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The toron contribution to the path integral in super-Yang-Mills theory is calculated. A non-zero contribution is that of three 
torons and three anti-torons. The vacuum energy, however, is zero if the fluctuation region of the torons is finite. 

A considerable effort was put in the past few years 
in an attempt to find a dynamical mechanism for su- 
persymmetry breaking [1 -3 ] .  The reason being simple 
supersymmetry seems to cure the gauge hierarchy [4] 
problem in grand unified models [5] and it may also 
provide an explanation as to why the mass scales are so 
widely separated [1 ]. However, at ordinary energy 
scales this symmetry is not exact. Whereas perturba- 
tive quantum effects respect supersymmetry, it would 
be desirable if non-perturbative fluctuations were to 
break it. To that effect the role of  instantons in super- 
symmetric gauge theories was extensively studied [3]. 

In Yang-Mills theory the ground state is infinitely 
degenerate and instantons provide the quantum mechan- 
ical tunnelling between these ground states, thereby 
contributing non-trivially to the vacuum energy density 
[6]. However, in the presence of  massless fermions the 
tunnelling is completely suppressed due to  the zero 
modes of  the Dirac operator in the topologically non- 
trivial background (with non-zero Pontryagin index) 
[7]. Therefore, in supersymmetry where there are 
massless fermions, single instantons or single anti-in- 
stantons (or any other field configurations with non- 
zero Pontryagin index) do not contribute to the vacu- 
um energy. However, configurations with zero topolog- 
ical charge do not have fermionic zero modes and they 
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may contribute to the vacuum energy. An ins tanton-  
anti-instanton configuration is such an example. 

Indeed it was shown in previous publications that 
the quantum fluctuations around this configuration in- 
duce negative vacuum energy in supersymmetric Y a n g -  
Mills theory [8] and in supersymmetric QCD [9]. The 
question arises whether this contribution indicates a 
genuine breaking of  supersymmetry o~r whether it may 
be wiped out by other non-perturbative effects. 

Non-perturbative configurations of  a different type 
are the torons (configurations obeying twisted bound- 
ary conditions in a finite volume). Originally they were 
invented by 't  Hooft [10] to account for the quantum 
mechanical tunnelling between the states having differ- 
ent twists, indicating the existence of  electric or mag- 
netic vortices [ I 1 ]. It turns out that in a Yang-Mills 
theory where all fields are invariant under the center 
of the group [Z N for SU(N)], periodic boundary con- 
ditions in a finite volume could be taken up to an ele- 
ment of  the center, a twist. Such a twist defines a mag- 
netic vortex, because it is associated with a singular 
gauge transformation which generates objects carrying 
magnetic charge. Thus we have six planes of  twistings 
(in four-dimensional space-time). Three of  them are 
related to the three directions of  the magnetic vortex 
and the other three (in the xt ,  y t ,  z t  planes) when 
Fourier transformed are related to the electric vortices. 
The Fourier transform is carried out in the setof ele- 
ments belonging to the center. Thus when the Wilson 
loop operator acts on a state carrying a twist which 
was Fourier transformed, it changes by one unit. Being 
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a measuring operator for electric vortex lines, it means 
that the state carries such a vortex. 

With these new boundary conditions (related to 
e l (G/Z)) ,  the degeneracy of the physical states is multi- 
plied. On top of the Pontryagin index, n, which labels 
each state, we have the labels (m, e) of  the magnetic 
and electric vortices. These are defined modulo N for 
SU(N). The degeneracy expected is, then, N 6. How- 
ever, 't Hooft was able to show [11 ] that the degener- 
acy is lifted because there are different phases of  the 
theory, in which either the electric or the magnetic 
vortices become energetic (confinement or Higgs phase 
respectively). Therefore, we are left w i t h N  3 degener- 
acy. Even this is still too much because Witten [2] 
pointed out that for the zero energy states (Fur = 0) 
with a given twist, there are only N independent gauge 
transformations (that cannot be continuously deform- 
ed into each other) which generate N classical ground 
states. This was used to count the inequivalent zero 
energy states in supersymmetric Yang-Mills theory, 
the Witten index. 

However, the question arises whether there are 
quantum mechanical tunnelling effects which may lift 
this degeneracy even further, or at least change the vac- 
uum energy. Field configurations (torons) which may 
provide tunnelling between these ground states were 
found by  ' t  Hooft  [10]. These are finite action config- 
urations defined in euclidean space- t ime and satisfy 
twisted boundary conditions. (The action is 4e2/g2N 
for SU(N).) They carry fractional topological charge 
(multiples of  l / N )  and they have a finite contribution 
to the functional integral in the large N limit when g2N 
is kept finite (unlike instantons whose contribution is 
suppressed by a factor e-CN).  Moreover, they were 
used by  various authors [12] to calculate fermionic 
condensates in SYM theory and to show the existence 
of  chiral symmetry breaking. Their relevance to tunnel- 
ling (and vacuum'energy) in a supersymmetric theory is 
a bit more limited due to the existence of fermionic 
zero modes in a topologically non-trivial background. 
Thus the only configurations to be considered are those 
having zero net topological charge. 

In the following we will show that most of the 
contributions to the functional integral are zero but 
for that of three torons and three anti-torons. The 
vacuum energy, however, stays at zero if the fluctua- 
tion region of the torons is finite. The meaning of 
this result is two-fold. By itself, there is a suppression 

mechanism in the supersymmetric theory which 
makes most of  the contributions zero. But it is not 
enough because some are still left. They do not lead 
to a vacuum energy and to supersymmetry breaking, 
though, because of a kinematical reason; the contri- 
bution to the path integral is not proportional to 
space- t ime volume (unlike that of  an instanton-anti-  
instanton). The second point to be noted is that the 
contribution of an instanton-anti-instanton [8] is 
not wiped out and it has yet to be understood. 

To be more specific we consider an SU(2) super- 
symmetric Yang-Mills theory. The euclidean action 
is given by 

= fd4x 1 a SE (7,F~vF~v + X a i D . E u X a ) .  (1) 

Here Fur  is the field strength 

F~v a a + abc--b--c = 3uA u -  3vA# ge A I . L A  v , 

D~C = ~ac 3t~ + geabCAb is the covariant derivative,A~ 
(a = 1,2,  3) are the gauge potentials and h a are 
Majorana fermions. They are expressed in euclidean- 
ized Weyl basis with Dirac matrices being 

0 u Zu = ~u 
7u ~u ' 

Tr (Eu~v)  = 2~ uv • 

As was pointed out before, physical states are la- 
belled b y  Ira, e), where m is the magnetic and e is the 
electric flux [11 ]. They are defined in the following 
way. We take wave functionals which depend on the 
gauge potentials satisfying twisted boundary condi- 
tions in the xy ,  y z ,  x z  planes. This defines the mag- 
netic charge, m, with components in the z, x , y  direc- 
tions, respectively; m i = ~ei/km]k , where mik is the 
twist in ]k plane. This twist is defined up to an ele- 
ment of  the center [Z N for SU(N)] and it cannot be 
gauged away, thereby making the magnetic flux gauge 
invariant. Twists in the xt,  y t ,  z t  planes are imple- 
mented by the action of a gauge transformation satis- 
fying twisted boundary conditions in these planes. The 
twists are once again up to elements of  the center de- 
noted by k (taking values in ZN). We then Fourier 
transform k (within the center of  the group) thus get- 
ting the electric flux e. That is * i 

~:1 For SU(N) the sum is over (kl, k2, k3} = 0, 1, ..., N - 1 
modulo N and the phase is (2n/N)k .e. 
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Im,e)= ~a Im, k )exp( i zrk .e ) .  (2) 
k=0,1 

The hamiltonian matrix for the lowest energy states 
is defined by:  

He,e,(m,m')= lira 1 ~ (m,,k,  le_HTim,k ) 
T ~  Tk,k'=O,1 

X exp [iTr(k- e - k ' .  e ' ) ] ,  (3) 

where the transitions between the classical vacua are 
mediated by  torons [10] 

, , f  C-DAau~xac-bXa e x p ( - S E )  <m ,k ' l e -HTIm,k )  T-~.o 

and the functional integral has to be evaluated over 
finite action configurations having twists m '  - m, k '  
- k. In the supersymmetric model  where there are 
massless fermions, the tunnelling effect by configura- 
tions having a net twist is completely suppressed due 
to the fermionic zero modes. Thus the only non-zero 
transitions are those by  configurations having a net 
zero twist, i.e. by  torons-ant i - torons .  As a result the 
initial and final states in (3) have the same twists: m 
= m ' , k  = k'. 

Moreover, it was pointed out by  Witten [2] that  
the states with zero classical energy (Fuv = 0) have 
kllm. The gauge potential  for such a state is a pure 
gauge A i = - i /g  a i U(x) U -  1 (x) (i = 1 ,2 ,  3 in the A 0 
= 0 gauge), and for a given m (say in the z direction) 
U(x,y, z) =eU(x + L , y ,  z) e -1 = QU(x ,y  + L , z )  Q-1 
= U(x, y ,  z + L),  where P,  Q are constant SU(2) ma- 
trices satisfying PQ = QP exp0rim).  This matrix,  
U(x, y,  z), can then be writ ten as U(x, y,  z) = 
pkl Qk2 Tkz a where only Tz(x , y,  z) contributes non- 
trivially to Ai(x  ) (because unlike P,  Q it is not a con- 
stant matrix).  As a result there are only two inequiv- 
alent gauge transformations (that cannot be deformed 
into each other)  which define two independent classi- 
cal ground states. For  these states the hamiltonian 
matrix b e c o m e s H  m . (e-e')" It is a hermitian 2 × 2 
matrix which classically has two zero eigenstates ,2 .  
Quantum mechanically contributions of  torons (or 
anti-torons) may lift the degeneracy of  the ground 
states. 

,2  The hamiltonian matrix is N X N for SU(N) and has N zero 
energy classical states, thereby making the Witten index 
equal to N when the classical ground states are counted. 

These finite action configurations are defined in a 
box of  size L 

a (a) 
z .  = ( 4~r/g)%v(x  - Z)v/L 2 , 

- a  - ( a )  , A .  = ( 4 n /g)auu (x - Y, )v/L 2 (4) 

where z v ( iv)  are the locations and ^ (a) - - (a)]  ~uv (auv. are the 
twist matrices of  the toron (anti-toron). They are 
given by  

/!°°iI I o~(1 )=~_ 0 1 0 c~(2 ) = ~  0 0 0 
uv - 1  0 , ~v 1 0 0 ' 

- 0 0 , 0  - 1  0  000 ; 
_(3) = ~[ --  0 0 =(1) = ~ 0 0 --1 
%uv 0 0 , ~uv 0 1 0 ' 

0 - 1  - 1  0 0 

I ¸ 
• 0 0 1 0 0 - 1  0 0 

o o o , o o ~(2) 
uv = ~ - 1  0 0 , uv 0 0 

0 - 1  0 0 - 1  

(5) 

and they satisfy the following relations: 

t~(a) 1 _ ^(a) (6a) ~zp = ~ p p p a U ( p ( ~  ' 

6L(a) 1_ ~ =.(a) (6b) 
f lu = - -  ~ c M u p a ~ p a  

a(a).(a) = =(a)x(a) = _~65u x (6c) Mv"Xv2~ Utl.tVu~Vh 

a(a) =(a) = 0 (6d) laVctv~. 

The action for bo th  configurations is * 3 

S E = 4n2/g 2 . (7) 

We note that for a given twist, only translation invari- 
ance associated with the arbitrary choice of  z u yields 
zero modes of  the bosonic determinant.  In particular 
there are no zero modes associated with dilation or 
orientation in group space. The reason being the 
finite box size and the twisted boundary conditions 
which do not allow constant gauge transformations 

4:3 For  SU(N), S E = 87r2/(g2N) and it is finite when N ~ ~* 
i f g2N  = finite. 
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to be implemented on the field configuration. Thus 
we have only four bosonic zero modes given by 

A(+)a(v) = 4 (a) 2 - (  zr/g)auv IL , 

A( - )a(v  ) -(a) 2 = - (47r/g)a ,v /L  . (8) 

In the gaussian approximation we use collective coor- 
dinates to account for these zero modes. These are 
given by an integration over [(47r2/g2)(1/8~r)] 2t24 d4z, 
where the constant is just the normalization factor of  
the above zero modes and/2 is the renormalization 
point, which has to be inserted due to the need to re- 
normalize the determinant. 

In the supersymmetric model, the massless fermions 
have zero modes in the background of  the configura- 
tions (4). For the toron we have two left handed zero 
modes 

X (+)a = (oa)~ u~+)/L 3/2 , (9) 

and for the anti-toron two right handed zero modes 

X(-)aa = (oa)&~3 fi(-) filL 3/2 , (10) 

where u (+), fi(-) are given by either (1 ,0)  or (0, 1). In 
the functional integral we account for these fermionic 
zero modes by integrating over the Grassmann vari- 
ables d2/3(+)//IL for the toron and d2/3(-)//~L for the 
anti-toron. This is zero because the integrand does not 
depend on/3(+)(/3(-)), thus proving that in the super- 
symmetric model quantum mechanical tunnelling in a 
background of  a toron or anti-toron is suppressed. In 
a similar way it is easily proven that tunnelling with 
any configuration having a net twist is suppressed. We 
are thus led to consider tunnellings by configurations 
having an equal number of torons and anti-torons 
twisted in the same directions. Twists in different 
directions will not do either, because of  the existence 
o f  fermionic zero modes. 

We first examine the contributions of  a t o r o n -  
anti-toron. We thus have the configurations (4) in 
two boxes L 1 and L i ,  which we take to be non-over- 
lapping. We expand the quantum fields around this 
background and use the gaussian approximation. The 
result of  the functional integral is the inverse of  the 
square root of  the bosonic determinant where the 
zero modes (8) are factored out and integrated over 
by the collective coordinate method. For the fermi- 
ons, we first double the number of  degrees of  freedom 

to get Dirac fermions and define the functional inte- 
gral over the Weyl fermions as the square root of  the 
determinant of  the Dirac operator in the above back- 
ground. Factoring out the contribution of the fermi- 
onic zero modes in (9) and (10), we then get the 
square root of  the ratio of  the fermionic over bosonic 
non-zero modes determinants. For non-overlapping 
boxes this ratio can be factorized into a product of  
ratios of determinants in a background of  a toron and 
anti-toron and each is equal to one because of  super- 
symmetry. We are thus left with the integrals over the 
bosonic collective coordinates, and the fermionic de- 
terminant in the subspace of  zero modes (9) and (10). 
This turns out to be zero: 

X(-)aiDuF_,~X(+)a = 0 , (11) 

where D u is the covariant derivative in the background 
of a toron-ant i - toron in boxes L 1 and L~, respective- 
ly. It is zero because both X(-) and X (+) do not depend 
on x and they are parallel in group space to Au,  Au" 

We next examine the contribution of  two to rons -  
two anti-torons. We have four boxes L 1, L2, L ~, L~, 
and we make the assumption that they are non-over- 
lapping. Since we need a zero net twist each pair of  
toron-ant i - toron should have twists in parallel direc- 
tions. Without loss of  generality we take 1 to be par- 
allel to 1 and 2 to 2. As before the contribution of  the 
non-zero mode fermionic over the non-zero mode bo- 
sonic determinant is one, and we are left with a fermi- 
onic determinant in the subspace of  fermionic zero 
modes (9), (10) and an integration over the bosonic 
zero modes (8). Once again the fermionic determinant 
yields zero. Its matrix elements are 

Kq = ~ f d4x X(-)iiDu(AS)ZuX(+)J , (12) 
$ 

where i = i ,  2 and j = 1,2,  and the sum is over all the 
boxes 1, i ,  2, 2. Clearly to get a non-zero result A s 
cannot be parallel in group space neither to ~(-)i nor 
to X(+)I. But that is not possible because we have only 
two torons and two anti-torons so it is parallel eRher 
to X(-)i or to X(+)! (or to both). The result is that Kil 
= 0 and there is no contribution from two torons and 
two anti-torons either. Note that (12) would have not 
been zero if we had had the freedom to orient the 
twisted configurations in different directions in group 
space. But this freedom was lost because of  the twisted 
boundary conditions which the gauge transformation 
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has to satisfy, and it cannot if it is associated with 
global gauge transformations. 

The first non-zero contribution is that of  three 
torons and three anti-torons. We have the boxes L i , L  7 
i = 1,2,  3, with toron i being parallel to anti-toron i. 
The determinant to be calculated is that of  a 12 X 12 
matrix (for Dirac fermions) with matrix elements as 
in (12) 

= L (k) 6(k)Skz,)aii~uo] (13) Ki] (47r/)eik](a~uZkv + 

and its hermitian conjugate. (Each element is a 2 X 2 
matrix.) In (13) we took all the boxes to have the 
same size, L, otherwise we need to keep track of  the 
size, Li, of  each box. Thus 

B 2 = det = det(KK+).  (14) 
+ 0 

Define 

_ 4rr e I ^ ( l ) z  r.(l)r. 
ktu --~ itit~uu Iv +'~uv'~tv) , (15) 

then 

B = det 

I 0 - k 3 u Z  u k2taZ u 

k3uY_, u 0 - k l u Y ,  u , (16) 

(--k2uZ u k l u Z  u 0 

where we have factorized out the oi, a] and used 
det o i = 1. The determinant in (16) is easily calcu- 
lated to yield 

B = det [(k 1 • Z)(k 3" ~)(k2 ° N) 

- (k 2 • Z)(k 3 • ~)(k  1 • 2~)] (17) 

and we use the notation (k.  Z) = k u Z  u. To calculate 
the determinant in (17), we note that the matrix is a 
2 X 2 matrix and can be expressed asAaZ~,  where 
A a is a four-vector given by 

A s = ~ Tr ~a [(kl" Z)(k3" ~)(k2" Z) 

- (k 2 • Z)(k 3 • ~)(k  1 • Z ) ] ,  (18) 

then 

B = Ac, A a = 4(e~.ra kl~k2,rk3a)  2 . (19) 

To get (19) we use the anti-commutation relation 
satisfied by ~u '  2~u' and the properties of  the commu- 
tator matrices 

~. .  = ½(~.~. - ~.~. ) ,  

satisfying 

Zi] = ~i] = iei]kak , 

~"4i = --~4i  = --i°i • 

From (19)we note that the contribution of  three 
torons and three anti-torons vanishes if two of  the 
three vectors k i are parallel, i.e. if two of  the three 
torons (or anti-torons) coincide which is, of  course, 
consistent with the result found before that the con- 
tribution of  two torons and two anti-torons vanishes. 

We need now to integrate over the collective coor- 
dinate s: 

3 
11 fd% d45iA~A ~ = 96(2rr2L8) 3 , (20) 
i=1 

where we use 

f d 4 z  d4z2 ZluZ2v = 0 ,  

f d4z z~z v = ~L6~uu 

and the relations (6). Multiplying now by the jacobian 
factor p 4 [(47r2/g2)(1/8ft)] 2 for the translational zero 
modes and by (pL) -1 for each pair of  fermionic zero 
modes and taking into account the classical action (7) 
of  the twisted configurations we finally get 

(e-HT ) ... 96(~/r2L 8)3/a24 [( 4rr2 /g2)( l /87r)] 12 

X (pL) -6  exp(-247r2/g2(p)).  

Using the renormalization group invariant scale 

A ~ : D  = p18 exp(_247r2/g2(p)),  (21) 

we find 

(e -HT)  "~ 29s~6 (I/64rr)6(4~2/g2(L))12(AQcDL)18. 

(22) 
We note that four bosonic and two fermionic zero 
modes for each twisted configuration yield correctly 
the renormalization group behavior of  the coupling 
constant. 

The contribution of  n torons and n anti-torons 
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vanishes unless n = 3r  where r is an integer. The reason 
is that there are only three independent directions in 
space. We can thus group the torons (and anti-torons) 
according to the direction of  the twist, having n / ( j  = 
1,2,  3) torons in the j th  direction and n 1 + n 2 + n 3 
= n. The matrix elements Kij then become 2n i × 2n/. 
matrices having equal columns, and the determinant 
in (14) vanishes. For the case n = 3r, we can group the 
twisted configurations into groups of  three torons and 
three anti-torons and take the contribution (22) to the 
power r, thereby exponentiating it. 

From this we can calculate the vacuum energy by 
dividing by T and taking the limit T ~  oo. Since the 
fluctuation region of the twisted configurations, L, is 
finite, the vacuum energy is zero, which means that  
supersymmetry is not broken by this type o f  quantum 
fluctuations. The result would not change if the boxes 
are taken to have different sizes, or to overlap. If there 
is such an overlap, factorizing the determinants into 
products of  determinants in a background of  a toron 
or anti-toron may not be justified, so some of  the 
contributions found to be zero may not vanish. How- 
ever, vacuum energy will still vanish because, generally 
the contribution of  a toron whose fluctuation region 
is finite, is not  proport ional  to space- t ime volume. 
This is different from the case of  instantons whose 
contribution is proport ional  to space- t ime  volume. 
Thus torons cannot break supersymmetry,  whereas 
instantons may. It is interesting to note, though, that 
there is a suppression mechanism in the supersym- 
metric model where most of  the contributions of con- 
figurations satisfying twisted boundary conditions to 
the path integral vanish. However, it is not enough 
and some are left. They do not lead to supersymme- 
try breaking only because the order parameter for 
such a breaking is the vacuum energy, and their con- 
tr ibution to the vacuum energy vanishes whether the 
theory is supersymmetric or not. 

What can be learned from this and the previous 
calculations [8,9] is that supersymmetry is not pro- 

tective enough and contributions of  non-perturbative 
effects to the path integral are not necessarily zero. 
Thus much more work has to be done in order to 
understand the dynamical mechanism of  supersym- 
metry breaking. 

I wish to thank Romesh Kaul, who participated in 
the early stages of  this work, for very stimulating dis- 
cussions. 
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