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HALF-INTEGER CHARGED HADRONS FROM HIGHER DIMENSIONS?
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Certain embeddings of the low energy SU(3) - X SU(2)_ X U(1), gauge group within the higher dimensional symmetry lead
to exotic chiral generations in addition to a number of standard generations. An example is studied, leading to an anomaly free
chiral exotic generation consisting of quarks with electric charge + | and — |, the corresponding antiquarks and additional
integer charged leptons. The most striking prediction from such a compactification would be the existence of stable half-integer
charged hadrons with a mass of the order of the Fermi scale. Detection of such particles would be an impressive hint for the
existence of more than four dimensions.

Higher dimensions are an attractive theoretical idea [1] — but possible experimental tests are disappointingly
missing. This is due to the high degree of consistency of the standard low energy SU(3)- X SU(2);, X U(1)y theory
plus the wide gap between the Fermi scale and the Planck scale. If we assume that the only particles with mass
considerably smaller than the compactification scale M, (typically of order 1017 —1018 GeV) are the SU(3)¢ X
SU(2), X U(1)y gauge bosons, a certain number of standard chiral fermion generations and one light Higgs dou-
blet, the only implications of higher dimensions for these particles are predictions of the parameters of the stan-
dard model plus nonrenormalizable interactions suppressed by inverse powers of M. Although it is true that
higher dimensions modify [2] the standard SU(5) predictions on proton decay and the weak mixing angle and gen-
erally lead to nonvanishing neutrino masses through gravitational interactions [3], these phenomena also occur
in four-dimensional unified theories and can hardly be used as a characteristic test of higher dimensions. Higher
dimensions lead to rare decays like u —> 3e, but the rate is much too small to be observable. There are in principle
very interesting gravitational effects — the four-dimensional principle of equivalence is perturbed [4], different
particles fall with different speed and do in general not move on geodesics. Unfortunately these effects are very
likely much too small to be detected in precision measurements like the equality of gravitational and inertial mass
etc. (Such effects may, however, play an important role in early cosmology [4,5].) In addition, there may be
superheavy stable particles (pyrgons [6]) or topological configurations left over from the big bang. Again, mono-
poles or strings are not a very characteristic signature for higher dimensions. Also today’s number of density for
such remnants may well be below experimentally detectable levels.

We have depicted a scenario very boring for experimentalists. Unfortunately, such a scenario is consistent and
it is not unlikely that it is realized. In this case the idea of higher dimensions could only be tested by possible pre-
dictions on the fermion mass matrices [7] (including neutrino mass matrices), the Higgs mass and the gauge cou-
plings or by early cosmology. Even if we release our strong assumptions and allow for intermediate scales or low
energy supersymmetry, it is not easy to find effects characteristic for higher dimensions.

In this letter we explore another possible scenario, namely that the low energy theory derived from a higher di-
mensional model leads to additional light fermions with exotic quantum numbers. Large masses for these exotics
are forbidden by chirality with respect to SU(3)c X SU(2);, X U(1)y. The restrictions from anomaly cancellation
for chiral fermions are automatically fulfilled if we start with anomaly free higher dimensional models. We find
that certain embeddings of SU(3)c X SU(2); X U(1)y within the higher dimensional symmetry group lead to one
or several exotic generations in addition to a certain number of standard generations. In our example. an exotic
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generation consists of a weak doublet of antiquarks (G, H) with electric charges —# and +2 and two quarks G©
and H€ in SU(2); singlets with charge +% and 3. As usual, quarks and antiquarks are colour triplets and anti-
triplets, respectively. In addition, an exotic generation comprises two standard leptonic doublets and two particles
with the quantum numbers of the positron. (We only count here the left-handed particles.) There are also exam-
ples where the exotic generation is replaced by an exotic mirror generation with quarks in doublets and antiquarks
in singlets of SU(2); . In this case one needs at least five standard charge f—, and —3 quarks since two charged lep-
tons from the standard generations can form SU(3) X SU(2); X U(1)y invariant mass terms with the mirror lep-
tons of the exotic mirror generation and disappear from the low energy spectrum. The embedding of our example
is possible in a six-dimensional SO(12) model [8] or in a ten-dimensional Eg X Eg model [9] favoured by super-
strings [10].

Before discussing some details of our embedding and dimensional reduction, let us first focus on the most
striking predictions of such a scenario. Since the quarks have charge +# and —% they cannot decay into any num-
ber of particles with charges %ni (n; integer). The lightest one of these quarks is stable. Because of confinement,
we will of course rather observe a stable hadron. All baryons containing one or three exotic quarks are half-integer
charged, whereas baryons with two exotic and one standard quark are integer charged. Similarly, mesons with one
exotic quark and one standard quark have half-integer charge and mesons with two exotics are integer charged.
The appearance of only half-integer charged or integer charged hadrons is a generalization of triality. The lowest
mass half-integer charged baryon or meson is absolutely stable. Its mass is typically of the order of the W-boson
mass. Pairs of exotic half-integer charged hadrons would be copiously produced through strong or electromagnetic
interactions at accelerators with sufficient energy. Stability and half-integer charge would give a very clear signal.

One may ask if the stable exotic hadrons could be detected in ordinary matter. This largely depends on their
density in terrestrial material. The low energy renormalizable interactions imply a separate conserved exotic bary-
on number. There are, however, nonrenormalizable interactions violating exotic baryon number conservation
like u+d < G+ G, They are mediated by superheavy particles with mass of order M and become, there-
fore, quickly suppressed once the temperature of the universe falls sufficiently below M. Decay of those
superheavy particles in the very early universe can create an exotic baryon number asymmetry which en-
sures that a certain amount of exotic hadrons survives the big bang. The total hadronic matter density in the uni-
verse puts upper bounds on the exotic asymmetry, but it is well conceivable that the exotic baryon asymmetry is
much smaller than the asymmetry for standard baryons. (For example, there is no CP violating mixing matrix for
only one exotic generation.) To derive bounds for terrestrial material requires an investigation if exotic hadrons
are more or less distributed like ordinary baryons or if they tend to concentrate in the center of galaxies, for ex-
ample. It may also be worthwhile to think about the possible presence of exotic hadrons in cosmic rays.

Another “signature” for an exotic generation is the existence of two additional left-handed neutrinos, heavy
electrons and positrons which is required by anomaly cancellation. For three standard generations this would lead
to five neutrinos. If all five neutrinos are light — this is the case if all antineutrinos of the model can acquire
superheavy masses — the upper bound from nucleosynthesis would be violated. An independent determination of
the number of neutrinos by laboratory experiments is certainly needed. If the cosmological bound persists, the
case of an exotic mirror generation would be preferred compared to the exotic generation discussed above. Our
arguments apply to this case as well with only minor modifications.

Let us now describe in more detail our assumptions and the embedding leading to exotic generations. We take
a conservative approach and assume that the low energy gauge group is SU(3)¢ X SU(2)1 X U(1)y. All low mass
fermions must be chiral with respect to this group and anomalies should cancel. There is only one Higgs doublet
with small mass. With these assumptions the standard chain of unifications in four dimensions E¢g > SO(10) >
SU(5) = SU(3)c X SU(2);, X U(1)y cannot lead to chiral exotics.

The situation changes in more than four dimensions. Groups with only real or pseudoreal representations like
Eg or SO(12) become viable for d =2 mod 4 dimensions [1 1]. Consider the case that the higher dimensional gauge
group contains a subgroup SO(8) X SU(2); X SU(2)R with some spinors in the representations (84,2,1)1(85,1,2)
or(84,1,2) +(8,,2,1) where 8; and 8, are the inequivalent spinor representations of SO(8). Within SO(12) this

326



Volume 1678, number 3 PHYSICS LETTERS 13 February 1986

is the decomposition of the two spinor representations 32; and 32,. It is a simple exercise to check that these rep-
resentations appear for Eg using the chain Eg — SO(16) - SO(12) X SO(4). In addition there may be other in-
teresting embeddings for a large group like Eg. There are two different ways to embed the Pati—Salam group

[12] SU(4)c X SU(2);, X SU(2) into SO(8) X SO(4): For the standard embedding SO(8) -~ SO(6) X SO(2) the
vector decomposes as follows:

8, >6+1+1, 1)
and the spinors transform under SU(4)c X SU(2); X SU(2)y as
(31,2, D)~>(4,2,1)+(4,2,1), (8,,1,2)>(4,1,2)+(4,1,2). #))

All particles contained in these representations have quantum numbers of standard quarks and leptons or mirror
particles. An inequivalent embedding of SU(4), X U(1) in SO(8) (parallel to the SU(S) embedding in SO(10))
gives

8V_>4—1+Zl’ 81_)41-*-1—1’ 82"’60"’12'{'1_2 (3)

(we have also indicated the U(1) charge and we note that the embeddings (1), (2) and (3) are related by SO(8)
triality).Spinors in the 8, of SO(8) will lead to exotic quarks. The 6plet of SU(4) gives the colour representations

6>3+3, 4

but the hypercharge of SU(2); doublets is twice the hypercharge of standard quark doublets. The representation
8 leads to standard quarks so that exotic quarks and standard quarks can coexist.

The fact that a real representation as the 6 of SU(4) can induce chiral exotic quarks in four dimensions is an
intrinsic higher dimensional effect. In the process of dimensional reduction, the chirality index [13] may be dif-
ferent for the 3 and 3 colour states in the 6. Unwanted representations can simply be absent due to a vanishing in-
dex and the possibilities of unification with a complex spectrum are much wider than in four dimensions. We em-
phasize that the systematic search for possible embeddings of SU(3)¢ X SU(2); X U(1)y into the higher dimen-
sional symmetry group has to be redone, since the criteria for viable embeddings differ completely from four-
dimensional unification. We will make the following requirements for candidates of viable (anomaly free) chiral
theories:

(1) All known fermions have to be reproduced.

(2) All charged chiral fermions must get a mass from SU(2); X U(1)y breaking by an SU(2); doublet scalar.

(2) The weak mixing angle at the unification scale should be

sinzﬂgv =F. »)

For the purpose of this letter we will in addition assume that corrections to gauge couplings from nonrenormalizable
terms of the type discussed in ref, [2] are small, so that sinzﬂg, can be calculated from the embedding of SU(3)c
X SU(2)p, X U(1)y into the unification group.

As an example for such a systematic analysis we discuss monopole solutions [14] in the six-dimensional SO(12)
model [8]. The embedding problem into groups like Eg will be of similar nature, but more involved. The mono-
pole solutions are simple enough to serve as a nice theoretical laboratory to generate different four-dimensional
chiral models. Our analysis proceeds in nine steps:

(1) One determines the symmetries left unbroken by the monopole solutions (compare ref. [8]).

(2) We look for all possible embeddings of SU(3)¢ and SU(2); into these symmetries. We find from our first
requirement that this embedding must be the same for all cases. We write the monopole field as
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A,= (1/28) (21 —cos ¥) [m(H; + Hy) + p(H3+ Hy + Hs) + nH]
i
= — —(+1 _p 0
T (21 —cos ) ©)

On
L —n 0

where the group SU(2)y, acts on the first four indices whereas SU(3) acts on indices 5, ..., 10.
(3) The hypercharge generator must be a linear combination

Y=—3a(Hy +H,y)+3b(Hy+ Hy+ Hs) + cHy . %)

Allowed values of @, b, ¢ are determined by the requirements that all quantum numbers of observed quarks and
leptons appear in the spectrum of the SO(12) spinor representations 32; and 32,. We find three possibilities:

(A)a=2,b=1,c=0: this is the standard embedding for which only standard fermions and mirror fermions
appear.

(B)a=2,b=—4%,c=1: this corresponds to the alternative embedding of SU(4) into SO(8) (3). Exotic
quarks appear in addition to the standard fermions.

(C)a=2,b=2,c=2:in this case SUB)c X SU(2), X U(1)y is not embedded in SU(4) X SU(2);, X SUQ2)g -
Another set of exotics with integer charged hadrons and doubly charged leptons appears.

(4) The weak mixing angle is calculated by summing over a complete SO(12) representation

sin200 = 22, [T 0. (8)

For cases (A) and (B) one finds sin? 190 ThlS is in fact a consequence [3] of a possible embedding into
SU(4)c X SU(2); X SU(2)y for equal nonabehan coupling constants. For the embedding (C) we find sm219 =2
and we disregard this case.

(5) We next have to compute [8] the index [13} how often a given representation appears in the four-dimen-
sional spectrum. The standard embedding (A) has been discussed in ref. [8] and we concentrate on the alternative
embedding (B). In table 1 we give the quantum numbers for the different fermions. The generators for right-
handed isospin I35, B — L charge Yp_; and the abelian charge ¢ commuting with SU(4) X SU(2); X SU(2)g
read

g =—3H +Hy)), Yp ;=Hg—3(Hy+tHy+Hs), q=Hy+Hy+H +Hg. )]

(Th1s is to be compared withYp_; =3 (H3 +Hy +Hs), g = Hg for the standard embedding (A) or Yp_; =2Hg
(H3 +Hy + Hg),q=4Hg + 2(H3 + Hy + Hs) for embedding (C).) The electric charge is as usual

Q=Iy+Lp+3Yp | . (10)

We see that there also appear half-integer charged leptons J, K etc. In the last column of table 1 we have listed the
SU(2)g representation for all massless particles appearing in four dimensions after dimensional reduction.
(Isometries on the internal sphere S2 induce a generation group SU(2); ) These numbers are the chirality indices

328



Volume 167B, number 3 PHYSICS LETTERS 13 February 1986

Table 1
Quantum numbers of fermions.
SUB3)C X SU@)L H,+H, H3+Hy+ Hs Hg YB_L q 0 name  SUQ)G
representation representation
327 (3,2) 0 1/2 12 1/3 1 2/3,-1/3 u,d n+p)/2
1,2 0 -3/2 1/2 1 -1 0,1 3,8 (n-13p)2
G, 1 1 —-1/2 1/2 2/3 0 -1/6 G° (n—p+2m)2
G, -1 ~1/2 1/2 2/3 0 5/6 HC n—-p-2m)2
a,n 1 3/2 1/2 0 2 -1 Jc n+3p+2m)/2
a1 -1 32 1/2 0 2 1/2 K (n+3p—2m)2
3,2 0 -1/2 -1/2 -1/3 -1 -2/3,1/3 §,d —(m+p)2
1,2 0 3/2 —-1/2 -1 1 0,-1 v, e —(n —-3p)/2
3,1 -1 1/2 -1/2 -2/3 0 1/6 G¢ —(n—p+2m)2
3,1 1 1/2 —12 -2/3 0 -5/6 H® —(n-p-2m)/2
a,n -1 -312 -1/2 0 -2 1/2 Ic —(n+3p+2m))2
a,n 1 -3/2 -1/2 0 -2 -1 K¢ —(n+3p-2m)/2
32, (3,2 0 1/2 —-12 -2/3 0 1/6,-5/6 G,H n -2
1,2 0 -3/2 -1/2 0 -2 1/2,-1/2 1K (n+3p)2
G, 1 172 —-1/2 —1/3 -1 =2/3 uc (ntp —2m)2
3. -1 —-1/2 -1/2 -1/3 -1 1/3 dc (n+p+2m)/2
a,n 1 3/2 -1/2 -1 1 -1 B¢ (n =3p—2m)/2
a,n -1 3/2 —-1/2 -1 1 0 pe @ —3p+2m)f2
3,2 0 -~1/2 1/2 2/3 0 -1/6,5/6 G.H (n-p)/2
a2 0 3/2 1/2 0 2 -1/2,1)2 1, —(m+3p)2
3,1 -1 1/2 12 1/3 1 2/3 e —(n+p-2m)2
3,0 1 1/2 172 1/3 1 -1/3 de —(n+p+2m))2
a,n -1 -3/2 1/2 1 -1 1 eC —(n —3p-2m)[2
1,0 1 32 1/2 1 -1 0 »C —(n-3p+2m)[2

for the corresponding representations. If negative integers or zeros appear, the corresponding representation is not
present in the massless four-dimensional spectrum. In table 2 we list the number of chiral particles for three ex-
amples.

(6) After spontaneous symmetry breaking SU(2); X U(1)y = U(1),,, all particles must be in vectorlike repre-
sentations of SU(3)¢ X U(1),, . Otherwise they must remain massless forever [7,8]. Looking at example (c) one
finds four charge § antiquarks and only three charge—3 quarks. In fact, forall m #0 the fermion representation is
chiral with respect to SU(3)C X U(1)y, and we have to eliminate this case. This embedding requires m = 0 so that
the monopole solutions are SU(2); X SU(2)g symmetric.

(7) The symmetry group of the monopole solutions is larger than SU(3)c X SU(2); X U(1)y . Further sponta-
neous symmetry breaking to the low energy gauge group will induce SU(3) X SU(2); X U(1)y invariant mass
terms like (J°K€) and (JK). We see in example (b) that only three standard generations remain at low energies.

Table 2
Examples for exotic particles.

Example n 2 m u,d v,e u¢ d¢ ¢ e G,H G¢ Hc G¢ JJK J¢  Ke
(a) 2 4 0 3 5 3 3 5 5 1 1 1 - 7 7 7
(b) 3 3 0 3 3 3 3 3 3 - - - 6 6 6
© 3 3 1 3 3 2 4 2 4 - - 1 1 6 7 5
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The alternative embedding does not necessarily lead to exotics. In this case all half-integer charged particles are
superheavy. The lightest one of those is stable — an example for pyrgons {6]. Due to SU(2)L-symmetry, the mass
term (JK) is antisymmetric in generation indices and can only give masses to an even number of pairs (J, K). In
example (a) one pair J, K can only acquire mass from SU(2); breaking. This is an example of a modulo-two
chirality index [13]. Such a modulo-two chiral, half-integer charged leptonic doublet may cause a problem: If
there is no light J°K, it can only acquire mass from coupling to an SU(2); triplet operator. Its mass would be of
order of typical neutrino masses [15]. We will not consider this possibility further.

(8) The most striking feature of the embedding (B) is the appearance of an exotic chiral generation in example
(b). Such a generation consists of a doublet of antiquarks (G, H), two quarks G° and H¢, two doublets (v, e} and
two e€, The appearance of whole generations with exotic charges besides standard generations is a generic feature
of this embedding for n # p. (The number of standard generations is (n + p)/2 and for exotic generations it is
(p —n)/2. For n > p we have instead the corresponding number of mirror exotic generations.) It is easily checked
that an exotic generation is free of all SU(3), X SU(2);, X U(1)y anomalies and mixed gauge and gravitational
anomalies. An exotic generation has one weak doublet more than a standard generation and the ratio ZI%L /Z)Q2
is 1% instead of % . Exotic generations induce therefore small deviations from the standard renormalization group
equations even at the one-loop level, a feature not common in four-dimensional unification.

(9) Finally we have to check that all chiral exotic quarks can acquire mass from SU(2) X U(1)y breaking
through Yukawa couplings to Higgs doublets. As for the standard embedding, this is indeed the case if scalar fields
are added to the six-dimensional action [7,8].

In conclusion we find that certain embeddings of the low energy group SU(3) X SU(2); X U(1)y within the
higher dimensional symmetry group lead to exotic chiral generations predicting half-integer charged stable hadrons
with mass at the Fermi scale. These embeddings are not possible within the framework of four-dimensional unifi-
cation. They involve real representations at some step, so that chirality requires (4n + 2) dimensions. Detection of
low mass half-integer charged particles would be a strong hint for higher dimensional unification. Nevertheless,
the existence of exotic generations is consistent within the low energy SU(3) X SU(2);, X U(1)y framework
alone *! . A systematic search for such particles should be done.

The author thanks R. Peccei for useful discussions.
*1 For a discussion of exotic particles with integer charged hadrons see ref. [16].
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