d" �9 {[j0(x),j~ (y)jp(y)j~(y)]Tr(X X X X ) 
+ Tr(Xa Xb" Xc'Xa" ) .b" .c' .d' .b [jr (X)yp (x)J~ (x),Jo(y)] }. (3.36) 

The first term on the right-hand side of (3.36) is 
given by (3.34). The remaining term can be calculat- 
ed with the help of (3.21b) since the anomalous part 

"a 
of Jg contains only space components of j , .  After 
some lengthy computations using (Y21b) and (3.3a) 
we arrive at 

[J~(x), Job(y)] 

=[jao(x),jg(y)]+ 5i2f"bc { 16] 3 

�9 Tr (X ~ X b" X c" xd')jb~ "(x)j~' (x)j~" (X) 6 (X -- y) 

[ _ 1 6 ]  3 
--5i2 ~ F2 ] eo~~176 a' 

- -  X a X b" X b X c" X d" ~_ X a X b' X c X b X b" 

a b" c" d" b .b" �9 .d" - x  x x x x 

(16] 2 
+10i2  ~F~] e'~176 X~X'~} 

�9 c X "d x �9 j,( )jp(x)c?~c~ (x -y ) .  (3.37) 

Now we insert (3.34) into (3.37)�9 Then most of the 
terms cancel and we obtain 

[J~)(x), Job(y)] = if"b~J~)(X) b(X -- y) 

+ lOi2Co~ Xb]+ co~c%}O~c~(x-y). (3.38) 

The second term in (3.38) is the operator valued 
Schwinger term arising from the anomaly. It agrees 

exactly with the result (2.15) obtained on the basis of 
topological considerations and also with the result 
in [8] derived from the transformation properties of 
U. The derivations in this section also show that 
(3.38) is consistent with Rajeev's anomalous term in 
the commutator  [j~(x),j~(y)]. 

In this and the previous section we considered 
only the commutators of the right-handed current�9 
The derivations for the left-handed or mixed com- 
mutators are analogous�9 With them the complete 
current algebra for vector and axial currents can be 
derived. 

4. Summary 

We have calculated the equal-time commutation re- 
lations of the chiral S U(N)L • S U(N)R charge densi- 
ties in the non-linear a-model with Wess-Zumino 
term. We employed two completely different for- 
malisms. First, using the cohomology of the gauge 
group the anomalous term in the commutator is 
obtained from the 2-cocycle :%. Secondly, the canoni- 
cal theory for the non-linear a-model with Wess- 
Zumino term is formulated. From this the com- 
mutator of the normal part of the charge densities is 
deduced. It has a very simple structure�9 The modifi- 
cation due to the anomaly is trilinear in the normal 
currents. In these currents the Hamiltonian has the 
current times current form as in the case with no 
anomaly. This remarkable simple structure for the 
equal-time commutators and the Hamiltonian sug- 
gests that further algebraic reduction of the model 
could be possible. 

Finally the commutator of the complete charge 
densities, normal plus anomalous part, is calculated 
with the known commutators of the normal currents 
as input. The resulting operator valued Schwinger 
term agrees with that obtained from topology. 

After completion of this work we learned that 
the calculation of the anomalous commutator has 
been attempted in perturbation theory by Jo [12] 
and by Kobayashi and Sugamoto [13] with differing 
results�9 Sonoda obtained the correct result of Fadeev 
and Shatashvili by computing Berry's phase in chiral 
gauge theories. 
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