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Signatures of new heavy lepton pair production in ¢ "¢~ annihilation at TRISTAN/SLC/LEP
energics are studied in detail. Complete helicity amplitudes for the 2 — 6 process ¢ e~ — LL —
(v £, £33 1,f4) are given for arbitrary masses of final fermions and for arbitrary vector and
axial vector couplings. Methods to measure the L and »; masses, and the neutral- and
charged-current couplings of L in terms of four-jet and one-lepton-dijet final state distributions
are excuplificd. Signatures of heavy neutrino-pair production are discussed briefly. A straightfor-
ward method for caleulating arbitrary tree amplitudes with external fermions and vector bosons of
arbitrary masses is presented f{or completeness.

1. Introduction

Once the possible observation of the top quark at the CERN collider [1] is
confirmed, three families of quarks and leptons are completed, raising as our next
immediate question the existence of a fourth generation of fermions. A number of
authors have studied the consequences of fourth-generation quarks [2] and leptons
[3.4] mainly at hadron colliders, where identification of their signal is the most
important task. In e*e” annihilation experiments, however, we expect no difficulty
in detecting their production simply because the signal cross section constitutes a
significant portion of the total annihilation cross section. Here the aim of studies is
not the detection of signals but should rather be the determination of detailed
properties of the produced particles; their masses, spins and couplings.

In this paper we study in detail the signatures of heavy lepton pair (LL)
production in e*e” annihilation at TRISTAN, SCL/LEP-I, and LEP-II energies.
The produced heavy leptons are each expected to decay into a neutrino (v, ) and a
fermion-pair (ff*). The final state will thus contain six partons (v v f,f,f,f,) and
typical heavy lepton signals are dilepton (e.g. € tp¥), one-lepton-dijet, and four-jet
events with large missing transverse momentum ( p) due to the escaped neutrinos.
All these distributions depend crucially on the mass assumed for the neutrino »
and the charged- and neutral-current couplings of the heavy lepton. However,
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because of the missing neutrinos we cannot study the production and decay
properties of the heavy leptons separately in actual experiments,

This necessitates theoretical expressions for the exclusive 2 — 6 distributions with
a certain freedom to change mass and coupling assignments. [t is easy to calculate
the heavy lepton pair production (¢ *e~ — LL) cross section even with fixed heavy
lepton polarizations. It is also easy to calculate the L — v f,f, decay distributions
for a polarized heavy lepton. However, the final distribution is not simply the
product of these cross-sections because the two intermediate heavy lepton polariza-
tion states can interfere to give a non-trivial azimuthal angle dependence to the
L — v f,f, decay distribution with respect to the LL production plane. This is a
novel feature of future heavy lepton searches, where we will be forced to study its
properties near the production threshold as compared to the tau-lepton studies [5]
where sufficiently high beam energy (E, > 3m_) allowed to neglect any such
azimuthal angle dependence, even in the correlation studies [6]. Such interference
elfects between different polarization states of the intermediate heavy lepton can in
geaeral lead to non-trivial correlations among final particles near the threshold.
Since this inevitably destroys the factorization of the full 2 — 6 cross section into the
production and the decay parts, we should evaluate directly the 2 — 6 process cross
section, which requires substantial efforts in the standard method where polariza-
tion summed squared matrix elements are evaluated with the help of algebraic
manipulation programs, such as REDUCE and SCHOONSCHIP. A full calculation
was performed by Kiihn and Wagner (7] for the hadronic (7, p. A, 37) decay
maodes of 7 leptons. For fourth-generation heavy leptons, we expect jet production
to dominate their hadronic decays and the most recent calculation [4] of the squared
matrix clements assumes all the six final fermions to be massless and a V— A
charged current coupling, and it contains no y — Z interference effects, which is
clearly not sufficient for future ¢ ' e collider studies.

In this paper we present complete helicity amplitudes for the full 2 —» 6 process
with arbitrary final fermion masses and with arbitrary vector and axial vector
couplings of heavy leptons to charged- and neutral-currents. The full amplitude is
Just a product of the production amplitude and the two decay amplitudes summed
over intermediate heavy lepton polarizations. This factorization property of ampli-
tudes allows us to evaluate the basic 2 -2 and 1 — 3 amplitudes only, which is
straightforward with the method to be described in detail. Final results are very
compact and easy to evaluate numerically by computer. We show several distribu-
tions for three typical topologies (four-jet plus p, one-lepton and a dijet, and
dilepton plus p; events), in order to examine their sensitivities to the heavy lepton
couplings and the heavy neutrino mass.

Direct calculation of helicity amplitudes and their numerical evaluation has a
long history [8] but it is only recently that a number of approaches [9-14] appeared
as a result of increasing necessity to evaluate complex Feynman amplitudes. A
helicity amplitude, being just a complex number, is in principle straightforward to
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evaluate for an arbitrary Feynman diagram. Once we choose a particular convention
for spinor and vector wave functions, the helicity amplitudes are uniquely de-
termined. A marked property of our approach, which employs the Weyl basis for
helicity spinors and the rectangular polarization basis for vector-boson wave func-
tions, is its straightforwardness; no clever choice of bases nor particular techniques
for Lorentz contraction of two gamma matrices are required. Because of this
straightforwardness, our method leads to an almost unique expression for a given
Feynman diagram, which is a useful property when one checks the results obtained
by other groups. Final results can be expressed in terms of a simple quantity [12]

T(a“. b“)ap.

with (a,. B)=(+.+).(+.~).(—.+)or(—, —) which gives a complex number as a
function of two arbitrary Lorentz four-vectors. This quantity, which was first
introduced by Kleiss [12], replaces the role of the Lorentz contraction (the dot-prod-
uct) of two four-vectors,

a-b=a“b“,

in terms of which standard squared matrix elements are expressed. Once we set up a
routine to evaluate T(a*, b*) 4. then numerical evaluation of amplitudes is just as
straightforward as that of squared matrix elements. We believe that our formalism
has some novel features regarding its straightforwardness and we therefore present a
complete description of our method to evaluate arbitrary tree amplitudes.

The paper is organized as follows. In sect. 2, we explain the structure of helicity
amplitudes for the process e*e™ — LL — (v, f,{,)(7,[,f,). In sect. 3, we present our
method of evaluating arbitrary tree amplitudes with external fermions and vector
bosons. Sect. 4 gives analytic expressions of the production and decay amplitudes
with arbitrary external fermion masses and arbitrary vector and axial vector cou-
plings in terms of the quantity T(a",*),4. In sect. 5, we present some final state
distributions at representative e*e ™ collider energies and examine their sensitivity to
the neutrino mass and the heavy lepton couplings. In sect. 6, we briefly discuss the
signals of heavy neutral lepton pair production. In sect. 7, we explain how to use our
helicity amplitudes to generate distributions for arbitrary transverse or longitudinal
polarization of beams. Sect. 8 is reserved for conclusions.

2. Structure of the full helicity amplitudes

Within the standard model, production of a heavy lepton pair LL in e*e”
collisions is mediated by a photon or a Z boson in the s-channel. Subsequently L
(and L) decay into », (¥,) and a virtual W (or a real W if the heavy lepton mass is
sufficiently large). The Feynman diagram for the full process is depicted in fig. 1,
where the k's, ¢’s, p’s and «’s, 0’s, A’s denote the four-momenta and helicities of
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Fig. 1. Fevaman graph for production and decay of a heavy lepton pair.
the fermions. For fixed heavy lepton helicities o, and o, the amplitude of the full
process can be written as a product of three amplitudes .#, (i = 1.2.3) where .4,

describes the production of the LL pair, while .#, (.#,) are the decay amplitudes
of L (L). We can hence write the amplitude of the full process as

.v//=./,('(‘.~:. AI'A.’.' A»;‘ AJ.AS,A(‘)

=Dl.(qlz)[)l.(q.‘z) Z Z M (K Ky 0.0))

Bl
XH (o NN N D) A (0, A AN, (2.1)
where

Dx(qz)=[qz-miw‘-imxl'x] o (2.2)

denotes the propagator factor of a particle X with mass my and width I'y.

The amplitudes . #,, i = 1,2,3 have identical structure. They are all given by the
generic Feynman diagram of fig. 2, where the s stand for cither u or v spinors.
We use projection operators P, on right- and left-handed spinors

P,=1(1%v,). (2.3)
4, (py Ay Va (g Aa)
viq)

‘bb (Db,)\b) LDC (pc‘xc)

Fig. 2 Generic Fevaman graph for vector exchange between fermions,
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and right- and left-handed couplings g%“* as defined by the interaction lagrangian

P=e Y gVhy y'P, iV, (2.4)

a= +

with ¢ the magnitude of the electron charge. We can write this generic amplitude as

—e” ZD‘"(‘I) Z Z gZ“"gX“’ _.,Y,, Py, ‘PY.,Pp‘Pd (2.5)

a=+ =+

Here DY denotes the vector boson propagator. We choose the Feynman gauge for a
v propag y g
photon and the unitary gauge for massive vector bosons:

(-g*)D,(¢%) forV=y

DY (q) = ( . 9"q
_.g”+

. . (2.6)
—|Dy(q*) forV=W. Z

v

A complete analytic expression for J# ; is given in sect. 4. Each of the amplitudes
M, (i=1,2,3) arc then obtained from it by choosing appropriate couplings. These
expressions can easily be evaluated numerically and are then assembled to give the
full amplitude via eq. (2.1). The polarization averaged differential cross section is
then obtained by

1 6
dom 'zz(nz 2 e, ()
L’ K X LA,
with the phase space factor
P 6 6 d"p
dd, = (27)6% &k, + k, - , . 2.8)
= (27) ( b ,g,p)mq(2w)32E, (

For all heavy lepton masses m of interest, the width ' is always much smaller
than its mass. We shall hence use the zero width approximation

2y |2 7

|D(a®) =1De(q*) | =8(47 - m})

(2.9)

m '

for calculating cross sections. This together with the trivial overall azimuthal angle
integration reduces the original 14-dimensional phase space integration of d@, to an
11-dimensional one, which considerably facilitates the numerical work.
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3. Weyl basis calculation of helicity amplitudes

In this section we present a complete description of our method to evaluate
arbitrary tree amplitudes with external fermions and vector bosons. Throughout the
paper we employ the Bjorken-Drell notation [15] with only one exception for the
normalization of spinors to be explained below.

An arbitrary tree amplitude with external fermions can be expressed in terms of
the *“fermton string”

¢\ Paa,...a ). (3.1)
where ¢, denotes a generic four-spinor
g, =u(p,.A) or  vlp.A). (3.2)

with four-momentum p, and helicity A,

P.= (1 +ay). (3.3)

w

with a= 1+, and «* stands for an arbitrary Lorentz four-vector. a* may be the

four-momentum of a particle ( p*). a vector-boson wave function (e*( p,. A,)). an

axial vector &b a’afa], or another fermion string with uncontracted Lorentz

vpo

indices,

UaiPubiby .y b (3.4)

FFor all the spinors and gamma matrices we use the chiral representation where

u 0 o‘:) (3.5
e o 0 | ' )
s _ [ -1 0
= 3
Y ( 0 1)' (3.6)
with the 2 X 2 matrices
ot =(1.t0). (3.7)

Here o denotes the Pauli matrices;

e (L e AT R

Next we introduce 2-component Weyl spinors, () ,. via

_ (4’,) —= t +
‘L"(w,),)‘ vo={(¢)\ . (¥)") (3.9)
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and the 2 X 2 matrices (d) ,.

d=a,.y“=((a,0)_ (do)‘). (3.10)
or more explicitly
R VI u B
for arbitrary Lorentz four-vectors a*.
By using
¥.P = (0.(¢)"). (3.12a)
¥,P_=((v.)'.0). (3.12b)

it is casy to sce that the string (3.1) is now replaced by a new string in terms of
2-component spinors and 2 X 2 matrices;

VP ddy o d= (W) as a7 (8) s (3.13)

where
laay..ia,]"=(d) (d)) .- (d) 5.0 (3.14)

with
8,=(~1". (3.15)

If one starts with Feynman rules in the 2-component spinor basis, then one directly
obtains an expression of the form (3.13).

At this stage, we will in general have contractions of Lorentz indices between
different spinor strings (repeated indices within the same string do not appear at the
tree level). We get rid of these repeated indices by using the Fierz identities [16],

(0’;)11(03;“)“:281/8A/’ (316&)
("“x)'/("rp)“=2[8:,5u—8,/8“]- (3.16b)

where the spinorial indices i/, j, k and [ take two values 1 and 2. By denoting a
product of the 2X2 matrices of type (3.14) generically by {s,], an arbitrary
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contraction i1s done by one of the following two rules:

(Wil don (521002 - (93) s3]0z L5u](0) s

=200l s 100D 5 (030305102 1092 (3.17a)
CANENLITES (TR PN M ES LIRER (EA P

=2(4)8 (i Ils2 0 () () s [sa s D) s

=2y )N a1 (83) 5 (W) U I J(wa ) (3.17b)

By repeated use of the above contraction formulae. we end up with & product of
spinonal strings of the form

t " ’
(¢ ) layoas.. . a, (9'/,),,- (3.18)

where none of the four-vectors «f represents another string. We can hence evaluate
the string (3.18) independently.
For this purpose we use helicity eigenstates x . (p)

o.p
—xalp)=Ax\(p) (3.19)
I
as our basis for free spinors*
ulp A)=w \(p)xalp). (3.204)
"(/"A)»=i’\w:/\( [’)x ,\( /’). (32(”\)
with
w, (p)=(Et|p)" " (3.21)
and
Silpt+p.
- L2
x.(p)=[2pllpl +p.)] (/,‘ vip ’ (3.22)

(3.22b)

.y ~;\+1;|
x (p)=[2lp1lip) +p.)] "‘( AR

lpl +p.
for an arbitrary momentum p*=(E. p)y=(L. p.p..p ) with |pi t p + 0. When
* Our spinor basis (3.20) satisfies the usual charge conjugation relation [18], r(p Ny ¢ g pl )

with C =iy y". We thank H. Baer and X. Tata for making us aware of the advantaze of this
convention when dealing with Myjorana particles.
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p.= —|p}. we choose the convention
X‘(")=((1))' (3.232)
x-(n=("4). (3.23b)

The free spinors (3.20) satisfy the Dirac equation ( p* = m?)

p.ulp N =mu(p.A)z. (3.24a)
p.e(pA),=~mo(p. Nz (3.24b)
and are normalised as
a(p. Nu(p.A)=2m. (3.25a)
p.Nye(p.AN)=-2m, (3.25b)

which differs from the Bjorken-Drell convention [15]. Because of this normalization,
we can use the same phase space factor (see ¢q. (2.8)) for fermions and bosons.

The formulae (3.20)~(3.23) completely fix our convention for spinors. The most
important point is that we express the spinors entirely in terms of their four-
momentum in a given frame. Helicities are defined in this particular frame and we
should evaluate all the four-momenta in the same frame, a natural choice ine'e
collistons being the ¢’¢  e.m. frame.

We can now evaluate the spinor-string (3.18) unambiguously in terms of the
fermion four-momenta pf, p/ and the other four-vectors af:

=Clqwuk,(pl)wﬂ)\,(p/)s( pl‘ul """ an‘p/);\',.\" (326)

where the coefficients C, and C, depend on whether the spinors ¢, and ¢,
correspond to a fermion or an antifermion,

Cﬁ{l for (), =u(pi.Ai), . (3.27)

=AgT for(\P/\)f:U(p/\'—A/\)?'

These coeflicients govern the crossing relations of fermionic amplitudes as exem-
plified in the next section. The term S on the rhs. of eq. (3.26) is uniquely
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expressed as
S(p:'al""'an‘ P/):,)\,:X;,(P:)[al “““ an]nxl\‘(p/)' (328)

Our convention is that a subscript A, corresponds to the helicity for a fermion. but
to the negative of the helicity for an antifermion. This quantity S. which gives a
complex number as a function of (n + 2) four-momenta and of three two-valued (+
or —) indices. is the basic quantity in terms of which all the amplitudes should be
written. A small algebraic effort to express amplitudes in terms of § as explained in
detail in this section not only helps to compare results of different authors but also
drastically improves the efficiency of numerical evaluations. A direct numerical
evaluation of an amplitude written in four-spinor basis and with Lorentz contrac-
tions of different fermion strings is not only technically involved (and may thus
casily lead to mistakes) but it 1s also numerically inefficient.

It is easy to set up a routine to evaluate the complex number § in eq. (3.28). The
maost straightforward method, which is valid for arbitrary complex four-vectors af.
is to evaluate the 2 X 2 matrix multiplications recursively by introducing a series of
complex two-spinors x; (k=1,..., ny:

Xn= (dn) 5,,uXA,(/’,)~ (329‘l)
X =(a;) soaXko fork=1...., n-1, (3.29b)
S(p,oaja,..... Ao PN, = xi( PIX - (3.29¢)

If all the participating four-vectors are real
(at)* =af. (3.30)

then we can express S entirely in terms of scalar quantities. First we observe the
identity
(a),=(a)rx. («)x"a) +(a), x (a)X' (a). (3.31)
with
(a),=d" % |a| (3.32)

for an arbitrary real four momentum o* = (a’, a) =(a". a . a,. a.). By replacing all
the 2 X 2 matrices in [a. d,..... a,]® via

(al.) 5‘u= Z (“L)‘.5‘1‘)(1-‘(“1\))(1‘(“;\% (333)

-
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we obtain the final expression:

S(p:'al'al """ a, p/ [I_I Z (al\)ut“r‘]r(pl l))\,flr(al'al)f‘f:

=l g =y
-T(a,_y.a,), . Tla,.p), - (3.34)
Here the term T denotes the scalar quantity
T(a.b)ap=x5(a)x4(b). (3.35)
which can be expressed explicitly as
T(a.b) .= N;'[(al +a.)(b) +8,) + (a,~ia )b, +ib,)] . (3.362)

T(a.b),_= Nu‘,,'[ —(lal +a,)(b,~ib,) + (a —ia,)(b] + b:)] . (3.36b)

T(a.b) ,=—T(a.b)’ _. (3.36¢)
T(a.h)H=T(a.h)‘I“ (3.36d)

with
Nop=2(lal(la] +a,)BI(1b) +5,)]"". (3.37)

We observe that these are just the spinorial products introduced first by Kleiss [12],
which is by no means surprising because our Weyl spinors can be identified with the
massless four-spinors used in ref. {12]. These spinorial products satisfy

T((l.h)‘,,;= T(b.u);... (338)

If one of the three-vectors a or b, say a, is along the negative z-axis, one needs a
special treatment according to our convention (3.23);

T(a.b),,=[216](b| +b,)] "'*(b +ib,). (3.39a)
T(a.b),.=[21b](16] +b.)] (16} +b.), (3.39b)

and the relations (3.36¢) and (3.36d) remain valid. The expression (3.34) is particu-
larly useful in two cases. If most of the four-momenta are light-like the conditions

(a,).=0 il al=a,) (3.40)
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get rid of most of the summations over 7,.7s, and if the number of 2 X 2 matrices (n)
1s small, very simple expressions arise. For n < 2 we obtain

S(P.A)re=T(p. k). (3.41a)
S(poa.k)= X (a)_o.T(p.a)\T(a. k),,. (3.41b)
S(poa.b k)= 2 L (4) o(B)aT(p.a)yT(a.b),T(b. k). (3.41c)

tT=+ p= ¢

In our particular example of heavy lepton pair production and their decays, we
encounter 7 =0 and n =1 cases only and all the final results are expressed directly
in terms of the quantity T instead of §S.

For completeness we add two general comments regarding our formalism even
though we do not need them for the problem at hand.

() Strictly speaking, we should assign a number (real or complex) to the quantity
w , ( p) appearing in eq. (3.26) only for the on-shell momentum

p'=E=pi2+m?)'" (3.42)

As exemplified in the previous section, it s still possible to combine two amplitudes
with a common fermion leg via

Y [(p N4 [(p ). D(p?). (3.43)
A

interpreting the fermion now as an intermediate state. Once this intermediate state
gets virtual, however, the @ ,(p) can no longer be well defined, because their
products must satisfy the following conditions,

w ., (plog(p)=m, (3.44a)

w,(ple (p)=p"xipl=(p). . (3.44b)

This convention is needed in order 1o obtain the correct propagator factors in 4 X 4
notation:

Sulp. Nl p.A)

A

Z( (P)er(p)xalp)xi(p) w y(plo A(p)xalp)Xi(p)
v aa(plax(p)xalp)xip)  wp)e ((pixalp)xi(p)

= (’:” ,:'; ) =p+m (3.45)
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and similarly for antifermions. When dealing with virtual intermediate fermions.
only the product #,.#, is defined in eq. (3.43). which is expressed in terms of §'s
and the assignment (3.44). This point is important when finite width effects have to
be considered. Since we are working in the zero width approximation. we need not
worry about this point.

(i) In order to take advantage of the simple formulae (3.41) and (3.34). all the
four-vectors. in particular all the vector-boson polarization vectors should be real.
This prevents us from using the helicity basis for vector bosons unless we express
the polarization vectors entirely in terms of other momenta (as in the CALKUL
basis [11]) which is just an unnecessary complexity in our formalism. We thus
choose a rectangular basis {9] for our standard vector-boson wave functions. Just as
the spinors in eq. (3.22). the polarization vectors are expressed entirely in terms of
vector-boson four-momenta,

k"=(£.:‘k‘,.kr.k__). (3.46a)
E=[k]>+m?]'". (3.46b)
ke= {607+ (k)] (3.46¢)
as follows:
ek A=1)=(klk¢) '(0.k Kk, k k.. —k%). (3.47a)
ek A=2)= (k) (0. =k, . k,.0). (3.47b)
e (k N=3)=(E/mk\|k|*/E.k  k,.k.). (3.47¢)

It is casy to verify the following identities, satisfied by the above polarization
vectors,

k,e*(k.A)=0. (3.48a)

g (k. N)er(hk. N)=-8,,. (3.48b)

Massless vector bosons have only two polarization states, A =1 and 2. on their
mass-shell. Helicity eigenvectors are expressed as

(kA= 2)= /L [Fer(k A=1)—ie"(k.A=2)]. (3.49)

Hence whenever one needs helicity amplitudes. they are obtained from our standard
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amplitudes via

H({kA=2). )= [Fa({(kA=1)..) - ik ({k.A=2}....)]. (3.50)

4. Analytic form of production and decay amplitudes

We are now in a position to express the amplitudes .#,, i =1,2.3 of eq. (2.1) in
terms of the quantities w and T introduced in the last section. In order to be able to
treat t- and b-quarks in the final state as well as a non-negligible mass of » , we
allow all the fermion masses to be arbitrary.

By contracting the vector boson propagator factors, and by using the Fierz
identities. eq. (3.16). the generic amplitude (2.5) can be cast into the form

H=2LD(7) L X gy
"

a=+ fi=1+

X {Bun [ ($)2080) - (PR = (B0 ) (OR8]
8, w¥ ) (¥a)s ($a(44),

- EFV(‘;‘U):(‘II).-(‘I’/,)‘.'(‘P( ):«((l)/l(\lx/)/f}'v (4.10)

with

0 forV=y,

= ) - (4.1b)
1/my, forV=W,Z.

€y

The term proportional to e, survives only when the massive vector boson couples
exclusively to non-conserved currents and is non-negligible only for the L — » b
decay in the present example. With the help of egs. (3.26) and (3.41), we obtain the
standard form of the generic amplitude

M= 2"22 Dv(‘lz) Z Z g(‘."‘"g;‘f""wux“( pu)wu)\h( Ph)“’m‘( P, )w/,)u( Pa)
v

a= ¢ A=t
X Co{ BupT(Pue Pa)r AT (s PN A,
(8, p= 8, ) TPy PIANT( P PL) AN,
—4eyS(Pu- 4 PAINAS P PN, ) - (4.2)

where the factor C; = CC,CC, is determined by the crossing property of each
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process via eq. (3.27) and turns out to be

aBk 0, in A,

Co=1{ —BA, in A, (4.3)

- Bo,A A, in 4,
This general expression suffices for determining all three amplitudes. The relevant
momenta, helicities, and the standard model couplings to insert for each process can
be inferred from table 1. One merely has to observe that for antiparticles helicities
are reversed in the generic amplitude (4.2) (see eq. (3.20) and table 1).

In the following we show more explicit formulae for the process by choosing the
standard model couplings (table 1), neglecting the electron mass, and by using the
physical helicities for antiparticles to demonstrate our notation clearly. More
general cases can easily be inferred from the generic formula (4.2).

In the heavy lepton decay L — va_zf}(_/{z). only the W boson is exchanged with
left-handed couplings (a = 8 = ~) to fermions. Furthermore, we can simplify the
last term in the generic expression (4.1) by making use of the Dirac equations (3.24).
The result of the substitution reads

Hi(qoppeii=1.2.3)

= 8""“Dw(( P2t Py )l)g\_v,, L&'wm'A 2

X{w,,(q.)w sy (p)e \ (py)

X [T(I’l-‘ll)x,.o.T( Py P2\, AT T(pi. I’z)A..fA_»T( P3~‘11)A..a.]
1

2
2my,

[’”L‘*’ —x,( I’n)“’a,(lh) - "'1‘%,( p)e va,(‘h)]
x ['"2“’-A,( pr)w_y,(p3) +mywy (py)w, ( P.\)]

XT(Ph‘ll)A,.a,T(Ps-P:)Ah-x,}. (4.4)

where a=e¢?/4n, m, =m,., my=m, my=m;. In most cases of interest this
amplitude can be simplified significantly. First, the expression (4.4) makes it explicit
that the latter term proportional 10 1/m3, is important only when m,/my, or
m,/my is non-negligible, i.e., for the L — v tb decay only (if fourth-generation
quarks are heavier than L). Second, the relation

lim w,(p) =8, 125" (4.5)

p-—0
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Taste 1
Coupling constants and spinors to be inserted in the generic amplitude (4.1)
in case of LL production (-#,), L decay (.#;).
and L decay(.#,)

Generic case M, A, M,
LAV e(ky. —x;) u(pr A tgs. = 0)
Vil PhAp) u(k,. x) u(q.. 9) reps. —Ay)
v(p.A) u(q,.0)) ul( py. Ay u( ps. As)
Valps-Ay) v(q:. — o) elpa. Ay P = Ay)

Vub_ Vid -1 Y 0 0
SR tanly 7

_l Y

Vah Viod ! inS ! !

gh= g ~:+Slﬂ"9w ~ =

- - 7 V2siny, V2sindy,

sinfy cos 8y,

reduces the number of non-vanishing amplitudes whenever a light fermion exists.
Henee if the condition

ki 2 A
mi,.omi < my (4.6)

is satisfied, the formula (4.4) reduces to

47 =
,//2=———sil]20 D ( (py+py) 2\//) r. @ o lg)e \(py)

X[T(I’1~‘I|)A,.a,7‘(l’,\vI’z) ‘T(l’l'l’z))\., T(py.qy) Anl]~ (4.7)

which still mmrporau.s exact m, dependence.

The amplitude for L decay is l'(.ldlt.d to eq. (4.4) by the crossing relations given in
table 1 and by the property (3.38) of the T''s: Up to the overall phase factor given in
eq. (4.3) it is obtained from eq. (4.4) by the substitution

(g0 pi AP Ay pa ) = (gh, =000 pac = At ps. —Agi p. —A,) (4.8)

and by taking the complex conjugate of the full amplitude except the propagator
factor Dy,. In the simplified case where [y and f, masses are negligible, we find

exphicitly
d7a ,
My = an0 DW(( Ps +P6)-)2VP;)P:5A(. 8y vw, (ga)wy (pi)od
w

X [T(qy. pa) oy 2 T(Psepe) = T(ps.ps) . T2 ps) o |- (49)
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Neglecting light fermion masses is even more justified for the production ampli-
tude (.#,) fore*e” — LL. In the m_= 0 limit it is given by

M(ete = LL)=#,(k, i=1.2)

i l l

= —8ma2 °k°6,‘ —« K20, Z Dv(S)g

Ve=y.Z

X{[ 8¥ 00, (41 00 0,(42) + 850 4, (1) 00,(42)]
XT(k1.qy) -, —0. T(@1 K)oy — 88 000 (41) 04 0 (42)
XT(k3 ki) aee T(01 1)y, o, - (4.10)

When working in the e* e~ c.m. frame the last term in eq. (4.10) vanishes identically.
This happens because

T(k.‘.'kl)Ax:.xl

cm e =X (=K )X (k) =0 (4.11)

by virtue of the orthogonality properties of helicity eigenstates. It should be noticed,
however, that dropping this term spoils the Lorentz-covariance of the amplitude.

In the calculations performed for producing the graphs of the next section we have
made use of the zero mass approximation for the decay products of virtual (or real)
W’s. It is amusing, however, that the complete expressions, including all mass
effects, can be written down so simply.,

5. Heavy lepton signals

The expressions derived for the amplitudes in the previous section can easily be
evaluated numerically and assembled to give the complete differential cross section
da/dd,. We have written a Fortran program for this purpose, which then uses the
Monte Carlo integration routine VEGAS {17] in order 1o perform the 11-dimen-
sional phase space integral.

The program was checked as follows. First the Lorentz invariance of do/d P, was
verified numerically. Second. it reproduces some well known quantities, the total
cross section, the heavy lepton decay width and the heavy lepton polar angle
distribution. Further qualitative tests were made by reproducing the distribution
given by Baer et al. [4]. Numerical efficiency of the algorithm is found satisfactory:
on an IBM 3081 various distributions are generated with 103 phase space points in
6 CPU minutes of which more than ! is used to set up phase space and fill numbers
of histograms.
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Heavy leptons. once they are produced, will either decay leptonically into
vve, viu, vo1 or hadronically into »ud, »Cs with ratios 1:1:1:3:3. Decays into vtb
are neghgible at TRISTAN or LEP/SLC energies: a 45 GeV heavy lepton has a
branching fraction into »tb well below 1% even if optimistic values like m, =
30 GeV, m, =0 are assumed. This s not true any more for LEP II energies: the
decay products of a heavy lepton pair with m =90 GeV may contain a top quark
with more than 30% probability if the top mass is low enough. In the following we
will not consider the »tb decay mode of heavy leptons and hence some exercise on
its effects should be made at LEP Il energies before a more realistic confrontation is
made. Likewise, we do not study the effects caused by 7 decays. Its leptonic decay
contaminates the e + dijet and p + dijet signal in the low lepton energy tail. Cuts in
final lepton energy can easily make the 7 contribution negligible. Its hadronic decay
produces a single very narrow jet as opposed to dijets from direct heavy lepton
decay and should easily be distinguished. Anyway. it is a straightforward exercise
[18] to implement polarized 7 decay distributions in our algorithm.

The observed signals of LL production can be classified according to their jet
content:

(a) LL = v, 7,q,4 404 resulting in 4 jets + missing momentum,

(b) LL = ¢*q,3, + 3 neutrinos resulting in a dijet + charged lepton + missing
momentum signal.

(¢) LL = £'¢’ + neutrinos  producing an opposite sign  dilepton + missing
momentum signal.

The probabilities of the three classes are roughly 44:35:7 when 7 leptonic decays
are included. The common feature of all the LU decay modes is missing four-
momentum carried away by the neutrinos. This together with the charged leptons or
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a [ )/ ;
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Fig. 3. Missing p ¢ distribution fore" ¢ — L L =4 jets + 2 neutrinos at ) =35 GeV,om =091,
The effect of a non-zero neutrino mass is shown: m, =0 (dashed line), m, = 03m (solid line).
m, = 0.5m; (dash-dotted line).
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Fig. 4. g distribution fore*e” = L L~ =2 jets + p* + 3 neutrinos. £,. my and m, are chosen as
in fig. 3.

multijets will give a very clean signal for heavy lepton production within the
standard model. In figs. 3 and 4 the resulting distributions of missing transverse
momentum ( p) are shown for a beam energy E, = 35 GeV. a heavy lepton mass
my =0.9E, and three values of the v mass: m, =0,0.3m.0.5m,. Fig. 3 shows
the p, distribution for 4 jet + p . events while [ig. 4 is for 2 jets + p* + p¢ cvents:
due to the additional muon neutrino the class (b) distribution (fig. 4) is somewhat
harder than the one of the class (a) (fig. 3).

In figs. 5 to 7 the missing energy ( £) signal is shown for 4 jets + p events at three
different energies: £, = 35 GeV, 46.5 GeV = Lm,, and 100 GeV respectively. Again
we have chosen my =0.9E, and the m, =0,0.1m,0.3m,0.5m curves are given.
Obviously the £ distributions are much more sensitive 10 2 non-zero neutrino mass
than the pp signal: observation of m, #0 appears to be possible down to
m, =0.1m at E,<my. While the E-distributions are very similar at £, =35
GeV and E = !m, (this actually is true for all the distributions shown in figs.
3-10), a much higher sensitivity for m, # 0 is obtained at £, =100 GeV, m; =90
GeV (fig. 7). This sensitivity is simply a consequence of the fact that a 90 GeV
heavy lepton predominantly decays into a real W plus a v, if m, is small enough.
At m, =8 GeV already, the threshold for the L - »,W decay mode is crossed,
resulting in a very strong m, dependence of differential cross sections. It should be
noted that the £ distributions are more sensitive to the QED radiative corrections
than the p distributions due to the emission of collinear hard photons in the initial
channel. Realistic confrontations of the £ distributions with experiments should
include the radiative effects as well. Here we show qualitative trends in order to
examine what could be achieved in actual experiments.

At LEP/SLC and TRISTAN energices, a high sensitivity for a non-zero neutrino
mass is also found in the dijet energy and dijet invariant mass distributions for the
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Fig. 5. Missing energy distribution for the 4 jets + 2 neutrinos decay mode of LL at £, =35 GeV,
vy = 09F, The curves are for m, =0 (dashed line). o, = 0.1m; (dotted line), m, =0.3m; (solid
line) and m, = 05m; (dash-dotted line).

process ¢'e = L'L = p' 42 jets + 3 neutrinos. In figs. & and 9 they are given
for a machine operating at the Z mass assuming m = 0.9£,. As mentioned carlier
results for TRISTAN are very similar.

In fig. 10 the p — e invariant mass distribution is given for the process ¢te ™ —
LL—¢'p¥+4 neutrinos at £, =35 GeV, m =09F, and m, =(0.0.1,0.3,
0.5)m . Sensitivity of this signal for neutrino mass measurements is not as high as in
the dijet energy and dijet invariant mass distributions, and furthermore the m

.
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Fig. 6. Same as fig. Sbut for £y = \m,.
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Fig. 7. Samw as fig. 5 but for £, = 100 GeV.

distribution will be affected in the lower mass region by the 28% contamination of
secondary muons or electrons arising from the t decay modes.

So far we have assumed the mass m of the heavy lepton to be known. The
casiest and most precise way to measure it will probably be to follow the threshold
behaviour of the ratio

o(c'e =~ LL)

o(e’e —»p'p)’

(5.1)

IT 2m is between TRISTAN and SLC/LEP-I energies, a method for measuring m
at fixed beam energy £, = {m, is advantageous. Due to the almost axial coupling
of Z 1o standard charged leptons the ratio R is proportional to 8% due to the P-wave

2-5 [ T v 1 ¥ [ LA I T 171 r‘]’ T U7 T l : LRI -
- e*e e U Lepte2jetsep
-~ 20~ P Ep =mz/2 3
2 F / ‘~‘ my =09E, 3
2 15: | ]
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St .
g 10E- 'E
b o . 3
© QSE— ) S i N =
i /7 = {05 03 01N\
00 N /4 L' pa s S
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E” LGeV]

Pig. & da/dk, for ¢'c —L'L —p' +2 jets+3 %5 at Ey=lm,. m =09F, Choice of
neutrino masses is as in fig. 5.
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Fig. 9. Dijet invariant mass distribution for £, = Ym, o m = 098, m,, = (0.0.1.0.3.0.5)m .

production. and measuring the LL production cross section allows a rather precise
mass determination [4]. This method s of course very much dependent on the
assumption of standard couplings of L to Z and W *, and a complementary method
is highly desirable. Here we suggest determining the dijet opening angle in the
LL =2 jets + ¢+ p decay mode which measures the boost factor of the dijet
system from the ‘L rest frame to the lab. frame. Figs. 11 and 12 show the resulting
distributions for m =40,41.42 GeV and m = 29,30 GeV respectively, For both
figures Ey=im, and m, =0 was chosen. Fig. 11 clearly reflects the strong B’
threshold dependence, but at the same time the change in dijet angular distribution
is apparent, This increase of dijet opening angle with increasing iy is even more
pronounced in fig. 12.

[ LR LR I T 17T T l TP T I T 1T 7171 I T 1 771 ]

., 0020 N e*e = leptetep ]
(&) - E \ =315GeV -
S 0015 7 ' M= Tiobe -
Q - 4
% o ]
z -/ 5
b [/ ]
© 0.005:# ; -
7] B

,“ -

00 . el 1|
0 10 20 30 40 S0
mue[GeV]

Fig. 10. ¢ ' p® invariant mass distribution for the process ¢’¢ —L'L —c*p’ +4 neutrinos at
Ey =35 GeV, my = 0.9F, . Neutrino masses are chosen as in fig. 5.
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Fig. 11. Distribution of dijet opening angles for E, = 1m, m, =0 and for mg =42 GeV (solid line).
41 GeV (dashed line). 40 GeV (dotted line).

The distributions shown so far are to a large extent given by kinematics, which
seems to be sufficient to identify LL events, to measure neutrino masses etc. In
order to get a handle on the dynamics and in particular on the V, A structure of the
heavy lepton’s couplings, angular distributions have to be analysed. The V, A-
couplings of LL to Z determine the heavy lepton’s polar angle distribution. As a tag
on the direction of L, the direction of its decay muon or electron can be used. The
resulting polar angle distribution of g™ with respect to the ¢ beam is shown in fig.
13 for standard model couplings, at E,=ym,, m =09E, and m, =0. It
reproduces the angular distribution of its parent heavy lepton (the solid line in fig,
13) rather poorly, because LL production too close to the threshold is considered.
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Fig. 12. Same as fig. 11 but for m = 30 GeV (dashed line) and nr = 29 GeV (solid line).
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Fig. 13 Polar angle distribution of the decay muon in the process ¢'¢ = L'L —p" +2 jets +3
neutrinos at £ o= i""/ for my =098, m, =40. The svmbols indicate the error of the Monte Carlo
integration. The solid line shows the cos @ distribution of the parent heavy lepton,

Nevertheless it should be possible to determine the heavy lepton forward-backward
charge asymmetry this way.

Usc of the total momentum of the dijet system recotling against a p ' or ¢’ allows
for a much improved L polar angle distribution. Because in the decay L— v q,q,
only the neutrino v remains unobserved, kinematics allows us to determine the
magnitude of the component of the neutrino momentum perpendicular to the dijet
momentum, pp, once an upper bound on m, has been set. Denoting the vy
momentum by p, and the dijet momentum by p, + p, as in fig. 1 we indeed find

p-(py+py) =(E, - E“)E“+ lj('"i'*"”il —mi). (5.2a)
pf=(Eh—-E“)'—mfl . (5.2b)
and
p-(py+py)
Pl =P — _'——T(P1+PJ)
(P2+PJ)
, (I’l'(l’:*’l’s))- v

= I’f— ) Y (5'3)

E,‘l m
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Fig. 14 Polur angle distribution of the dijet system in the process ¢ =L L = p' +2 jets +3
ncutrinos. Parameters and symbaols as in fig. 13.

can hence be determined experimentally for each event. Since the dijet direction is a
good measure of the heavy lepton direction if jp ] is small, a cut on

n=\purl/Ey (5.4)

will considerably improve the correlation between dijet and L angular distributions,
as is clearly visible in figs. 14 and 15. The price to be paid for the n<0.2 cut is a
loss in statistics by roughly a factor of 3.

While the dijet angular distribution (with respect to the beam axis) is sensitive to
the V, A structure of the production amplitude, the correlation of light lepton and
dijet directions can distinguish between V + A and V — A coupling of the (¢ L)
doublet to W *_ This is because the L™ and p~ momenta prefer to be aligned when
both couple to left-handed weak currents, while the u~ will rather go backwards to
the L™ momentum, if the parent L™ has V + A coupling to W ™. The efiect is clearly
visible in fig. 16.

A p or e going in a direction opposite to its parent, will on the average have a
lower energy in the laboratory than a lepton arising from a left-handed L. Figs. 17
and 18 show the difference between V + A coupling and V — A coupling for the
muon energy and the dilepton mass distributions. Distinguishing V + A from V — A
appears to be straightforward and it also should be possible to determine the vector
and axial couplings to the W individually.
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neutrinos for V — A (solid line) and V + A (dashed line) coupling of Ly, to W
and m, =0 were chosen.,

b= ;m,_, i =095,
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Fig. 1%, Dilepton mass distribution fore*c¢ = L*L = ¢ u® + 4 neutrinos. Parameters and couplings
as in fig. 17.

6. Heavy neutrino production

The expressions derived in sect. 4 for heavy charged lepton production and decay
amplitudes can directly be used for massive neutrino (N) production and decay: it
suffices to replace the heavy charged lepton couplings by the appropriate neutrino
couplings. In particular g™ =0 in the production amplitude, and in the decay
N — 7 +(virtual) W " a mixing angle Uy, has to be introduced. If N is a Majorana

particle, N and N have to be treated as identical particles. The production
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amplitude is then obtained from eq. (4.5) by choosing appropriate couplings and by
antisymmetnizing it in (g,.0,) and (¢,.0,).

Determining the properties of a heavy neutrino will actually be easier than for a
charged heavy lepton. This is so because more of the final state fermions will carry
charge. the dominant decay mode usually giving two charged leptons and four jets.
If the N mass is sufficiently small and/or if the mixing angle Uy, is tiny it may
even be possible to determine the N lifetime from its decay in flight.

If there exist large flavor changing neutral current couplings between neutrinos

ZNMN: a5 in some models with mirror fermions [19]. then different mass neutrinos
can be pair produced and their decays can proceed via both charged and neutral
current. Our general formula with arbitrary mass and couplings will be most suited
to study the consequences of such models.

7. Polarized beams

It is clear that longitudinal polarization of the colliding e "¢ beams will be very
useful for a detailed study of electroweak theory, Transverse polarization of the
beams is not only necessary to establish the longitudinal polarization but it can, in
itself, be useful for probing non-standard (scalar [20] or magnetic [21]) couplings of
clectrons, In practice. the beam polarization will be only partially longitudinal and
partially transverse.

The hehicity amplitudes given in sect. 4 can be used directly to produce cross-see-
tons for longitudinally polarized beams. For arbitrary polarization direction we
follow the notation used by Olsen et al. [22]. We describe a general state of partial
or complete polarization of the ¢ and ¢ beams by the polarization vectors

sh=P08 )+ PY(p I E L) /m, (7.1)
where § | are unit 3-vectors perpendicular to the beam directions p, and p . P!

denote the degrees of transverse polarization and PL the degrees of longitudinal
polarization and they are bounded by

o =[Py ()] s (12)
We introduce
cos{,=Pl/p, . sin{,=P"/p, (7.3)
in order to obtain the unit space-like 4-vectors
n* =sin{,(0.5,)+cos¢ (p | E.p.)/m. (7.4)

which define the projectors onto spinors desceribing electrons and positrons polarized
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in the e .n, (e, =+ or —) direction:

u(p_.e_n )= (1+e_ysmn )ulp_.e_n_). (7.5a)

v(p..en )=t +e ysn,)e(p,.e,n,). (7.5b)

It is straightforward to expand these spinors in terms of helicity eigenstates

_ u{p_.A) '
u(p_.}\)—(m(p‘.”). {7.6a)
e (piiA)
U(p*.)\)—(lu(p“A)). (76b)

defined in eq. (3.20). In the massless limit (s — 0) we find

cosi sinyf_e'" )(u(p_‘.+))

—sinlf e costt ulp_.-)

ulp_.n) ) )
(“(I’A-—n‘)) —;U, .A“(P.;.)\)—(

(7.7a)

cosis, sin{f, ¢ "")(v(,).,+))

—sinif, e cos it o(p,.—)

( vip) )=ZV. w(p..x)=(
) N .

o(p,. ~n,

(7.7b)

The phase factors exp(ia,) are given by the orientation of p, and § , in the
coordinate frame. To be specific we choose
p,=(sinf cos¢ ,.sinf ,sing ,.cosb ), (7.8)
siny ,sing , +cosy ,cosd coso,, ’
§,=| —siny ,cosé, +cosy ,cosf sing .| | (7.9)
—sind ,cosy ,

then we find
a,=¢,—y,. (7.10)

We can now relate arbitrary polarization amplitudes to helicity amplitudes. For
an arbitrary process e'e” = X we use .#, , to denote the amplitude for an
electron polarized in the €_n_ and a positron polarized in the €, n, direction and
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H(k,.x,) for the corresponding helicity amplitude (treatment of final state polar-
izations s implicit in the sequel). From eq. (7.7) we find

H,, = Y L AT A (7.11)

K%z

The polarization vector s . in eq. (7.1) describes ¢ * beams polarized with probabil-
ity W(1+p,)in n, direction and probability (1 —p,) in —n_ direction. The
polanzation weighted squared matrix element is therefore

Yiapr= Y M+ep ) (1+e p )4, , |

pol boE, =

= ¥ N AT N T ARN AV ISV A

L RLYL ¥

1%

and the polarization matrices P * are given by

~
i

[ I+Pl' prcm )
xiny )3 U, Hl+ep ), M=§(I’T mo - pt ) 74
c _ pl

¢ =4

‘

1 + I"" I)I‘L' o,
! . (7.13b)
I)" C“" l - I) [‘,

\
T
[

AnG Z l/-ntr,[‘(l+f‘p‘)l/r,nf.=£'

[
In many applications, and in particular for LI production, the refation

MKy k) =0, MK =K (7.14)

holds, when the electron mass is neglected. In this case eq. (7.12) can be simplified
further to read

S = X () =k P M (k) =N, (7.15)

pol Ky, K|
with
yoo_ (PR (I=PY) PPl e

L
LYLT! 4 PTPT;C ala w, ) (l — l,lj)(l + [,E) .

(7.16)
which, together with the helicity amplitudes presented in sect. 4, allows to study LL
production for arbitrary beam polarizations. For the special case p, = (0.0, F1)
and §,=(0, £1.0) (where the colliding beams run along the z-axis and the
transverse polarizations are along the y-axis), one obtains @, = + {7 in ey. (7.10)

and accordingly the two phase [actors of eq. (7.16) are both — 1.



K. Hagiwara, D. Zeppenfeld / Heary lepton production 3
8. Conclusions

We presented helicity amplitudes for heavy lepton pair production (including
their three-body decays) in e*e¢” collisions with arbitrary vector/axial vector
couplings and with arbitrary final fermion masses. The amplitudes are cast into a
form which makes their direct numerical evaluation efficient. By studying four-jet.
dijet plus single lepton. and dilepton signals, we exemplified the measurement of the
couplings, of the associated neutrino mass, and of the heavy lepton mass itsell near
the threshold at TRISTAN, SLC/LEP-1. and LEP-11 energies. We commented on
the use of our amplitudes for studying heavy neutrino pair production signals and
for studying polarized beam effects.

For completeness we presented in sect. 3 a self-contained description of our
method to evaluate arbitrary tree amplitudes with external fermions and vector
bosons. The method requires minimal algebraic manipulation in the Weyl spinor
basis which feads to a unique standard expression of the amplitude. whose form
allows its efficient numerical evaluation. [t gives a general prescription: no clever
choice of polarization vectors, no trick for gamma matrix contractions nor special
treatment for massive fermions are required. One of the key features of our method
is that we express the wave function of a fermion or a vector boson in a given
polarization state in terms of only its own momentum in an arbitrary Lorentz frame.,
Because of this the full polarization amplitudes are expressed in an arbitrary frame
and the Lorentz invanance of the polarization summed squared amplitude provides
us with a very non-trivial check of the overall caleulation.
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