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Signatures of new heavy lepton pair production in e "c " annihilation at TRISTAN/SLC/LEP 
energies are studied in detail. Complete helicity amplitudes for the 2 ~ 6 process e ' e -  ~ L L  
(~'L ft f-' )(~Lf~I~'4 ) are given for arbitrary mas~s of final fermions and for arbitrary, vector and 
axial vector couplings. Methods to measure the L and =q, masses, and the neutral- and 
charged-current couplings of L in terms of four-jet and one-lepton-dijet final state distribution,,, 
are exemplified. Signatures of heavy neutrino-pair production are discussed bdefly. A straightfor- 
ward method for calculating arbitrary, tree amplitudes with external fermions and vector bosons of 
arbitrary masses is presented for completeness. 

I. Introduction 

Once the possible observation of the top quark at the CERN collider [1] is 
confirmed, three families of quarks and lcptons are completed, raising as our next 

immediate  question the existence of a fourth generation of fermions. A number of 
authors have studied the consequences of fourth-generation quarks [2l and leptons 
[3,4] mainly at hadron colliders, where identification of their signal is the most 
important  task. In e+e - annihilation experiments, however, we expect no difficulty 

in detecting their production simply because the signal cross section constitutes a 
significant portion of the total annihilation cross section. Here the aim of studies is 
not the detection of signals but should rather be the determination of detailed 
propert ies of the produced particles: their masses, spins and couplings. 

In this paper  we study in detail the signatures of heavy lepton pair (LL) 

product ion in e+e - annihilation at TRISTAN,  SCL/LEP- I ,  and LEP-ll  energies. 
The produced heavy leptons are each expected to decay into a neutrino (vL) and a 
fermion-pair  ( f ( ' ) .  The final state will thus contain six partons (l'L~Lfll:2f3f4) and 
typical heavy lepton signals are dilepton (e.g. e ±la~:), one-lepton-dijet, and four-jet 
events with large missing transverse momentum (/~T) due to the escaped neutrinos. 
All these distributions depend crucially on the mass assumed for the neutrino ~'L 
and the charged- and neutral-current couplings of the heavy lepton. However, 
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because of the missing neutrinos we cannot study the production and decay 
properties of the hea~2,' leptons separately in actual experiments. 

This necessitates theoretical expressions for the exclusive 2 ---, 6 distributions with 
a certain freedom to change mass and coupling assignments. It is easy to calculate 
the heavy lepton pair production (e+e - ---. LL) cross section even with fixed heavy 
lepton polarizations. It is also easy to calculate the L - .  uLftl:2 decay distributions 
for a polarized heavy lepton. However. the final distribution is not simply the 
product of these cross-sections because the two intermediate heavy lepton polariza- 
tion states can interfere to give a non-trivial azimuthal angle dependence to the 
L - .  uLf~i:: decay distribution with respect to the LL production plane. This is a 
novel feature of future heavy lepton searches, where we will be forced to study its 
properties near the production threshold as compared to the tau-lepton studies [5] 
where sufficiently high beam energy ( E h >  3m,) allowed to neglect any such 
azimuthal angle dependence, even in the correlation studies [6]. Such interference 
effects between different polarization states of the intermediate heavy lepton can in 
general lead to non-trivial correlations among final particles near the threshold. 
Since this inevitably destroys the factorization of the full 2 ---, 6 cross section into the 
production and the decay parts, we should evaluate directly the 2 ---. 6 process cross 
section, which requires substantial efforts in the standard method where polariza- 
tion summed squared matrix elements are evaluated with the help of algebraic 
manipulation programs, such as REDUCE and SCHOONSCHIP. A full calculation 
was performed by Kiihn and Wagner [71 for the hadronic (rr, p. At .3 r r )decay  
modes of r leptons. For fourth-generation heavy Icptons, we expect jet production 
to do,ui,late their hadronic decays and the most recent calculation [4] of the sqt, arcd 
matrix elements assumes all the six final fermions to be massless and a V - A  
charged current coupling, and it contains no ~,-  Z interference effects, which is 
clearly not sufficient for future e ' e-  collider studies. 

In this paper we present complete helicity amplitudes for the full 2 ---, 6 process 
with arbitrary final fermion masses and with arbitrary vector and axial vector 
couplings of heavy leptons to charged- and neutral-currents. The full amplitude is 
just a product of the production amplitude and the two decay amplitudes summed 
over intermediate heavy lepton polarizations. This factorization property of ampli- 
tudes allows us to evaluate the basic 2 ---, 2 and 1 ~ 3 amplitudes only, which is 
straightforward with the method to be described in detail. Final results are very 
compact and easy to evaluate numerically by computer. We show several distribu- 
tions for three typical topologies (four-jet plus /~T, one-lepton and a dijet, and 
dilepton plus /~r events), in order to examine their sensitivities to the heavy lepton 
couplings and the heavy neutrino mass. 

Direct calculation of helicity amplitudes and their numerical evaluation has a 
long history [81 but it is only recently that a number of approaches [9-14] appeared 
as a result of increasing necessity to evaluate complex Feynman amplitudes. A 
hclicity amplitude, being just a complex number, is in principle straightforward to 
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evaluate for an arbitrary Feynman diagram. Once we choose a particular convention 
for spinor and vector wave functions, the helicity amplitudes are uniquely de- 
termined. A marked property of our approach, which employs the Weyl basis for 
helicity spinors and the rectangular polarization basis for vector-boson wave func- 
tions, is its straightforwardness; no clever choice of bases nor particular techniques 
for Lorentz contraction of two gamma matrices are required. Because of this 
straightforwardness, our method leads to an almost unique expression for a given 
Feynman diagram, which is a useful property when one checks the results obtained 
by other groups. Final results can be expressed in terms of a simple quantity [12] 

r (  a~', b~' ) ,, O , 

with ( a ,  f l )  = ( + ,  + ), ( + ,  - ), ( - ,  + ) or ( - ,  - ) which gives a complex number as a 
function of two arbitrary Lorentz four-vectors. This quantity, which was first 
introduced by Kleiss [12], replaces the role of the Lorentz contraction (the dot-prod- 
uct) of two four-vectors, 

a .  b = a ~ h ~ ,  

in terms of which standard squared matrix elements are expressed. Once we set up a 
routine to evaluate T ( a  ~, b ~ ) , ~ ,  then numerical evaluation of amplitudes is just as 
straightforward as that of squared matrix elements. We believe that our formalism 
has some novel features regarding its straightforwardness and we therefore present a 
complete description of our method to evaluate arbitrary tree amplitudes. 

The paper is organized as follows. In sect. 2, we explain the structure of helicity 
amplitudes for the process e+e - --, LL --, (vLftt=2)(~t.f3l=4). In sect. 3, we present our 
method of evaluating arbitrary tree amplitudes with external fermions and vector 
bosons. Sect. 4 gives analytic expressions of the production and decay amplitudes 
with arbitrary external fermion masses and arbitrary vector and axial vector cou- 
plings in terms of the quantity T ( a  ~, ~)ol~" In sect. 5, we present some final state 
distributions at representative e +e- collider energies and examine their sensitivity to 
the neutrino mass and the heavy lepton couplings. In sect. 6, we briefly discuss the 
signals of heavy neutral lepton pair production. In sect. 7, we explain how to use our 
helicity amplitudes to generate distributions for arbitrary transverse or longitudinal 
polarization of beams. Sect. 8 is reserved for conclusions. 

2. Structure of the full helicity amplitudes 

Within the standard model, production of a heavy lepton pair LL in e*e ~ 
collisions is mediated by a photon or a Z boson in the s-channel. Subsequently L 
(and "L) decay into v L (~L) and a virtual W (or a real W if the heavy lepton mass is 
sufficiently large). The Feynman diagram for the full process is depicted in fig. 1, 
where the k 's ,  q % p's and K's, o % k's denote the four-momenta and helicities of 
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Fig [ Fc',nt'nan graph for production and deca~ of a t'tea',', lepton pair 

the fermions. For fixed heavy lepton helicities o~ and o., the amplitude of the full 
process can be written as a product of three amplitudes +//, (i = 1.2.3) where .,/'t' t 
describes the production of the L-L pair. while +/[, (~g3) are the decay amplitudes 
of L (L). We can hence write the amplitude of the full process as 

where 

--l){.(q~)DL(q') E E .tt',(~t.~2.ot.°:) 

o , , ( q : )  = [ q : - . , ~  + ,,,,. , ,r,,l ' 

(2 .~)  

(2.2) 

denotes tile propagator factor of a particle X with mass m x and width l'x- 
The amplitudes .g, ,  i - -  1.2.3 have identical structure. They are all given by the 

generic Feynman diagram of fig. 2. where the ~,'s stand for either u or v spinors. 
We use projection operators P~ on right- and left-handed spinors 

~'+ = ',(t +__ ~ ) .  (2 .3)  

v(q) 

I:ig. 2 (;cncric |:c~,nman graph for vcdor exchange between fcrmion~. 
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and right- and left-handed couplings gV,,h as defined by the interaction lagrangian 

qo= e ]~. _v,<7; , . ,p  .t V (2.4) 
~ c t  u c ' a r  cs vc" b t~ " 

with e the magnitude of the electron charge. We can write this generic amplitude as 

= V~th Vcd S" p .  7 _ p e, . 
• A [C ,  - e2EO~ ' (q )  E E g, g# "*.'Y..Wt,'W,.l', Bva' 

V a - ±  ,8=_+ 

(2.5) 

Here D~Y denotes the vector boson propagator. We choose the Feynman gauge for a 
photon and the unitary gauge for massive vector bosons: 

( -g" ' )Dr(q2)  

D~, ' (q )=  [ , q~q'~ 
| - g "  + ----r- | D v ( q  2) m~ ! 

for V = -/ 

for V = W,Z  
(2.6) 

A complete analytic expression for .~( ;  is given in sect. 4. Each of the amplitudes 
,,It', (i = 1.2, 3) are then obtained from it by choosing appropriate couplings. These 
expressions can easily be evaluated nunaerically and are then assembled to give the 
full amplitude via eq. (2.1). The polarization averaged differential cross section is 
then obtained by 

d o =  4 k t ' k 2  " ~t , - t  

with the phase space factor 

d ~  6--(2~r)4/~ a k t + k , -  ~,p,  
" , - !  , - t  (2'rr)32 Ei 

For all heavy lepton masses mr. of interest, the width l't. is always much smaller 
than its mass. We shall hence use the zero width approximation 

i DL(q2 ) [z _-iO~(q~_)I'- --- 8 ( q  2 - " '~  ) ~r (2.9) 
m L I'L 

for calculating cross sections. This together with the trivial overall azimuthal angle 
integration reduces the original 14-dimensional phase space integration of dt'b 6 to an 
I l-dimensional one, which considerably facilitates the numerical work. 
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3. Weyl  basis calculation of  helici~' amplitudes 

In this section we present a complete description of our method to evaluate 
arbitrary tree amplitudes with external fermions and vector bosons. Throughout the 
paper we employ the Bjorken-Drell notation [15] with only one exception for the 
normalization of spinors to be explained below. 

An arbitrary tree amplitude with external fermions can be expressed in terms of 
the "" fermion string'" 

. . a , ¥  z, (3.1) 

where ~b, denotes a generic four-spinor 

~, = u( p,. )~,) or v( p,. ~ , ) .  (3.2)  

with four-mon~entum p, and helicity )~,. 

P, = ~(1 + ays) .  (3.3) 

with a = +,  and a~ stands for an arbitrary Lorentz four-vector, a~ may be tile 
fot, r-momentunl of a particle (p~), a vector-boson wave function (~'( p,, ,~,)), an 
axial vector e,,,,,a/ta~ ~, or another fermion string with uncontracted Lorentz 
indices, 

~, l 't ,b,b,.. .  "l"... b,,,4,4. (3.4) 

For all tile spinors and gamma matrices we use tile chiral representation where 

with the 2 x 2 matrices 

0 o~} 

O k~ 0 ' 

( ) y s= - 1  0 
0 1 ' 

o~=( i ,+o) .  

Here o denotes the Pauli matrices; 

,)(0 _,)(, °11 1 0 '  0 "  0 - 1  " 

Next we introduce 2-component Weyl spinors, I~, l  ~, via 

) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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and the 2 x 2 matrices (~/) ±. 

(0 
~ = a~'" ; (,i)_ 

o r  more explicitly 

(,~)~=a,o~= ( a°~a" 
-T- (a t + ia z ) 

for arbitrary Lorentz four-vectors a ~'. 
By using 

('/)~)o " (3.1o) 

T-(a  I - ia'-) 1 (3.11) 
a°  + a 3 ] " 

~,P.=(O.(d¢, )*_) .  (3.12a) 

~ ,P_ = ((~k,)*+.O), (3.12b) 

it is easy to see that tile string (3.1) is now replaced by a new string in terms of 
2-component spinors and 2 × 2 matrices; 

~ t P  , , d , d z . . . d , , ~ 2 = ( d / , ) , * , [ a t . a , .  . . . . .  a , , l " (¢z)  , ..... (3.13) 

where 

[ , , , .  , , , .  . . . . .  ,~,,1" -- ( d , ) . , ( d , ) . , , . . .  ( 4 , ) . ,  .... (3.14) 

with 

a,,=(-l)" (3.15) 

If one starts with Feynman rules in the 2-component spinor basis, then one directly 
obtains an expression of the form (3.13). 

At this stage, we will in general have contractions of Lorentz indices between 
different spinor strings (repeated indices within the same string do not appear at the 
tree level). We get rid of these repeated indices by using the Fierz identities [16 I, 

(o~), , (o~), ,= 28,,8,,. (3.16a) 

(o"~).,(o ~.),,= 218.A,- ~.,8.]. (3.16b) 

where the spinoriai indices i, j .  k and I take two values 1 and 2. By denoting a 
product of the 2 ×  2 matrices of type (3.14) generically by Is,], an arbitrary 
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cont rac t ion  is done by one of the follov,'ing two rules: 

(+,  ~.,[+, 1 o .  [~: l (  ~: )~,. (,~,)+, [ ~; ] o +, [+.+ 1( ~ )~ 

t- 
= 2( ~k, )+,,[s, ] [  s.t ] (~ .~ )  +. (~_~)~ , [ s , ] [ sz  ]( ~ :  ) , .  ( 3 . 1 7 a )  

t "I- (v,) . ,  [ , ,  ] o"+ [ , : l (  ~: ) , - (  ,~.~)+, [ s31 o ~, [,+ l( ,~a )+ 

~" _ t t 
= 2( ¢, )°[+, 1[,~ 1( ¢ .  ) , .  ( ,~, ) , [+,  ][ ~, 1( ¢,  )+ 

- 2( ~,,)~.[,, l [ , ,  l( ¢+)+. ( q,,)+,[.,.,l[.,.: i( ~,:),,. (3.17b) 

By repeated use of  the above contract ion formulae.  ~ve end up with a product  of  
spinorial  strings of the form 

(~ , )~ [ , , , .  ,,: . . . . .  ,,,, l " (  ,~, )/,. < 3.t s) 

,,,,here none of the four-vectors a~,' represents ~,nother string. We can hence ev;,luatc 
the string (3 .18) independent ly .  

For  this pt, rposc we use hclicity eigcnstatcs X • ( P )  

o . p  
- - X x ( P )  = A X x ( / ' )  (3.19) 

as our  basis for frcc spinors* 

u( p,  ~ ) ,  = oa, x ( P ) X , ~ ( / ' ) .  (3.21h,) 

+ ' ( p , ~ ) , =  +_Xw+,x( p ) X  ,x{ P ) ,  (3.2(Ib) 

with 

, o , (p ) - - (E+lp l )  t" (3.21) 

a n d 

x,(p)=[21pl(lpl+p:)]  ' '-( IPl + /" ) p , + i p ,  " (3.22a) 

X (P)= [2IpI(IPI + P:)] tic( -I', +q',) 
IPl + I '  " (3 .2261  

f o r  an  a r b i t r a r y  m o m e n t u m  p ~ ' = ( E . p ) = ( E . p , , p , ,  p : )  v, i th  IP[ + I '  '~ (l. \Vhc t l  

" Our .,.pinor ba~.i.,. (3.20) satisfies tile usual charge conlugalion rclat,m 115t. ~ (/,. ,\ ~ ( ; ; ,  /,. \ 
'.,.ilh C *  ,'7"¢ °. We Ihank [I. Baer and X. Tat:, for making u~, av, arc of the ad',.mt.t::.c ,,I lh;. 
con~,cntion '.,.hen dealing with Majorana particle>.. 
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P: = - IP]. we choose the convention 

X . ( p ) = ( 0 ) .  (3.23a) 

The free spinors (3.20) satisfy the Dirac equation ( p" = m ' )  

±u( p. X).  = m. (p .  x)~:. (3.24a) 

~ e( p, 2~ ) ~ = - my(  p. 2~ ) :~ (3.24b) 

and are normalised as 

?~(p. h ) u ( p ,  h) = 2m. (3.25a) 

/~(p. h ) v ( p ,  h) = - 2 m ,  (3.25b) 

which differs from the Bjorken-Drell convention [! 51. Because of this normalization, 
we can use tile same phase space factor (see eq. (2.8)) for fermions and bosons. 

The formulae (3.20)-(3.23) completely fix our convention for spinors. The most 
important point is that we express the spinors entirely in terms of their fot, r- 
monlentunl in a given frame. Helicities are defined in this particular frame and we 
should evaluate all the four-momenta in the same frame, a natural choice in e ' e  
collisions being the e ~e c.m. frame. 

We can now evaluate the spinor-string (3.18) unambiguously in terms of the 
fernfion four-momenta p,~, p~ and the other four-vectors a~: 

~t t~ 

(¢,),,[,,, . . . . .  ,,,,1 

., )" (3.26) =C, C j ~ , , x , ( p , ) ~ l u , , ( P l ) S ( p , . a t , . .  a , , ,p ,  x,x,, 

where the coefficients C, and C, depend on whether the spinors q.,, and g'l 
correspond to a fermion or an antifermion, 

1 for (~b~), = u(p~.  X~), ,  (3.27) 
Ck= - - X ~ T  f o r ( ~ ) ~ = v ( p j , , - ~ l , ) , .  

These coefficients govern the crossing relations of fermionic amplitudes as exem- 
plified in the next section. The term S on the r.h.s, of eq. (3.26) is uniquely 
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S(p,.a, ..... a..pj)~,x,=X*x,(p,)[a t ..... a.l"xx (p/). (3.28) 

Our convention is that a subscript k, corresponds to the helicity for a fermion, but 
to the negative of the helicity for an antifermion. This quantity S, which gives a 
complex number as a function of (n + 2) four-momenta and of three two-valued ( + 
or - ) indices, is the basic quantity in terms of which all the amplitudes should be 
written. A small algebraic effort to express amplitudes in terms of S as explained in 
detail in this section not only helps to compare results of different authors but also 
drastically improves the efficiency of numerical evaluations. A direct numerical 
evaluation of an amplitude written in four-spinor basis and with Lorentz contrac- 
tions of different fermion strings is not only technically involved (and may thus 
easily lead to mistakes) but it is also numerically inefficient. 

It is easy to set up a routine to evaluate the complex number S in eq. (3.28). The 
most straightforward method, which is valid for arbitrary complcx four-vectors a~. 
is to evaluate the 2 × 2 matrix muhiplications rect, rsively by introducing a series of 
complex two-spinors X~ (k = I . . . . .  n): 

x, ,  = ( a , , )  ~,,,,x~(p,), (3.29a) 

X~=(d~) s,,,X~,l f o r k =  l . . . . .  n -  l ,  (3.29b) 

s ( / , , ,  . , . . :  . . . . .  ",, .  [', )~,~, = x'~ ( :', )x=.  (3.2%) 

i f  al l  the part ic ipat ing four-vectors are real 

( , , ~ ) "  = ,,~. ( 3 . 3 0 )  

then we can express S entirely in terms of scalar quantities. First we observe the 

identity 

(a)~  = ( ` , ) r x , ( ` ` ) x , , . ( , , )  +(`t),x ( " )X  ~( ` ' ) .  (3.31) 

with 

( a )  + = , d ' +  lal (3.32) 

for an arbitrary real four momentum a" = (a °, a)  = (a", a , .  a , .  a:). By replacing all 
the 2 × 2 matrices in [a I. a 2 . . . . .  a,,]" via 

(~j,) ~ , ,=  ~ (a,),,~,,,X,,(a,)x*(a,), (3.33) 
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we obtain the final expression: 

S ( p " a l ' a 2  . . . . .  an'P')x'~'=[ h ~-',-t,,-+_(a')"a''] T (p ' 'a l )x ' ' tT (a t 'a ' ) '¢ :  

. . .T(a, ,_~.a,) , .  , ,T (a , ,p , ) , . x  ' . (3.34) 

Here the term T denotes the scalar quantity 

T(a, b) t ~ = x~(a)xa(b) ,  (3.35) 

which can be expressed explicitly as 

T(a ,b )* * =N ~t [ ( l a l+a : ) ( Ib [+b : )+(a , - i a , . ) ( b~ + ibv ) ] ,  (3.36a) 

T(a .  b ) ~ _ =  N,-ht [ - ( l a l  + a : ) ( b , -  ibm.) + ( a , -  ia~.)(Ibl + b:)], (3.36b) 

T( a, b) _, ~ - T(a, b)*~_, (3.36c) 

T(a. !,)_~ ~ T(a, b)*~,, (3.36d) 

with 

N,,h = 2[ la l ( la l  + ,:)lbl(Ibl + h:)] '/ ' .  (3.37) 

We observe that these are just the spinorial products introduced first by Kleiss [121, 
which is by no means surprising because our Weyl spinors can be identified with the 
masslcss four-spinors used in ref. [121. These spinorial products satisfy 

r(,,. h)..,-- r(b..); , , .  (3.38) 

If one of the three-vectors a or b, say a, is along the negative z-axis, one needs a 
special treatment according to our convention (3.23); 

T(a, b ) + ,  = [21bl(Ibl + b..)]-tP'(b~ + ih,, ) , (3.394) 

T(a, b) ~_ = [21bl(Ibl + b..)] -t/2(Ibl + b..), (3.39b) 

and the relations (3.36c) and (3.36d) remain valid. The expression (3.34) is particu- 
larly useful in two cases. If most of the four-momenta are light-like the conditions 

( ,~,)  _ = 0  if , ° =  I,,,I (3.40) 
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get rid of most of the summations over r~'s. and if the number of 2 x 2 matrices (n)  
is small, very simple expressions arise. For n ~< 2 ~e obtain 

S ( p .  k ) L  = T( p. k ) ~ , .  (3.41a) 

S(p.a,k)'~',,= ~ (a)_,,,T(p.a)x,T(a.k),o. (3.41b) 

S(p .a .h ,k )~ ,= Y'. ~ (a) , ,(b),, ,T(p,a)x,T(a.h),oT(b.k),, .  (3.41c) 
+'~ + p= s 

in our particular example of heavy lepton pair production and their decays, we 
encounter n = 0 and n = 1 cases only and all the final results are expressed directly 

iq terms of the quantity T instead of S. 
For completeness we add two general comments regarding our formalism even 

though we do not need them for the problem at hand. 

(i) Strictly speaking, we should assign a number (real or complex) to the quantity 

+ ( p )  appearing in eq. (3.26) only for the on-shell momentum 

v"= l~= [Iel; + ,.:1"-~ (3.42) 

:ks cxcmplificd i,a the previous scctiom it is still possible to combine two amplitudes 
with a ct+mmon fermion leg via 

Y'+.z f l [ (v ,x )  . . . .  l - e . , [ ( p . X )  . . . .  I D ( p - ' ) .  (3.43) 

interpreting the fermion now as t,n intermediate state. Once this intermediate state 
gets virtual, however, the ~ +(P) c:m no longer bc well defined, because their 

products must satisfy the following conditions, 

,~ ,( p),o +(p) = , , , ,  (3.44a) 

,(p),~ +(p)=p"+ Ipl =(p) ,  • (3.44b) 

q'his convention is needed in order to obtain the correct propagator factors in 4 x 4 
nota t ion:  

Y'+.( p .  X );,( p.  ;~ ) 

+o x(P)+oa(P)Xx(P)X~(P) ~ a(P) +o x(P)Xx(P)X~(P)] 
~ Z 

x +oa(p)~a(p)xx(P)X+x(p) +ox( P ) ~  x(P)Xx(P)X~x(P) ] 

m p, p + m 

p ?tl 
(3.45) 
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and similarly for antifermions. When dealing v,ith virtual intermediate fermions. 
only the product .¢,t't./t' ., is defined in eq. (3.43). which is expressed in terms of S ' s  
and the assignment (3.44). This point is important ,~hen finite width effects have to 
be considered. Since we are working in the zero ~idth approximation, we need not 
worry about this point. 

(ii) In order to take advantage of the simple formulae (3.41) and (3.34). all the 
four-vectors, in particular all the vector-boson polarization vectors should be real. 
This prevents us from using the helicity basis for vector bosons unless we express 
the polarization vectors entirely in terms of other momenta (as in the C A L K U L  
basis [11]} which is just an unnecessary complexity in our formalism. We thus 
choose a rectangular basis [91 for our standard vector-boson wave functions. Just as 
the spinors in eq. (3.22). the polarization vectors are expressed entirely in terms of 
vector-boson four-momenta. 

k " =  (E ,  k , .  k , ,  k:) .  (3.46a) 

E = [Ik 1" + ,,," ] ' /" (3.46b) 

-= + ( k,.): "" (3.46c) 

as follows: 

~ " ( k . ~ . - l ) = ( l k l k r )  ~(0, k , k : . k , k . . - k ~ , ) ,  ( 3.47 a ) 

t) '(k, h = 2) = (k-r) ~l(O, - k , , k , , O ) ,  (3.47b) 

e~'(k, h = 3) - ( E / m l k J ) ( l k l Z / E .  k , .  k , . k : ) .  (3.47c) 

It is easy to verify the following identities, satisfied by the above polarization 
vectors. 

kt, t" ( k, A ) = 0. (3.48a) 

t,,(k, h ) e ' ( k ,  h') = -Sxx.. (3.48b) 

Massless vector bosons have only two polarization states, h = 1 and 2. on their 
mass-shell. Helicity eigenvectors are expressed as 

e~'(k.h = + )= f~,_ [:g~"(k.h= l ) - i ~ " ( k . h =  2)]. (3.49) 

Hence whenever one needs helicity amplitudes, they are obtained from our standard 
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amplitudes via 

J e ( (  k .  X = + }  . . . .  ) = ~ [ T - ~ g ( { / , .  X = 1} . . . .  ) - ; . g ( { / , .  X = 2}  . . . .  ) ] .  (3.50) 

4. Analytic form of production and decay amplitudes 

We are now in a position to express the amplitudes ~#,. i = 1,2.3 of eq. (2.1) in 
terms of the quantities ~ and T introduced in the last section. In order to be able to 
treat t- and b-quarks in the final state as well as a non-negligible mass of vt .  we 
allow all the fermion masses to be arbitrary. 

By contracting the vector boson propagator factors, and by using the Fierz 
identities, eq. (3.16). the generic amplitude (2.5) can be cast into the form 

.//(., = 2e"EDv(q:) E E g,v",~'v'" 

t t f +8,,. ,(,/',,),,(,L~)~," (~ , ) , (~ ) , ,  

,1 

with 

-~v(,~.,).'.(,J)..(,~.)...(,~.)~,tq),,<,~.,).}. (4 .1a)  

0 for V = y,  (4.1b) 
~'v= l/m~,, for V = W,Z .  

The term proportional to ev survives only when the massive vector boson couples 
exclusively to non-conserved currents and is non-negligible only for the L----, el.ib 
decay in the present example. With the help of eqs. (3.26) and (3.41), we obtain the 
standard form of the generic amplitude 

~g, 2eZEDv(q 2) E E ,,,,,hv,,~ , = g,, too .~3 P.)",,~J P~)"~,~,( P , )~ ,~ (P , , )  
V ,w- t l ~ -  t 

x C,(S..,T( p.,. p,.),,.,,T( p.. p,) ,  ,, 

+ (8,, .- t~ - 8.I,)T( P," pj)x.x,T( p,.. Ph)x.x, 

- ~,~s(  po. q. p~)~.~s(  p,. q. p,,)~.~}. (4 .2)  

where the factor Co; = CuChC,.C a is determined by the crossing property of each 
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process via eq. (3.27) and turns out to be 

(a f lk  zO2 in "/(1 

CG = t - f l h z  in oK, (4.3) 

t -  •°'2h4h6 in ,,¢t' 3 

This general expression suffices for determining all three amplitudes. The relevant 
momenta, helicities, and the standard model couplings to insert for each process can 
be inferred from table 1. One merely has to observe that for antiparticles helicities 
are reversed in the generic amplitude (4.2) (see eq. (3,20) and table 1). 

In the following we show more explicit formulae for the process by choosing the 
standard model couplings (table 1), neglecting the electron mass. and by using the 
physical helicities for antiparticles to demonstrate our notation clearly. More 
general cases can easily be inferred from the generic formula (4.2). 

in the heavy lepton decay L --, uL(zf3(./t'z), only the W boson is exchanged with 
left-handed couplings (a = ,8 = - )  to fermions. Furthermore. we can simplify the 
last term in the generic expression (4.1) by making use of the Dirac equations (3.24). 
The result of the substitution reads 

, l / , , (ql ,  Or; p,. o,; i = 1,2,3) 

( ~2) w,,, I, ,wr ,r ,x  
=8~aDw Pz+P.~P Ig-  g " "2 

x(,., 
x[T(pt.qt)x,.,, T(p 3,p2)x,._xa- T(pt,p2)x,. x;T(p,.qt)x,.,,,[ 

1 
2.,~, [ " 'L"  ' '( P, )".,(q, ) -- " ' , 'X,( ?, ) ' - . , (q ,  )1 

× [., ) -_ , , (p , )  + . ,  :.,,;( e.,)] 

x T( Pt. q,)x,.,,,T( p~. P2)x,.-x.}. (4.4) 

where a---eZ/4~r, m t - - m , ,  ., m,---mr,,  m 3 = m r :  In most cases of interest this 
amplitude can be simplified significantly. First, the expression (4.4) makes it explicit 
that the latter term proportional to l / m w  is important only when m j m  w or 
m.a/m w is non-negligible, i.e., for the L--, utib decay only (if fourth-generation 
quarks are heavier than L). Second. the relation 

lira ~ , ( p )  = 8x. * ~ (4.5) 
pZ ~(} 
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TABLE t 
Coupling conMants and spinors to be in~rted in the genc'ri¢ a~nplitude {4. L) 

in case of LI. production (Jr',), L decay (+K:). 
and L decay( Jt'~ ) 

Generic case .#', +it', +a'++ 

~, , (p . .X, )  e(kz. -~z) 
~t,( P~,. XI,) u (k l .  ~t)  
4,,(p,. h,) u ( q l . o t )  
~a( Pa. ~,a ) t'( q: .  -~z) 

Vul, v, d ( - [ ~' 

g+ =g++ ~tan0  w Z ( - '  
gV,,b= gv. a _ t + sin:0v.. 

sin 0w cos 0w 

u( p l .  h i )  ei qz. - °z ) 
u( qt, °l ) t+( Pa. - 'ka ) 
u{ p~. ,~3) u( p,~. ,k 5 ) 

e(pz,  - k : )  r(p~. -X~) 

0 0 

+y 
l l 

Z ~ sin 0 w ¢2 sin Ow 

reduces the number  of non-vanishing amplitudes whenever a light fermion exists. 
t l ence  if the condit ion 

,,z~ . tn~.  << ,n~  ( 4 . 6 )  

is sat is f ied,  t i le f o r m u l a  (4.4) reduces to 

4 ~ra 
2 ~7~ ( q l )  ~ ~,,( Pt - / . ' . =  . °. 

- sin-0w . . . .  ~. 

x [ T ( p , , q t ) x , , , , , T ( p , , p , )  - T( p,. r(V,,q,) .,,], (4.7> 

which still incorporates exact m., dependence. 
The  ampl i tude  for -L decay is related to eq. (4.4) by the crossing relations given in 

table 1 and by the property (3.38) of the T ' s :  Up to the overall phase factor given in 
eq. (4.3) it is obtained from eq. (4.4) by the substitution 

(ql" at; Pl" ~1; P2" }k2; P3" ~'3) "" (q2" --02; P4, --~4; P5" --}kS; [:~+," --}k+,) ( 4 . 8 )  

and by taking the complex conjugate of the full anaplitud¢ except the propagator  
factor  D w. in the simplified case where f5 and f~, masses are negligible, we find 
explicitly 

4 ~ a  z .~ o o 
+//~ = sin,_0w Dw( (  P5 +P~,) ) - ~ 6 x , .  _6x,. + ~,,,(q,)~;~+( pa)o,_ha 

x [ V ( q , _ , p + ) . , : . . x + V ( p . s . p , )  .... - T ( p s ,  pa) . x , T ( q , _ , p 6 )  ,,:. ] .  (4.9) 
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Neglecting light fermion masses is even more justified for the production ampli- 
tude (J / l  ) for e~e - --, LL. In the m~ = 0 limit it is given by 

.,¢t'(e~'e ---, LL) =.Kl(ki, Ki; q,.o,;  i =  1,2) 

g ov(,lg, 
V - ¥ . Z  

VLL VLLoj ~O ., 
X{[g,, ~,,o,(q,)~,._~.(q2) + g - , ,  ,:~,(qt) ,,~:(q.)] 

× T(k , . .  qz) - , : . - o . T (  qt, t t )  . . . .  t -- gV, LLw,, , , t(qt)~,. ,:(q, .)  

X T(k , . .  kt)_ , . . . ,T(q I. q,  )o,. _0:}. (4.10) 

When working in the e ' e -  c.m. frame the last term in eq. (4.10) vanishes identically. 
This happens because 

T(k  2. k , ) _ , : . , , I , : . _ , ,  = X: , ( -k , )X , , (k , )  -- 0 (4.11) 

by virtue of the orthogonality properties of helicity eigenstates. It should be noticed, 
however, that dropping this term spoils the Lorentz-covariance of the amplitude. 

In the calculations performed for producing tile graphs of the next section we have 
nmde use of the zero mass approximation for the decay products of virtual (or real) 
W's. It is amusing, however, that the complete expressions, including all mass 
effects, can be written down so simply. 

5. tleavy lepton signals 

The expressions derived for the amplitudes in the previous section can easily be 
evaluated numerically and assembled to give the complete differential cross section 
do/d~b~. We have written a Fortran program for this purpose, which then uses the 
Monte Carlo integration routine VEGAS [171 in order to perform the ll-dimen- 
sional phase space integral. 

The program was checked as follows. First the Lorentz invariance of d o / d ~  6 was 
verified numerically. Second. it reproduces some well known quantities, the total 
cross section, the heavy lepton decay width and the heavy lepton polar angle 
distribution. Further qualitative tests were made by reproducing the distribution 
given by Baer et al. [4]. Numerical efficiency of the algorithm is found satisfactory: 
on an IBM 3081 various distributions are generated with 105 phase space points in 
6 CPU minutes of which more than ~ is used to set up phase space and fill numbers 
of histograms. 
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Heavy leptons, once they are produced, will either decay leptonically into 
~,~e. J ,~ .  V~T or hadronically into ~,~d. vCs with ratios ! : l : ! : 3 : 3. Decays into r ib 
are negligible at TRISTAN or LEP /SLC energies: a 45 GeV heavy lepton has a 
branching fraction into J, ib well below 1% even if optimistic values like m r =  

30 GeV. rn,~ = 0 are assumed. This is not true any more for LEP II energies: the 
decay products of a heavy lepton pair with m L = 90 GeV may contain a top quark 
with more than 30% probability if the top mass is low enough. In the following we 
v,'ill not consider the vtb decay mode of heavy leptons and hence some exercise on 
its effects should be made at LEP !I energies before a more realistic confrontation is 
made. Likewise, we do not study the effects caused by "r decays, its leptonic decay 
contaminates the e + dijet and ~, + dijet signal in the low lepton energy tail. Cuts in 
final lepton energy can easily make the "r contribution negligible. Its hadronic decay 
produces a single very narrow jet as opposed to dijets from direct heavy lepton 
decay and should easily be distinguished. Anyway, it is a straightforward exercise 
[181 to implement polarized -r decay distributions in our algorithm. 

The observed signals of LL production can be classified according to their jet 
co n t e n t: 

(a) LL - "  U L ~ t . q t q 2 q 3 0 4  resulting in 4jets  + missing momentum. 
(b) LL ---, l' *qtq2 + 3 neutrinos resulting in a dijct + charged lepton + missing 

momentum signal. 
(c) LL ---, ? " l  '~ + neutrinos producing an opposite sign dilepton + missing 

mornentum signal. 
The probabilities of the three classes are roughly 44 : 35 : 7 when -r Icptonic decays 
arc included. The common feature of all the L[, decay modes is missing four- 
tuonacntum carried away by the neutrinos. This together with the charged Icptons or 

0 10 20 30 ~0 

,e T [ GeV ] 

Fig. 3. Mi , , , ing  p r di.~tr ihution for  c ' e ~ L ' L - -  4 jets + 2 neutr ino~ a t  ]~ 'h " 35 (;CV, m I - -  | ) .91: . '  h .  

The effect o f  a non-zero neut r ino mass i~, shodn:  m,~ - 0  (da.,,hed line), m, t  - 0 . 3 m  I (.~olid l ine). 
m,~ - ().5m~ (da.,.h-dotted l ine)  
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multijets will give a very clean signal for heavy lepton production within the 
standard model. In figs. 3 and 4 the resulting distributions of missing transverse 
momentum (/i-r) are shown for a beam energy E h = 35 GeV. a heavy lepton mass 
mr . - -0 .9E h and three values of the J'L mass: m,, = 0,0.3mt..0.5mt.. Fig. 3 shows 
the P r  distribution for 4 jet +/ i  r events while fig. 4 is for 2 jets + p. t + / i t  events: 
due to the additional muon neutrino the class (b) distribution (fig. 4) is somewhat 
harder than the one of the class (a) (fig. 3). 

In figs. 5 to 7 the missing energy (/~) signal is shown for 4jets +/ i  events :tt three 
different energies: E h --- 35 GeV, 46.5 GeV ~ ~m z, and 100 GeV respectively. Ag:tin 
we have chosen mr. ~ 0.gE b and the m, t  -- 0,0.1rnL,0.3mL,0.5m L curves are given. 
Obviously the E distributions are much more sensitive to a non-zero neutrino mass 
than the /iT signal: observation of m,,  ~ 0  appears to be possible down to 
m,,  = 0.1m L at E~, < mw. While the E-distributions are very similar at Eh---35 
GeV and E h--- tm z (this actually is true for all the distributions shown in figs. 
3-10), a much higher sensitivity for nl,,t. :#: 0 is obtained at Et, ~ 100 GeV, m L --- 90 
GeV (fig. 7). This sensitivity is simply a consequence of the fact that a 90 GeV 
heavy lepton predominantly decays into a real W plus a t, L if m,. L is small enough. 
At m,,, - -8  GeV already, the threshold for the L---, J'LW decay mode is crossed, 
resulting in a very strong m,,. dependence of differential cross sections, it should be 
noted that the E distributions are more sensitive to the QED radiative corrections 
than the/ i-  r distributions due to the emission of collinear hard photons in the initial 
channel. Realistic confrontations of the ~ distributions with experiments should 
include the radiative effects as well. Here we show qualitative trends in order to 
examine what could be achieved in actual experiments. 

At L E P / S L C  and TRISTAN energies, a high sensitivity for a non-zero neutrino 
mass is also found in the dijet energy and dijet invariant mass distributions for the 
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process c ' e  - - , L ~ L  - - - , / . t + + 2 j e t s + 3  neutrinos. In figs. 8 and 9 they are given 

for a machine operat ing :it the Z mass ;lssuming m 1. = 0-9Eb- As mentioned earlier 

results for T R I S T A N  are very similar. 

in  fig. 10 the p. - e invariant mass distribution is given for the process e +e --. 

L]-.---, e +p. r + 4 neutrinos at E h = 35 GcV, ml. = 0.9Eh and n t  = (0,0.1,0.3, 
0.5)m i.. Sensitivity of  this signal for neutrino mass me:lsurements is not as high as in 

the dijet energy =rod dijet invariant mass distributions, and furthernmre the m,,~ 
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Fig.  6. S a m e  a.', fig. 5 h u t  fo r  I:" h = 12m/.  
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Fig. 7. Same as fig,. 5 but  for E~, = f iX)  GcV. 
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distribution will be affected in the lower mass region by the 28% contamination of 
secondary muons or electrons arising from the ~" decay modes. 

So far we have assumed the mass m c of the heavy lepton to be known. The 
easiest and most precise way to measure it will probably be to follow the threshold 
behaviour of the ratio 

o ( c ~ e - ~  LL) 
R=.(e,e__. + ~) .  (5.1) 

If 2m t is between TRISTAN and SLC/LEP-I  energies, a method for nle.'tsuring mr. 
at fixed beam e,~crgy Et,-- ~mz is advantageous. Due to the almost axial coupling 
of Z to st:mdard charged leptons the ratio R is proportional to/3 3 due to the P-wave 
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I'i~.. X. d n / d  I:',, I'~r c ' ¢  - - L ' L  ~ t t '  4-2 jets ÷ 3 t Fb's at I;'h = I :mz. m l - 0 . g l ' . '  h. Choice o f  
neu t r ino  masses i.~ a.s in fig. 5. 
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Fig. 9 Di  e! i n v a r i a n !  m a s s  d i s t r i b u t i o n  for El, = l . ,mz, mz = O.ql;h. m,j = (O.OL.i)  3 . 0 . 5 ) m  I 

production, and measuring the LL, production cross section allows a rather precise 
mass determination [4]. This method is of course very much dependent on the 
assumption of standard couplings of L to Z and W +, and a complementary method 

is highly desirable, tlere we suggest determining the dijet opening angle in the 
1.[. --. 2 jets + g ~ + p r decay mode which measures the boost factor of the dijct 
system from the ( '~  rest frame to the lab. frame. Figs. II and 12 show the resulting 

distribt, tions for m L = 40, 41.42 GeV anti m L = 29, 30 (;eV respectively. For both 

figures Et, = ~m z and m,, = 0 was chosen. Fig. II clearly reflects the strong /:1 ~ 
threshold dependence, but at the same time the change in dijet angular distribution 
is apparent.  This increase of dijet opening angle with increasing m L is even more 

pronounced in fig. 12. 

Q 0 2 0 ~  

0.015' I/ ~ - 

o.o,o/// ', "%. 
- 

0 . 0 ~  
0 10 20 30 /.0 50 

r~eC GeV 

Fig. IO. ¢ ' # r  invar ian!  mass di~l r ibul ion for  Ih¢ proc¢~ c ' c  - - L ' L  - - e ~ / L ;  + 4 neulr inos at 
E h - 35 GeV.  m L - 0.gE h. Neut r ino max.~cs are ch.~cn as in I'ig. 5. 
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I It. Distribution of dijet opening angles for E b = zmz. m,t = 0 and for nl L = 42 GeV (solid line). 
41 GeV (dashed line). 40 GeV (dotted line). 

The  dis t r ibut ions  shown so far are to a large extent given by kinematics,  which 
seems to be sufficient to identify LL events, to measure neutrino masses etc. in 
order  to get a handle  on the dynamics  and in part icular  on the V, A structure of  the 
heavy lep ton ' s  couplings, angular  dis tr ibut ions have to be analysed. The  V,A-  
coupl ings  of  LL to Z determine the heavy lepton 's  polar  angle distribution. As a tag 
on the direct ion of L, the direction of its decay muon or electron can be used. The  
result ing polar  angle distribution of p.- with respect to tile e -  beam is shown in fig. 

13 for s t andard  model couplings, at E b =  ~m z, mt.=0 .9E~,  and r e , l = 0 .  It 
r eproduces  the angular  distr ibution of its parent  heavy lepton (the solid line in fig. 

13) rather  poorly,  because LL product ion too close to the threshold is considered. 
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Fig, 12. Same as fig. t |  but for m u - 30 GeV (dashed line) and rot. - 29 (;¢V (solid line). 
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i n t e g r a t i o n  The solid line shows the cos 0 d is t r ibu t ion  of the parent  heavy lepton. 

Nevertheless it shoukl be possible to tletermi,le tile heavy lepton forward-backward 
charge asymmetry this way. 

Use of the total momentum of the dijet system recoiling against a /~ '  or e ' allows 
for a much improved L polar angle distribution. Because in the decay L---, ul.q2q3 
only the neutrino ut. remains unobserved, kinematics allows us to determine the 
magnitude of the component of the neutrino momentum perpendicular to the dijet 
momentunl, Pr ,  once an upper bound on m~, has been set. Denoting the u~+ 
nlomentum by p~ and the dijet momentum by p,_ +p~ as in fig. 1 we indeed find 

e,. (e:+m) = (E,- E,,)t, + :(,,,;, +,,,:,-,,,~+). (5.2~,) 

and 

p~ = ( ~.'~ - E , , ) ' - -  ,,,~ . 

IPtTI = 
PI'(P2+P3) 

P i - -  (p2 +p3)2 ( P 2 + P 3 )  

(5.2b) 

I )_, 1,/: 
, ( p t ( e : + p . + )  (5.3) 
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14 Pol;.ir angle  dis t r ibut ion of tile dijet sys tem in the process  e* c ~ [ , '  1. ~ / x  ~ + 2 je ts  ~- 3 
neutr inos.  Paramete rs  and  ,~ymbols as in Fig. 13. 

can hence be determined experimentally for each event. Since the dijct direction is a 
good measure of the heavy lepton direction if IPtxl is small, a cut on 

77 = I P t r l / E ~  (5.4) 

will considerably improve the correlation between dijet and L angular distributions, 
as is clearly visible in figs. 14 and 15. The price to be paid for the +! ~< 0.2 cut is a 
loss in statistics by roughly a factor of 3. 

While the dijet angular distribution (with respect to the beam axis) is sensitive to 
the V, A structure of the production amplitude, the correlation of light lepton and 
dijet directions can distinguish between V + A and V -  A coupling of the (t, LL ) 
doublet to W +-. This is because the L-  and p.- momenta prefer to be aligned when 
both couple to left-handed weak currents, while the ~-  will rather go backwards to 
the L-  momentum, if the parent L-  has V + A coupling to W-.  The effect is clearly 
visible in fig. 16. 

A p. or e going in a direction opposite to its parent, will on the average have a 
lower energy in the laboratory than a lepton arising from a left-handed L. Figs. 17 
and 18 show the difference between V + A coupling and V -  A coupling for the 
muon energy and the dilepton mass distributions. Distinguishing V + A from V - A 
appears to be straightforward and it also should be possible to determine the vector 
and axial couplings to the W individually. 



26  

I'M 
0 
Vl 

(3) 

0 

b 

K. tlagt~'ara, D. Zeppenfeld / tlearv lepton produ('tum 

61 . . . .  I . . . .  l ' ' ' ' t  . . . .  
[ e+e:-~ L° L:-- P.± • 2 jets o.m 
I- Eb= mz/Z 

5[-mL-0.9 Eb 

_ 

1 - 

0 , , , , I , ,  

4.0 -05 0.0 0.5 1.0 

COS e j i .  b e a m  

Fig.  15. S a m e  as  fig. 14 b u t  fo r  1,1 ~ 0 .2  (see  text)  

2 0 [ , , ,  . . . .  L . . . .  I , ' , , ] ' ' , , 

[ \  e*e=- L° C-.- ~ ± • 2 jets .,e 
[ \V -A  Eb = mz/2 
[ ~ mL= 09 Eb 

15~--...~ mvL:O 

1o 

u 
"I0 

"o 5 

-I.0 -05 O0 05 10 
cos e~-Ji 
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a n d  m.~ - 0 w e r e  c h o s e n .  
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6. Heavy neutrino production 

The expressions derived in sect. 4 for heavy charged lepton production and decay 
amplitudes can directly be used for massive neutrino (N) production and decay: it 
suffices to replace the heavy charged lepton couplings by the appropriate neutrino 
couplings. In p~,rticular g~SN= 0 in the production amplitude, and in the decay 
N --, [ +(virtual) W ~ a mixing angle UNt has to be introduced, if N is a Majorana 
particle. N and N have to be treated as identical particles. The production 
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amplitude is then obtained from eq. (4.51 by choosing appropriate couplings and by 
antisymmetrizing it in (q l ,  ° l )  and (q,,  o, I. 

Determining the properties of a hea,,w neutrino will actually be easier than for a 
charged heavy lepton. This is so because more of the final state fermions will carry 
charge, the dominant decay mode usually giving two charged leptons and four jets. 
If the N mass is sufficiently small and /o r  if the mixing angle Us,, is tiny it may 
even be possible to determine the N lifetime from its decay in flight. 

If there exist large flavor changing neutral current couplings between neutrinos 
g Zy, N: as in some models with mirror fermions [19]. then different mass neutrinos 
can be pair produced and their decays can proceed via both charged and neutral 
current. Our general formula with arbitrary mass and couplings will be most suited 
to study the consequences of such models. 

7. Polarized beams 

It is clear that longitudinal polarization of the colliding e ~e beams will be very 
useful for a detailed study of electroweak theory. Transverse polarization of the 
beams is not only necessary to establish the longitudinal polarization but it can, in 
itself, be useful for probing non-standard (scalar [201 or magnetic [21D couplings of 
electro.as. In practice, the beam polarization will be only partially longitudinal and 
partially transverse. 

The helicity amplitudes giveq in sect. 4 can be used directly to produce cross-see- 
l ions for Iongitudi,latly polarized beams. For arbitrary polarization direction we 
follow the notation used by ()lsen ct al. [22]. We describe a general state of partial 
or co,npletc polarization of the e ' and e beams by the polarizatioq vectors 

.,. ~, = t" r~ (o,.~. ~ ) + p Z ; ( p  ~ I, t': ,p" , ) / m ,  (7.1) 

where .~, are unit 3-vectors perpendicular to the beam directions t~, and /~ . l'f~ 

denote the degrees of transverse polarization and t't; the degrees of longitudinal 
polarization and they are bounded by 

Wc introduce 

p,--  [ / , " ) :  ):1 'j-' , + (! '~; ~< 1. (7.2) 

cos~', = t ' l ; / p  , . sin ~", = l ' ~ / p  ~ (7.3) 

in order to obtain the unit space-like 4-vectors 

n", = sin ~" ~ (0. ; ~ ) + cos~", (IP , I, E ,i~ ~ ) / m ,  (7.4) 

which define the projectors onto spinors dcscribing electrons and positrons polarized 
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in the r . n .  ( e ± =  + or - )  direction: 

u ( p _ . ~ _ n _ ) =  ~(1 + ~ _ v s i ~  ) u ( ? _ . ~  n _ ) .  (7.5a) 

(7.5b) 

It is straightforward to expand these spinors in terms of helicity eigenstates 

u ( p _ , A ) =  . (7.6a) 
U ( p  h)  

v ( P ~ ' ~ k ) = (  vt,~(p~.~k)(p*'h))" (7.6b) 

defined in eq. (3.201. In the massless limit (m ---, 0) we find 

tu, n, / ( , ( e  . - , ,  ) = Y ' . u . . ~ , ( t ,  . x ) =  _ i~. 
- - x sin e '" cos!~" u( p .  - ) 2 

(7.7a) 

e,.. ]1"(/ ' ,  - )  v (  t ,  , .  - ,  ~)  x " - ' . , 

(7.7b) 

The phase factors exp(ia~) are given by the orientation of /~, and .~: in the 
coordinate frame. To be specific we choose 

# : = (sinO ~cos¢ ~,sinO ~sin¢ _~,cos 0 ~), (7.8) 

s inq , . s inCx + cosq, tcosO tcosq~ ,_, / r ,  

- sin q~ ~cosq~ ± + cos~  _~cos 0 _~sin q~ ~. 

- sin O.cos ~k , 
(7.9) 

then we find 

a ~ = ~ , - q , ~ .  (7.10) 

We can now relate arbitrary polarization amplitudes to helicity amplitudes. For 
an arbitrary process e re----, X we use , / / ,  ,. to denote the amplitude for an 
electron polarized in the ~_ n _ and a positron polarized in the ~, n ~ direction and 
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+"g'(~t-x-} for the corresponding helicity amplitude (treatment of final state polar- 
izations is implicit in the sequel). From eq. (7.7} we find 

+/,", , . =  Z t.;..,./t(,<,.,,_,)~;/:,.. (7.il) 
~i ,  li+ 

The polarization vector s+ in eq. (7.1) describes e -~ beams polarized with probabil- 
it,,' {(1 + 9+) in n+ direction and probability t . , ( l -p  ,) in - n ~  direction. The 
polarization weighted squared matrix element is therefore 

~.,t+a'l:- ~ { { l++ .P+) t : (  1+~ P )1-/,", ,+1-" 

Y'+ +#( ~ .  ~z )/',i ,+ +t!*( +i. ++" )P<, ,  • (7 .12)  

and the polarization matrices P ~ are given by 

P,.; ,,,, = u,l, ~(I + +  +,, )o; ,, 
I + f , L  [ 

= ,2' p r  c '"  

p 1- e.~ 

I _ p t .  
(7.13a) 

• + v ~ ':(I + + - . p  ) i ;  , ,  
[ + p I> 

l 
= 2 

P ! e " "  

]l ! e "' ' 

I - p,t+. 
(7.13b) 

In m,my appl icat ions,  and in partict, lar for 1.]'. product i tm, the relat ion 

. # ( x , .  ~2) = a . . . . .  " f f ( ~ t .  - ~ t )  (7 .14)  

holds, when the electron mass is neglected. In this case eq. (7.12) can be simplified 
further to read 

Z I+//I e = ~ . / ~ * (  K l , . . . . .  K 1 ) P m l , . , . # ' (  ~L , - - K I ) ,  ( 7 . 1 5 )  

D '1 "u.  ~'; 

,+viLli 

t'.i. =~ ( l+e ' : ) (1-e ' : )  t - ,~, ~ '''' " '  ) (7.16) 

which, together with the helicity amplitudes presented in sect. 4, allows to study EL 
production for arbitrary beam polarizations. For the special case fi ~ = (0,0, -T- l) 
and .~+= (0, ± 1,0) (where the colliding beams run along the ,--axis and the 
transverse polarizations are akmg the ),-axis), one obtains a ~ -- ± i,~ in eq. (7.10) 
and accordingly the two phase factors of eq. (7.16) are both - I. 
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8. Conclusions 

We presented helicity amplitudes for heavy lepton pair production (including 
their three-body decays) in e+e - collisions with arbitrary, vector/axial  vector 

couplings and with arbitrary final fermion masses. The amplitudes are cast into a 

form which makes their direct numerical evaluation efficient. By studying four-jet. 

dijet plus single lepton, and dilepton signals, we exemplified the measurement of the 
couplings, of the associated neutrino mass, and of the heavy lepton mass itself near 

the threshold at TRISTAN,  SLC/LEP- I .  and LEP-Ii  energies. We commented on 

the use of our amplitudes for studying heavy neutrino pair production signals and 
for studying polarized beam effects. 

For completeness we presented in sect. 3 a self-contained description of our 
method to evaluate arbitrary tree amplitudes with external fermions and vector 
bosons. The method requires minimal algebraic manipulation in the Weyl spinor 

basis which leads to a unique standard expression of the amplitude, whose form 
allows its efficient numerical evaluation. It gives a general prescription; no clever 
choice of polarization vectors, no trick for gamma matrix contractions nor special 

treatment for massive fermions are required. One of the key features of our method 
is that we express the wave function of a fcrmion or a vector boson in a given 

polarization state in terms of only its own momentum in :m arbitrary Lorentz framc. 

Because of this the full polarization amplitudes are expressed in an arbitrary frame 
ztnd the Lorentz invariance of the polarization summed squared amplitude provides 

t,s with a very non-trivial check of the overall calculatitm. 

The authors wish to thank K.-L. Au, il. Bacr, N. Brown, J. Cort,3s, K. l likasa, (;. 
lngelman, S. Komamiya,  A.D. Martin and X. Tata for v:tluablc discussions. One of 
the authors (K.H.) would like to express his gratitude to A.D. Martin for kind 
hospitality at the University of Durham. This research was supported in part by the 
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