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An efficient description of all clusters contributing to the strong coupling expansion of the 
mass gap in three-dimensional pure Z 2 lattice gauge theory is presented. This description is correct 
to all orders in the strong coupling expansion and is chosen in such a way that it remains valid in 
four dimensions for gauge group Z 2. Relying on this description an algorithm has been con- 
structed which generates and processes all the contributing graphs to the exact strong coupling 
expansion of the mass gap in the three-dimensional model in a fully automatic fashion. A major 
component of this algorithm can also be used to generate exact strong coupling expansions for the 
free energy IogZ. The algorithm is correct to any order; thus the order of these expansions is only 
limited by the available computing power. The presentation of the algorithm is such that it can 
serve as a guideline for the construction of a generalized one which would also generate exact 
strong coupling expansions for the masses of low-lying excited states of four-dimensional pure 
Yang-Mills theories. 

1. Introduction 

In  t he  l a s t  years ,  in  the  f r a m e w o r k  of  e u c l i d e a n  l a t t i ce  gauge  t h e o r y  [1], severa l  

a t t e m p t s  h a v e  b e e n  m a d e  to c o m p u t e  the  m a s s  s p e c t r u m  of  p u r e  g a u g e  t h e o r i e s  w i t h  

a b e l i a n  a n d  n o n a b e l i a n  gauge  g r o u p s  in  a r e l i ab l e  f a s h i o n .  So far,  howeve r ,  n e i t h e r  

w i t h i n  a n  a n a l y t i c  c a l c u l a t i o n  of  the  m a s s  levels  b y  m e a n s  of  s t r o n g  c o u p l i n g  

e x p a n s i o n s  [ 2 - 4 ]  n o r  in  a n u m e r i c a l  e v a l u a t i o n  of  the  t h e o r y  in a f in i t e  v o l u m e  w i t h  

t h e  h e l p  o f  t h e  M o n t e  C a r l o  m e t h o d  ( for  a rev iew see [5]), h a s  th i s  goa l  b e e n  

a c h i e v e d .  In  b o t h  cases,  in  o r d e r  to  o b t a i n  p r e d i c t i o n s  for  t he  p h y s i c a l  masses ,  t he  
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cutoff(s) finally must be removed, i.e. if a denotes the lattice spacing, the continuum 
limit a ~ 0 has to be performed and in addition, in case of a calculation in a finite 
volume V, the limit V ~ oo has to be taken. 

In the analytic approach, although the calculation is already performed in the 
infinite volume limit, the removal of the UV cutoff provided by the lattice regu- 
larization causes problems to the mass estimates calculated in the strong coupling 
regime because in general it must be assumed that the region of convergence of the 
strong coupling expansion does not extend to the physical region, a--o 0. Conse- 
quently, an essential ingredient in the calculation of physical masses starting from 
strong coupling expansions are series extrapolation techniques, such as for example 
Pad6 approximants, possibly in combination with series reexpansions. However, 
although their computation already has been very tedious, the currently available 
strong coupling expansions are much too short to apply extrapolation techniques 
unambiguously. 

The Monte Carlo simulation in general suffers from both the UV lattice cutoff 
and the IR cutoff due to the finite size of the system. Up to the present, these 
systematic errors cannot be disentangled in a clear-cut way from the statistical errors 
inherent in the Monte Carlo method. Furthermore, an extra difficulty which arises in 
mass calculations stems from the fact that the mass is determined from the 
asymptotic decay of the connected (2-point) correlation function; however, the states 
generated by the operators currently in use have insufficient projection on the lowest 
mass eigenstate (whose mass is to be calculated) in any sector of states selected by 
the jp(c) transformation properties of the operators. Therefore at short distances 
the signal is still not dominated by the contribution from this lowest mass eigenstate 
and for large distances, the signal gets lost in the noise. The general belief is that 
improvement of the current status of mass calculations in the pure gauge sector by 
means of the Monte Carlo method will crucially depend on first of all the construc- 
tion of low-dimensional operators generating states which have improved projection 
properties and secondly on the development of new calculational techniques and not 
only on the available computing power [6]. Given this context, a more ambitious 
investigation of analytic methods is motivated quite naturally. 

There are in principle two possibilities to pursue: first of all one can try to extend 
the existing strong coupling expansions substantially such that series extrapolation 
techniques work more reliable. Secondly, being more sophisticated, one may try to 
construct effective large-distance actions by means of block-spin transformations 
which already in the strong coupling region will simulate continuum behaviour. 
However, exact block-spin transformations generate all kinds of complicated, nonlo- 
cal interactions which render the strong coupling expansion much more complicated. 
Consequently, in order to keep the calculation tractable, approximate block-spin 
transformations must be used and series extrapolation techniques cannot in general 
be avoided. As already mentioned above, these techniques only work reliably if 
many coefficients in the strong coupling expansion are available. 
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We conclude from the discussion above that the logical first step in a systematic 
investigation of analytic methods is the development of a tool which is capable of 
generating exact high-order strong coupling expansions. 

It is the purpose of this article to report on the elaboration of such a device: We 
first present an efficient description of all clusters which contribute to the strong 
coupling expansion of the mass gap in three-dimensional pure Z z lattice gauge 
theory. Secondly, making use of this description, we describe the main components 
of an algorithm which can in principle generate exact strong coupling expansions of 
any order of the mass gap in the above model. Because this model is dual to the 
three-dimensional Ising model, the algorithm may be used to evaluate extended 
low-temperature expansions of the inverse correlation length of the latter model 
which by direct methods are very hard to get. This then again allows the determina- 
tion of the critical temperature and the critical exponent v' [7]. 

However, despite of the immediate physical relevance of this algorithm, we mainly 
consider this article as an introduction to algorithms which may be constructed for 
more general cases. In particular, the present algorithm could become a major 
building-block of a generalized one, being capable of generating also exact high-order 
strong coupling expansions for the masses of low-lying states of four-dimensional 
pure Yang-Mills theories. 

Furthermore, along the lines described in this article similar algorithms could also 
be constructed for two other approaches: in the first one, partially summed strong 
coupling series would be computed where the partial summation is motivated by the 
requirements of the continuum [8] (for an elaboration of this idea and its application 
to the calculation of the free energy and string tension of the three-dimensional Z 2 
lattice gauge theory see [9]). In the second approach, one would treat the full 
problem in a semianalytic calculation. This means, one would try to relate the 
beginning problem by exact analytic expansion techniques to a collection of prob- 
lems which are not directly calculable by analytic methods, but which can be treated 
easily to high precision by Monte Carlo simulations. This semianalytic method would 
be useful in all cases where the full problem does not admit a reasonable complete 
analytic treatment. It seems possible that this approach might become a new and 
powerful field in which the potential of both methods, strong coupling expansion 
and Monte Carlo calculation, could be combined. 

Finally, a major component of the algorithm which we shall describe in this article 
can be used to generate also exact high-order strong coupling expansions for the free 
energy logZ. 

The organization of this paper is as follows: Sect. 2 defines the model; sect. 3 
defines the mass gap and sect. 4 discusses in detail the cluster expansion of the 
connected correlation function F. The determination of the strong coupling expan- 
sion of the mass gap from the cluster expansion of F is treated in sect. 5. Sect. 6 
describes the distinct steps of the algorithm and its implementation on a computer. 
Finally, the two appendices A and B provide some basic definitions in mathematical 
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graph theory needed in this article and some factorization property of the usual 

combinatorial  coefficients ?l(Co), respectively. 

2. The  model  

We consider pure Z z euclidean lattice gauge theory in three dimensions on a 
simple cubic lattice A with lattice spacing a. The dynamics of this model is specified 

by the action 

S : =  E Sp=/3  Y'~ x ( Up) ,  (2.1) 
p E A  p ~ A  

which is the simple Wilson action. The sum runs over all unoriented plaquettes p of 
A. Up is the product of the group-valued gauge fields attached to the links in the 
boundary  of p. X is the character of the nontrivial irreducible representation of Z 2 

and the coupling parameter /3  is related to the bare coupling constant go of the 

theory by 

2 
/3 = - - a  -1 . (2.2) gg 

3. The mass gap 

The mass gap m is defined to be the lowest mass in the mass spectrum of the 
theory, i.e. m is the mass of the lowest mass eigenstate in the J P = 0  + sector. 
Consequently,  m governs the asymptotic behaviour of the connected correlation 
function F: Let x 3 and t with x 3 = ta denote the dimensionful and dimensionless 
time coordinate, respectively; for any two local lattice operators (9~, (qe which create 
states out of the vacuum [0) which have nonzero projection on the eigenstate with 
mass m and zero momentum, we have 

F ( t ) , =  (0101(t)02(0)10) - (01~(t)10)(01@2(0)10) 

, const .  × exp(  - mat). (3 .1 )  
t ~ O C  

Using (3.1), the mass gap in lattice units can be obtained from F: 

1 
m a = -  l i m - l o g F ( t ) .  (3.2) 

t--, oe t 

We now describe how the lattice operators @1 and 02 can be constructed. In order 
to make an optimal projection on the j e =  0 ÷ sector, we choose 01 and C 2 as 
space-like loops* transforming trivially under the symmetry group of the spatial 

* F o r  c o m p l e t e n e s s ,  we note  t ha t  a space- l ike  loop  is as usual  a loop  in a (hyper - )  p l a n e  t = cons t :  see 

a l so  d e f i n i t i o n  4.6. 
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sublattice A 2. Adopting the simplest choice, in three dimensions ~1 and @2 are just 
space-like plaquette operators X(Up,) and X(Up_,)- Furthermore, in order to project 
out the zero momentum part, we sum separately over all possible positions of p~ and 
P2 in the time-slices defined by the time coordinates of p~ and P2 respectively. 
Consequently, ~?L2 can be written as 

1 
- • X(U( ..... -,):,,), (3.3) 

where the sum runs over unoriented plaquettes only, A~ is the two-dimensional 
spatial sublattice and N, is the number of sites of A~. 

4. The cluster expansion of the connected correlation function F 

4.1. SOME PREPARATORY NOTATION 

In order to provide the necessary formalism which will become important for the 
future construction of generalized algorithms, this subsection is held completely 
general. 

Definition 4.1. A graph .q is a map which assigns an irreducible representation rp 
of the gauge group G to every plaquette p • A. We write p • [,,~[ • A ** rp ¢ 0. I~] is 
called the support of the graph ,G and r = 0 denotes the trivial representation of G. 

In general, depending on how many nontrivial irreducible representations G has, 
there may exist several graphs .q, .q',... which all have the same support [,~[ = ].~[' 
. . . . . .  "f'. These graphs can be distinguished from each other by the distribution 
of the irreducible representations rp, e 0 over the plaquettes p • ('P. For example, for 
gauge group G = Z 2, to every support [~] we have exactly one graph ~. 

We next define the contribution of a graph. 

Definition 4.2. Let ~ be a graph with support [.~[ c A .  The contribution or 
activity qs(~) of the graph ~ is defined as 

or symbolically 

q~(-~):=f~ 1-I dUb l-I drpa%(~)Xrp(gp), (4.1) 
; bE-A P~ [~1 

q~(.~) := f(.~. (4.2) 

dU is the invariant normalized Haar measure on the group manifold, drp is the 
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dimension of the irreducible representation rp assigned to the plaquette p, X rp is the 
character in the irreducible representation rp and a~(fl) is the usual expansion 
coefficient [10] 

arp(,~ ) :=d -1Crp(~) (4.3) 

where Crp (~) and c0(fl) are the character expansion coefficients for the irreducible rp 
and trivial representation respectively of the single plaquette Boltzmann weight eS.: 
if r denotes any irreducible representation of the gauge group, we have 

cr(B)= f dUpXr(Up l)eSp. (4.4) 

As an immediate consequence of the orthogonality relation of the group char- 
acters, 

~rs 
fc, dUx'(UV)x'(U-1W) = ~-s X ' ( V W ) '  U, V, W e  G,  (4.5) 

a graph ~ has only nonvanishing activity, if its support is a closed surface on the 
lattice which for gauge groups other than Z 2 may have branch-lines. 

We now introduce the concept of connectedness which will play a central role in 
the subsequent discussion. 

Definition 4.3. Let 6 ) c  A be a set of plaquettes. @ is called disconnected ¢~ 
there exist disjoint subsets 6) 1, 6~ 2 c 6-?, o~1 n @2 = ~ with @ = #Pl + "~2 which have 
the following property: let 

B(62i) : = (£1.g~ 0p for somep ~ @~},  i = 1 , 2  (4.6) 

be the set of all links contained in the boundary of some p ~ ~i. Then there exists no 
loop of links which is contained in B(°~I) • B(6~2). 6~ is called connected, if it is not 
disconnected. 

It is clear that successive application of this definition to an arbitrary set c,? c A 
results in the unique decomposition into pairwise disconnected subsets which 
themselves are connected. 

Graphs which have a connected support are of particular significance in the 
theory of cluster expansion. 

Definition 4.4. Let 6) c A be a nonempty connected set of plaquettes. Any graph 
X with IX] = ~? is called a connected graph or polymer. 
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Definition 4.5. Let X 1, X 2 . . . .  be pairwise different 

IX~I, Ix2l . . . .  c A .  Let n~, n 2 . . . .  > 1. Then the collection 
polymers  with supports  

. . . .  ) .  (4.7) 

is called a cluster, if its support  ICl = IX1] u IS2l u . . .  is connected,  n, is called 
the mult ipl ici ty of  the polymer  X i in the cluster C. If C consists of  only one po lymer  
with mult ipl ic i ty  one, C is called a 1-polymer or single-polymer cluster. Otherwise C 
is called a mul t i -po lymer  cluster. 

We close this subsection by defining some auxiliary notions. 

Definition 4.6. Let £ •  A be a link and let sl, s 2 • A be two sites which are the 
end points  of  £ .  Then the time t e of £ is defined as 

re:= a 1 a v e r a g e ( t i m e c o o r d i n a t e s o f s l , s 2 ) ,  t e • N  " (4.8) 

With  this notat ion,  £ is called space-like, if t e is integer; otherwise £ is called 
time-like. Analogously,  let p • A be a plaquet te  and let sl, s2, s3, s 4 • A be four sites 
which are the corners of p. Then the t ime tp  of p is defined as 

tp  : =  a 1 average(t ime coordinates of s 1, s 2, s 3, S 4 ) ,  /'p • • .  (4.9) 

p is called space-like, if tp is integer; otherwise p is called time-like. If  p is space-like 

(time-like), then L = (£1, £2, £3, £4} '=  0p is called a space-like (time-like) loop 
and  t~, - t p  denotes  the (dimensionless) t ime of L. 

4.2. THE CLUSTER EXPANSION 

We now restrict mainly again to gauge group Z 2. As Z 2 has only one nontrivial  
i rreducible representat ion,  to each support  there exists exactly one graph. Thus the 
dist inct ion between a graph and its suppor t  could be  dropped.  However,  we shall 
keep it for the conceptual  reason ment ioned at the beginning of subsect. 4.1. 

As a l ready described in [2], with the simple choice (3.3) for the lattice operators  ~)~ 
and C 2, we m a y  obtain a strong coupling cluster expansion of F from the cluster 
expans ion  of logZ  [10] in the following way: 

1 E E 0& log Z(fi, fl , B2)/ 1 
=fl=fl_~ 

] ~ ~ O~O&~a(C)(~p(C) ) ( f i ,  fil,fl2 ) , (4.10) 
N~ ( ~.1, K2) E,4.s ( FI, V2)EAs £" Ifll =fi=/'J? 
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where  we in t roduced  a p laquet te -dependent  coupling in the lattice action (2.1) which 

we choose to be/31 for all plaquettes Pl with X(Upl ) contr ibut ing to (91,/32 for all 
p laquet tes  P2 with X(Up2) contr ibut ing to (92 and fl elsewhere. The  further nota t ion  

is the following. The  third sum extends over all clusters C = (X~ 1, Xy 2 . . . .  ), n i >-- 1. 
i f (C)  is the act ivi ty of the (multi-) po lymer  cluster C which factorizes according to 

~ ( C )  = I - - I ~ ( X , ) " '  (4.11) 
i 

Fo r  gauge group Z 2 the po lymer  activities ~ ( X , )  are s imply given by  

¢o(Xi) =fo I-[ dUb 1-I drae(fl)xr(Up)=u(/3) IIx'll, (4.12) 
b~A p~ IX/[ 

where  f denotes  the nontrivial  irreducible representat ion of Z 2 with df = 1, II Xill > 0 
is the n u m b e r  of  plaquet tes  in the suppor t  IXi] and u(fi) is the usual s trong coupling 
expans ion  var iable  u(fl):= a f(/3) which for gauge group Z 2 is given by  

u( /3)  = tanh/3 = /3  + 0 ( / 3 3 ) .  (4.13) 

Finally,  the combina tor ia l  coefficients a(C) take into account  the multiplicities 

n l, n 2 . . . .  of  the polymers  X 1, X 2 . . . .  and how they are connected:  

)' ={I~Ii ni! [ X  1 . . . . .  Xx, X 2 . . . .  , X  2 . . . .  ] ,  (4.14} 

where  the cumulan t  8 ( C )  = [ . . .  ] has n 1 arguments  X 1, n2 arguments  X 2 . . . .  and is 

def ined as follows: 

N 

[ Y x , . . . ,  YNI .= Z: - 
k ~ l  

x ~ (Yol . . . . .  Y~,){Y~2 . . . . .  Y ~ ) " "  ( L ,  . . . . .  Y~,).  (4.15) 
part(N, k) 

The  second sum runs over  all par t i t ions of the N polymers  YI, Y2,..., YN into k sets 
with no regard  to the sequence within the sets or the sequence of the sets themselves; 
1 _~ 0~1, 192 . . . . .  C.0 k < N. The  momen t s  (Y~, . . . . .  Y,o,), l =  1,2 . . . . .  k are defined as 

1, if all pairs (1Y~I, ]Yh[), [Y,I,IYbl in (I Y,,] . . . . .  IY~,]) 
(Y~,, . . . .  Yo,,) ' =  0, are disconnected otherwise,  

(4.16) 
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IXol 

. . . . .  

x3=ta ~_  

Fig. 1. The leading-order term in the cluster expansion of F which is the 1-polymer cluster X o illustrated 
by its support ] X 0 I- X (Ups.2) contributing to e'l, 2. 

with 

( ~ ) := 0. (4.17) 

With this definition of the moments, the cumulant (4.15) is zero unless the support 
of the corresponding cluster is connected. Another interesting property of ~(C) will 
be discussed later. 

4.2.1. Leading-order term in the cluster expansion of F. Every cluster contributing 
to (4.10) must necessarily contain some Pa and some P2 in its support which are 
separated t lattice spacings in time direction; Pl and P2 as defined in the context of 
(4.10). Hence, the leading-order contribution to the cluster expansion of F is the 
1-polymer cluster X 0 whose support IX0] is geometrically the closed straight 
minimal tube connecting pa and P2 (fig. 1) which has activity 

(~(Xo)  = U ( ~ l ) U ( / ~ 2 ) u  4t, t :=  t p 2 -  tpl , (4.18) 

which follows immediately from eqs. (4.12). 
4.2.2. Correction terms. Two basic types of clusters can be distinguished which 

we call pure tube contributions and geometrical contributions respectively. For later 
use we keep their definition slightly more general than necessary, in so far as we 
admit arbitrary time differences between those space-like plaquettes of I CI which 
have minimal and maximal time of all p ~ [C] respectively: 

Definition4.7. Let C4=X o be a cluster with support [C] c A .  Let p~,pb~ ICI be 
two space-like plaquettes with time tp. and tpt ' respectively. Let for all p ~ I C] with 
time tp be tp. _< tp < tp# C is called a pure tube contribution ¢~ 

(i) p, and Ph are not shifted spatially relative to each other. 
(ii) For all t '  = tpo, tp. + 1 . . . . .  tp~, ]C[ has a space-like circumference of four 

links. 
C is called a geometrical contribution *, C 4= X o is no pure tube contribution. 

For an illustration of definition 4.7 we refer to figs. 2 and 3. 
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Fig. 2. The support of a cluster which is a pure tube contribution according to definition 4.7. Presented 
are the three basic types of pure tube contributions. 

/ / /  / [ ~  
o.-lll l l l  ( 

IX~l 

/ l_pb Pa-- 

Fig. 3. The supports of three clusters which are geometrical contributions according to definition 4.7. 
Chosen are the simplest geometrical contribution, a more complicated one and the 1-polymer cluster X~ 

which will be also referred to in the text in subsect. 5.2.1. 

5. Determination of the strong coupling expansion of m from the cluster 
expansion of [' 

5.1. LEADING-ORDER TERM 

U s i n g  (3 .2) ,  t h e  l e a d i n g - o r d e r  t e r m  m (°) o f  t h e  m a s s  g a p  m := m (°) + A m  c a n  b e  

i m m e d i a t e l y  d e t e r m i n e d  f r o m  (4 .18) .  I n  l a t t i c e  u n i t s ,  i t  r e a d s  

m (°)a = - 4 l o g  u .  ( 5 . 1 )  
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5.2. C O R R E C T I O N S  

As already indicated at the end of sect. 3, the lattice operators ~Sl,2 defined in (3.3) 
have non-vanishing matrix elements with, in particular, all mass eigenstates which 
are simultaneously (lattice) spin eigenstates with spin zero. Therefore the cluster 
expansion of F does not exponentiate with a single exponential with the decay 
constant provided by the mass gap. However, this desired behaviour can be achieved 
in the following way. 

5.2.1. Truncation of the cluster expansion of I'. We first note that without loss of 
generality we can always choose t >> n where n is the desired order of the strong 
coupling expansion of m. Restricting now to all those clusters C which have 

< u 6' (5.2) 

complements the projection o f  ~1,2 on the lowest mass eigenstate in the subspace of 
spin-zero eigenstates. This is the mass gap m: 

ib(t) : =  F ( t )  ]c,ust . . . .  pansion,t . . . .  ted 

= const. × exp( - mat). (5.3) 

The reason why this truncation is necessary is that in the cluster expansion of U at 
order u 6' there exists a 1-polymer cluster X~ from which the leading term in the 
strong coupling expansion of the mass m' of the first excited state above the mass 
gap [11] can be derived. The support of X~ is geometrically the double tube, i.e. the 
support consists of all those plaquettes contained in the surface which is swept over 
by a space-like, planar 6-1ink loop when this loop is translated in time direction, 
starting at Pl and ending at P2 closed at each end which two adjacent space-like 
plaquettes (fig. 3). 

Any cluster fulfilling (5.2) can be considered as a local modification of X0; the set 
of all these clusters which are constituting the truncated cluster expansion I', i.e. the 
set of all the clusters which are relevant for the expansion of rn will be denoted 
by e'. 

5.2.2. Exponentiation of the truncated cluster expansion. Taking the logarithm of 
the truncated cluster expansion ]~, it can be verified that the contributions to ~rn 
arise from the t-linear term of this expansion. This procedure is in analogy to the 
case of the string tension [10]. As we shall not perform the proof of this exponenti- 
ation, further explanation is necessary, how the l-linear term is to be determined. 
This will be done in subsect. 5.2.3, 

The problem is to generate the relevant set C of clusters of the truncated cluster 
expansion I" systematically up to the desired order. Aiming at a high-order calcula- 
tion, though being straightforward, this is expected to be a quite difficult task, 
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/ / /  / ~ /  / /  

~-I I I ' 1  I I I I1 ~-p2 

305 

I I 

i I1 ~" 

Fig. 4. Three clusters contributing to the truncated cluster expansion I~ and corresponding possible 
collections of decorations. The illustration is as usual by the corresponding supports. The entrance and 

exit plaquettes Pin and Pou~ of the decorations are indicated by dashed lines. 

I I  
p v (*), 

A0 tO,4 ) 

Fig. 5. Checking rule (iii) of definition 5.2 for a Pout candidate p of a 1-polymer cluster CD = ( Y1 ). As 
B( I CDI ) N B(I X0 (+)(P, 4) 1) = 0p W 01Y, p is not an admissible Pout according to definition 5.2. 
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n +o+n+=t:=tp2- tp~ (5.7) 

and the volume v of a decoration D is defined as: 

Definition 5.3. 
defined as 

Let D = (CD, Pin, Pout) be a decoration. The volume v of D is 

v=tp,,~-tp,o. (5.8) 

For large t, i.e. neglecting the volume of D, there are essentially t pairs (n - ,  n +) 
which fulfill (5.7). Hence we obtain the result that a single decoration D collectively 
describes t clusters of the relevant set of clusters C. In a sloppy manner of speaking, 
we shall sometimes say that "a  single decoration represents all those clusters C ~ (~ 
which transform into each other by translation of this decoration along the tube". 
The above discussion analogously generalizes to the case where we have more than 
one decoration. 

Summarizing, we note that mapping clusters to collections of decorations induces 
a decomposit ion of the set G into subsets. It is obvious that this decomposition 
would imply a considerable simplification of the truncated cluster expansion, if the 
subsets of G would be pairwise disjoint, i.e. if the representation of any cluster C by 
a collection of decorations would be unique. In addition, the cardinality of some 
subset, that is the number of the clusters represented by some collection of 
decorations, should be calculable easily from the properties of the representing 

collection of decorations. 
However, this has not been achieved yet. We shall explain this heuristically with 

the help of fig. 4. 
In the first two examples it is clear from the discussion following definition 5.3 

that each decoration represents t clusters of G. However, definition 5.2 does not 
forbid the possibility to represent each set of clusters by a collection of some other 
decorations which would extend from p' to p" as indicated in the figure. Moreover, 
the second cluster might as well be represented by a collection of two identical 
decorations of the type given in the first example which touch each other. In this 
case we would say that the decoration given in the second example is "reducible". 

Closely related is a problem which arises in the third example; as one does not 
know so far if the two decorations may touch each other or not, the cardinality of 
the set of clusters represented by the two decorations remains unknown. 

Finally, starting from some cluster (~D, it is still ambiguous which of the space-like 
plaquettes of CD may serve as Pin and Pout- Although in general there will be several 
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because increasing the order of the calculation, the number of contributing clusters 
grows exponentially. A lot of these clusters may have a complicated geometry and 
even their topology may become nontrivial at already rather low order. Conse- 
quently, the first step in the generation of G is the development of an efficient 
bookkeeping scheme. 

We first introduce such a scheme for the subset of clusters which are geometrical 
contributions according to definition 4.7. Pure tube contributions will be discussed 
in subsect. 5.2.4. 

5.2.3. Decorations- an efficient bookkeeping device for geometrical contributions. 
Before we come to the precise definition of a decoration, we define the important 
notion of a basic tube part. 

Definition 5.1. A basic tube part of length j extending in positive time direction 
is a polymer X0t+)(p, j )  with support 

:= / @(+)(p,O), 
IX°~+)(P' J)[ ( 9 (+ ) (p ,  j ) ,  

i f j - - O  
(5.4) 

if j > 0 ,  

where ~( +)(p, 0) -'= (p} is the set consisting of the single space-like plaquette p ~ A 
with time tp and ~(+)(p, j )  is the set of all those plaquettes p ' ~  A which are 
contained in the surface of a closed straight minimal tube of length j beginning at 
the space-like plaquette p and extending j lattice spacings in positive time direction 
where for all t ' =  tp, tp + 1 . . . . .  tp + j  the tube 6~(+)(p, j )  has a circumference of 
four links. Correspondingly, a basic tube part of length j extending in negative time 
direction is a polymer X0~-)(p, j )  with support 

IXo~-)(p, j) l  : = =  
~( - ) (p ,O) ,  i f j = O  (5.5) 
d2(-)(p, j ) ,  if j > O, 

where ~( )(p, O):= (p} is the set consisting of the single space-like plaquette p ~ A 
with time tp and P(-)(p,  j )  is the set of all those plaquettes p' ~ A which are 
contained in the surface of a closed straight minimal tube of length j beginning at 
the space-like plaquette p and extending j lattice spacings in negative time direction 
where for all t '  = tp, t p -  1 . . . . .  tp - j  the tube ~{-)(p, j )  has a circumference of 
four links. 

Now, as any cluster C ~ G  fulfills (5.2), pictorially its support ICl can be 
considered as composed of some of the basic tube parts defined above plus some 
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localized parts which are "thicker" than I Xo]. Stated differently, starting at ]C] and 
cutting out all basic tube parts, we end at a collection of certain objects; these 
objects are the supports of the decorations. Precisely*: 

Definition 5.2. Let CD:=(Y1 "1, Y2'%--.) be a cluster with support I(D[. Let (lJ 
be a geometrical contribution according to definition 4.7 and let tph- tp,, << t. A 
decoration is a collection of this cluster together with a choice of two plaquettes 
Pin, Pout E ICD] called entrance- and exit plaquette of D, D:= (CD, pi.,Pout) with 
I D I := I CD] \ {Pin, Pout } ¢=~ Pin, Pout are chosen according to the following rules: 

(i)  Pin, Pout are space-like. 
(ii) There exists exactly one Ym e Ct~ with support I Ym ] and multiplicity n,, = 1 

such that Pin E ] Ym]; correspondingly, there exists exactly one Y,, e CD not 
necessarily distinct from Y,, with support I Y,,I and multiplicity n,, = 1 such 
that Pout e L Y,]. 

(iii) Consider C~:=(YI'% Y2 "~, . . . .  X~ I(Pin , j)); according to definition 5.1 we 
have ICDI n IX0 ( ~(,Pin, J)l = {Pi~} for j = 0 ;  then for all j = l , 2  . . . .  we 
demand B(ICDI ) C~ B(IX(o ~(Pin, J ) l ) =  C~Pin" Correspondingly for Pout (X(~ 

---~ X0{ + ), Pin --'* Pout ) . 

Two decorations D = (CD,Pin, Pout)D '= (C~,p~n, Pout) are identified, if Ct9, Pin and 
Pout translate into ^' ' CD, Pin and Pout respectively, i.e. decorations are only defined 
modulo translations. 

Some examples for the illustration of the notion of decorations and basic tube 
parts are compiled in figs. 4 and 5. 

The significance of the concept of a decoration follows from the property that it is 
defined modulo translations, i.e. a single decoration collectively describes a whole set 
of clusters of G. As already indicated above, this set consists of all those clusters 
which can be obtained by complementing the decoration with suitable basic tube 
parts X(~ ) and X~ +). More precisely, let D=(~ 'D ,  Pin, Pout ) with CD := 
(Yl 'q,  Y2"- ' , - - - ) ,P in  E IY,,l,Pout ~ IY, I; then the supports of the polymers of the 
cluster C = ( X,",, X~'2,... ) e ~ contained in the set of clusters described by D can be 
represented as follows: 

IX, I = I Y,.I, i f i C m ,  n, 

IXml = IYml u IX(o }(Pin, n ) I N ( P i n } ,  

Ix,,I = IE, I u Ix(l+)(Pout, n4)l \ {Pout }, (5.6) 

* Unless explicitly stated differently, the convention in the following is that C always denotes a cluster 
in the truncated cluster expansion f', C e C, whereas ('t) stands for the cluster associated with some 
decoration D, 
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possibilities, this depends on whether or not we consider CD as a representative of a 
^ ^ 

whole set of clusters {C D, C; . . . .  } which can be transformed into each other by 
some symmetry operations (excluding translations in time direction), i.e. rotations 
around the time axis, reflection at a space-like plane, etc. Although such a grouping 
might be profitable in a hand calculation, it seems not to be adequate in view of the 
usage of this description in a fast computer algorithm: it has to be expected that the 
gain in computer  time due to the fact that less terms have to be generated is easily 
over-compensated by the computer time consumption of the additional piece of 
algorithm needed to guarantee that these symmetries are respected by the algorithm. 
Consequently, the idea of considering clusters (~D only modulo some symmetry 
operations will not be discussed in any further detail. 

We conclude that so far there still exists some arbitrariness in the precise 
definitions of an 'irreducible' decoration, the determination of Pin and Pout and the 
evaluation of the cardinality of the set of clusters C represented by some collection 
of decorations. As the detailed analysis shows, there does not exist a uniquely fixed 
set of rules, and we are free to make for our purpose an adequate and convenient 
choice. 

We retain the notion of Pi, and Pout as defined previously. Next we introduce 
some further notions: 

Definition 5.4. Let D be a decoration with support [D I and volume v. Let ]rDN 
be the number of plaquettes in ]D I. Then the order O(D)  of D is defined as 

O ( D )  -'= IIDll- 4v. (5.9) 

Definition 5.5. Let CD=(Yln' ,Y~ 2 . . . .  ) be a cluster with support [CD]. Let 
B(J Ys]) be the set of all links contained in the boundary of p ~ ]Y~[, Y,~ CD" A 
four-link loop L, L = {£1, £2, £3, £4} c B(] Yk[), Yk ~ CD is called a bottle-neck of 

(i) L is space-like. 
(ii) There exists no p ~ ]Yk] with L = 0p. 
(iii) n k =  1. 
(iv) L is not contained in any B(I Y/[) for i 4= k. 

Let X:=  ( x  1, x 2, x 3, x4} be the vertex set of L. Let (V, B(]CD])) be the vertex-edge 
graph* associated with [(~DI where the vertex set V is the union of all boundary 

* For a discussion of vertex-edge graphs and some of their properties which we shall need in the 
following we refer to appendix A. 
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LIS) L[S) 

US,R) L 

Fig. 6. The supports  of two decorations with their entrance and exit plaquettes Pin and Pout as indicated 
by the dashed lines and their bottle-necks L. Bottle-necks marked with S are separating bottle-necks. The 

decorations are reducible at the bottle-necks marked with R. 

points of the links of B(L(~o]). L is called a separating bottle-neck of (~D ~ X is a 
separating set of (V, B(]CvI)). 

Pictorially, bottle-necks are four link space-like loops winding around exactly one 
polymer Yk ~ CI~ with multiplicity n k = 1. For an illustration of the notion of a 
bottle-neck see fig. 6. 

We finally introduce the notion of an expansion. Roughly speaking, one obtains 
the expansion D L of D = (CD,Pin, Po~t) at the separating bottle-neck L of (~D by 
decomposing d o at L into two disconnected pieces by removing the vertices of L, 
shifting these pieces one lattice spacing apart and closing the resulting hole with 
time-like links such that the resulting object is again connected: 

Definition 5.6. Let D = (CD, pin, Pout) be a decoration, CD = (YI"', Y~'-' . . . .  ) with 
support ICDI. Let L = { £ p £ 2 , £ 3 , £ 4 }  c B(I Y~]), Y~ e CD be a separating bottle- 
neck of (~D with time t L. Let X:= {XI, Xz, X3, X4} be the vertex set of L. Let 
(V, B([ Yk[)) be the vertex-edge graph embedded in the lattice associated with [ YA] 
where the vertex set V is the union of all boundary points of the links of B(I Ykl). 
D1, := (Ci),Pin, Pout) with ( ~  = (f'l "l, f'2 ''2 . . . .  ) is called the expansion of D at L 

(i) ~ = Y, with support [ fz,,[ = [y,[ for all those polymers Y, =g Yk for which all 
p e ] 1I, I have tp < t t .  

(ii) Y,, = Y,(+~ with support I ~1 = I Y,[ (*) for all those polymers ~ 4= Yk for which 
all p e lYe] have tp>~ tl, where ' (+ ) '  indicates translation of [Y,I by one 
lattice spacing in positive time direction. 

(iii) f'a is a polymer with support 115~1 defined in the following way: Following 
from the definition of a separating bottle-neck, the vertex-edge graph 
(V, B( I Y k l ) ) \ X  decomposes into two parts which are not connected. The 
part which has t~ < Le for all its vertices is called left part, the part which has 
t,, _> t e for all its vertices is called right part. Let L be a copy of L but shifted 
one lattice spacing in positive time direction, t~=  t t +  1 and let ) (=  
{2~, 22, 23, 24) be the vertex set of L. Then the vertex set ~" of the 
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vertex-edge graph (12, B(] Y,])) associated with If'k] is the union of the vertex 
set of the left part with X and X and the vertex set of the right part 
translated one lattice spacing in positive time direction; the set B(]Y,I) of 
edges is the union of the set of edges of the left part with the set of edges of 
the translated right part and all the edges £ incident on X in (V, B([ Y,[)) 
(translated one lattice spacing in positive time direction, if te_> tL) and the 

edges (x t ,  2t}, {X2, X2} , {X3, 9~3} and {x4,~4}. 

We are now prepared to provide a constructive criterion whether a decoration D 
is reducible: 

Definition 5. 7. Let D = (C/~, Pi,,Po~t) be a decoration and let L be a separating 
bottle-neck of CD" Let D L be the expansion of D at the separating bottle-neck L. D 
is reducible at L ¢00(DL)  ---- O(D). 

Now the precise definition of an irreducible decoration reads: 

Definition 5.8. Let D = (CD, Pin, Pout) be a decoration as in the previous defini- 
tion. D is irreducible ¢* D is not reducible at any separating bottle-neck L of Cz). 

Two examples for a reducible and an irreducible decoration respectively are 
compiled in fig. 6. 

These rules are sufficient to provide a uniquely determined map from a cluster 
C ~ t ' to a collection of irreducible decorations: 

Partition Theorem. Let C be the set of all clusters C contributing to the 
truncated cluster expansion F as introduced in subsect. 5.2.1. Let c'i) be the set of all 
irreducible decorations D*. Then there exists a unique map 

2 Q'= 2 e ×  . . .  
623p: l ,_>1 ,_>1 (5.10) 

~ C ~ ( D 1  . . . . .  Dk) 

from ~ into Cartesian products of @ which maps any cluster C ~ G to an ordered 
collection of not necessarily distinct decorations. The order of the decorations in the 
collection reflects the order of the local modifications in C. Furthermore, there exists 
a decomposition of G into disjoint subsets, i.e. 

G = C 1 + (2 2 + . . . .  (5.11) 

with 0" i c3 (2/= ~ for all i ~ j  such that 

C and C' belong to the same subset (2i ~ • ( C )  = ~p(C') .  (5.12) 

This means that there is a one-to-one correspondence between subsets (2i and 
ordered collections (D 1 . . . . .  D , )  of irreducible decorations for some fixed k depend- 
ing on C~. 

* In the fo l l owing  D a lways  s t ands  for  a n  i r reduc ib le  deco ra t ion .  
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The proof  is sketched as follows: Proving that to any C E C the representing 
collection of irreducible decorations is uniquely determined, we make use of the fact 
that C itself may be considered as a necessarily reducible decoration D with 

entrance plaquette Pin  = Pl and exit plaquette Pout = P2- Then we start for example at 
p~. It  can easily be seen that the successive disintegration of D when proceeding 

along C in positive time direction is uniquely determined by the above set of 
definitions. Completely analogous for starting at P2. 

Conversely, starting from the collection of irreducible decorations obtained above, 

we recover a cluster C '  by connecting neighbouring Pin, Pout plaquettes of neighbour- 
ing irreducible decorations with basic tube parts. C '  belongs necessarily to the same 
subset C? as C because in definition 5.2 of a decoration, property (iii) imposed on 

P~n and Pout plaquettes prevents any irreducible decoration from being converted 

into another one by adding basic tube parts at Pin or Pout. • 
At this point, we would like to make several comments. First of all we emphasize 

that the above description of all the clusters in the truncated cluster expansion F in 
terms of irreducible decorations is correct to all orders in the strong coupling 

expansion of m. Furthermore, for the definitions we do not make any reference to 
the geometrical properties of the clusters which eventually may not be fulfilled in 
more than three dimensions. Consequently, our description remains valid without 
any changes to mass calculations in four-dimensional pure Z~ lattice gauge theories. 
Finally, modifying condition (ii) in definition 5.2 and condition (ii) in definition 5.5 
the description becomes valid for arbitrary gauge group. Stated differently, the 
description presented above is already the major part of a generalized one which 

may be used for mass calculations in four-dimensional pure Yang-Mills theories. 
The problem still to be solved is the evaluation of the cardinality of some given 

subset of clusters from the properties of the representing collection of irreducible 
decorations. 

We consider a subset ~ , c  (~ of clusters represented by an ordered collection 

(D l . . . . .  D k) of decorations with volumes t, l . . . . .  u k. The corresponding cardinality 
will be denoted by N k. The demand of reducibility of D 1 . . . . .  D k at their Pi~ and Pout 
plaquettes implies in general that the decorations exclude each other from several 
positions on the tube. More precisely, the requirement of irreducibility imposes 
lower bounds on the lengths of the various basic tube parts which have to be 
supplemented such that a cluster C ~ (~i is obtained. We denote the lower bound on 
the basic tube part  between two neighbouring decorations D i and Dj by u,j and shall 
call it the exclusion volume of Di for D F Then it follows from the detailed 
elaboration of the proof of the exponentiation that N k has to be calculated 
according to the following rules: 

(i) Each individual decoration contributes a factor t, independent of the volume 
of the decoration. 

(ii) The numbers of positions, the decorations exclude each other on the tube have 
to be substracted; boundary effects have to be omitted. 
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Fig. 7. The determination of the cardinality of a set of clusters represented by two decorations with 
volumes v 1, v 2 and exclusion volumes U12, /221. 

The case k = 1 is trivial and was already discussed subsequently to definition 5.2. 
In the case k = 2, the above rules yield 

N2(Ol,V12)+N2(v2, o21 )= t ( t - ( t ) l+O12+v2+v21-1 ) )  ( 5 . 1 3 )  

(cf. fig. 7) and N2(U1, U12 ) can be obtained from (5.13) by symmetric decomposition 
of the expression on the rhs. 

We now return to the general case. As N k specifies how many clusters of ~ are 
represented by (D 1 . . . . .  Dk), N~ is also called the configuration number of 
(D 1 . . . . .  Dk). The t-linear coefficient of N k is called reduced configuration number 
N[ and is according to subsect. 5.2.2 the weight with which the clusters of the subset 
~, contribute to the strong coupling expansion of m. Hence the contribution 
Arn(t:~,) due to the clusters of the subset C~ to the strong coupling expansion of m 
reads in lattice units 

-Arn( Gi)a = N;(  ua, Vab)a( C )(p( C ), (5.14) 

where ~ ( C )  is the relative activity of a generic cluster C ~ C i, defined by 

' .  (5.15) 

We now express Am(Gi) in terms of the contributions due to D 1 . . . . .  D k. This 
then allows the convenient computation of (5.14) from the properties of the 
irreducible decorations alone. 

The factorization of the relative activity follows immediately from the properties 
of irreducible decorations. As at the worst we have B(]Dil ) n B(IDjl ) = L c B([X[) 
(where L is a bottle-neck of a particular polymer X of C) for all Di =~ Dj in 
(D t . . . . .  Dk) any cluster C ~ C~ can be integrated out " top  down" at each decora- 
tion independently and consequently the relative activity ~(C)  factorizes according 
to 

k 

,~(C) = 1-[ q,(Dj).  (5.16) 
j = l  



312 K. Decker / Strong-coupling expansions 

For gauge group Z 2, ~(Dj) is according to (4.12) and (5.9) 

~a( Dj) = u(fl  ) °(D'). (5.17) 

Now we still have to express a(C) in terms of a((~D,),.. ;., a(CDk ), which amounts 
to proving that the cumulant a(C) factorizes into a(CD:).. ,  a(CD~), since the 
product over the multiplicities factorizes trivially (cf. (4.14). For the details of the 
proof see appendix B. 

Consequently, the final expression for the contribution due to the subset (~j of 
clusters C is in lattice units 

k 

- A m ( ( 2 , ) a  = N[ (G ,  v.b) I-I {a (Cn j )$  (Dj)}.  
/ =  1 

(5.18) 

Concluding that by now the strong coupling expansion of the mass gap m is mapped 
to the determination of the set ® of all irreducible decorations (leaving aside pure 
tube contributions), we have completed the discussion of geometrical contributions. 
The reduced configuration numbers N[(v,,  v,b ) for k = 2, 3 and 4 are compiled in 
table 1. 

5.2.4. Corrections due to pure tube contributions. All corrections of this type can 
be studied simultaneously in a tube model [4] where the transfer matrix T for gauge 
group Z 2 can be calculated exactly. Then the contribution Am(X0) of all pure tube 

TABLE 1 
The reduced configuration numbers  N[( u,,, u.h ) 

N~(¢,I, ut2 ) = - 12 [2t, I + 2u12 1] 

+2U2U12+t'~2+2U12U23 3¢h2 '  {] 

J~q'X ( /'1 , U[2 , U2, U23 , U3, /fi34 ) = 16 [ - /)3i - 3 U~/?2 3 U:~U~ 3 {'~U[2 3 1'~"23 

--6¢~1/'2U12 6~1/'2#2) 6¢;IU2U34 5 12~ lt~ 2 

--6Ult~3U12 0/ 11~3['23 ~ 0[~lp 3 3P1~'~2 

--6UI~I2t23 6UII~I2V34 ? 12ut/'12 3/!1/!~3 

--6UIP23t34 k 12~v23 3t,iU~4 + 12Vlrh4 

-- l h  h 3¢'2v n 0u2Fg['12 3u:v~e 

--61~2[!12~,2~ - -  6[~2FI2U34 > 12t'2t 12 6l~3U12l'2: 

U'I2 3"~2t~2) 3"~2C34 4 6C12 3UI2U~, 

- 61 12023U34 + 12u1/'23 + 6ul?va 4 11c12 + 32] 
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contributions to the mass gap is given in lattice units by 

313 

~k 2 
- A m ( X o ) a  = logq-- ,  (5.19) 

^1  

where X 1 and 2, 2 are the largest and next-to-largest eigenvalues of T respectively. 
Making use of the results obtained in the tube model, the generalization to the 

case where we have geometrical and pure tube contributions is straightforward. 
Employing the factorization of the cumulants (4.15) which will be proven in 
appendix B, it turns out that the combinatorial coefficients a(C) of the full cluster, 
i.e. geometrical and pure tube contributions, is just proportional to a(Cg) in which 
only the geometrical contributions are taken into account. The relative activity 
factorizes, too, which is of course again due to the properties of irreducible 
decorations. 

With G i, ( D  1 . . . . .  Dk) and N[  as defined in subsect. 5.2.3, Am(G i, Xo) which 
denotes the contribution to m due to the subset G i of clusters C which now carry 
additional pure tube contributions, can be put into the final form 

k 

- A m ( G , ,  X o ) a =  [ N[( va, vah) + Fk(v~, Vob)] 1--I {a(CDj )$ (Dj )} ,  (5.20) 
j = l  

where all pure tube contributions are respected by F k. The functions F k arc of the 
generic type 

Fk(vu, %b) = ~ fkt(v~, v~h)u' (5.21) 
1>_2 

and can be found in table 2. They are displayed for k = 1, k = 2 and k = 3 up to 
O(/312), 0(/3 s) and O(fl 4) respectively, which is sufficient for a O(/316) calculation 

of m. They may be extended to higher order without any fundamental difficulties. 
By the functions Fk(v a, yah ) pure tube contributions are completely covered; 

hence, the further discussion can be restricted to the question, how decorations can 
be treated any further. 

5.2.5. The relationship between the set @ of all irreducible decorations and the cluster 
expansion of log Z. The first simplification in the determination of @ follows from 
the defining property of a decoration, i.e. that every decoration D is a collection of a 
cluster d o together with a restricted but in general not uniquely fixed choice of two 
plaquettes: 

Definition 5.9. Let @ be the set of all irreducible decorations D and let ~ be the 
set of all clusters CD, i.e. C also contains those clusters CD which only result in 
reducible decorations for any choice Pin, Pout ~ [CD]" Then for an irreducible decora- 
tion D = (CD,Pin, Pom), D ~ @  with support [D[ and entrance and exit plaquettes 
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TABLE 2 
The functions F~, F 2 and /~ as defined in (5.2B 

FI ( r ,, , t',, ~, ) 

FI(t '  . ,  t'al ,) = (t, 1 + 1)U 2 

1 
+ ~! (t ' l  + 1)(V t + 2)U 4 

1 
+ ~.~(V l + 1) . . . (V 1 + 3)U 6 + 2(t, l + 2) U 6 

i 
+ -~!(t,, + l ) . . . ( t  h + 4 ) u g +  [2 (c ,  + 2)( t ,  1 + 3) - 4({,, + 2)] u s 

1 
+ ~.1 (tq + 1) . . . ( t !  1 + 5) U 10 + 2(01 + 3)U 10 

+ [(U 1 + 2 ) . . .  (V 1 + 4) -- 4( t '  1 + 2)( t '  1 + 3) + 2(U 1 + 2)] U 1° 

1 
+ ~. (v~ + t ) . , . ( q  4- 6~u 12 

+ [', {~,~ + 2 ) . . .  (~,~ + 5) - 2(~,~ + 2 ) . . .  {,,~ + 4) + 2(i,1 + 2)( , , ,  + 3)] u 'e 

+ [2( t ' ,  + 3 ) (v ,  + 4) + 2(t, 1 + 2)(1,1 + 5) + 4 - 12(v 1 + 3) -- 3(v  I + 2)] u 12 + O(f114) 

F2( 1:1, l 'ab) = [ ]V2r ([)1 , u12)(I )  @ 2) - ¢'12,o] u2 

+ ~.,[. < ( v , ,  c ' ,2)(v + 2) (v  + 3) - 28,.,a.,,(v + 2)] u 4 

1 
+ ~ [ N2r(v,, v12)(t, + 21 .-. (v  + 41 - 38,.,2,,(t' + 2)(  c + 3)] u6 

+ 2 [  N i ( { ' l ' v 1 2 1 ( t ' + 4 ) - 3 8 ' ' ,  .... 8",2,]u~ 

1 
+ ~ .  [ N (  UI' UI2 1( U -k 2 ) . . .  (1' + 5) -- 48,.,2.,,( V + 2 ) . . .  (1' + 4)]  U s 

+ 2[ N2r ({q. v , 2 ) (v  + 4) 2 - 23,.12.o { (,'., + 3) + (t' + 4)} - 8, , , ,  ( r  + 4)] u x 

- 4 [ N ~ - ' ( v l " v 1 2 ) ( v + 4 )  -33 , ' ,  .... 8 , '~a , ]u~+O( f im)  

(a) t'12 > 1, ~'23 >~ I. 

&(, : , ,  ,',,~) = [  N;(~ ' , ,  ~',2, ~'2, v23)(v + 3)1 u 2 

1 
+ ~ [  N;(~,~, ~,,~, ~,,, 1,,~)(~, + 3)( , ,  * 4)1 ,~  + O{/3~ 

(b) 1,12 > 1, t'23 = 0, 

& ( < , ,  t,,,,,* = [  N;(t ,~,  t,l~, ~'2, ~'23 = 1)(~, + 3)l  u ~ 

+ [ ~r(~, , ,  ,,,, 1(~, + 211 ~: 
1 

+ ~..[ N~(tl  I , U12, t'2, t'23 = 1)( t '  + 3)(I '  + 4)] //4 

1 
4- ~ [  N~(t,1, 1,12)( r, + 2)( t ,  q- 3)] u 4 + O(/~ g) 
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TABLE 2 (continued) 
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(C) /'12 = O, #23 --> 1. 

l:~(t,,,, v,,;,) = [  N~"(v,. u12 = 1. ~'2. Vz3)(v + 3)] .2 

+ [ ~7((~,] + ~,~), ~ , ) ( , ,  + 2)] .~ 

+ ~T.~ [ /~Q3r (U1, U12 = 1, U2, U23 )(U + 3)(  U-( 4)] .4 

1 
+ 2~ [ N f ( ( v ,  + v 2 ) ,  o23)(u + 2)(v  + 3)1 u" + 0(/36 ) 

(d) PI2 = 0. v23 ~ O. 

K~(v.. t,.,,) = [  N(( v,. tq2 = 1. v 2 , v23 = 1)(v + 3)] u 2 

+ [  { N2~(vD v,2 = 1) + Uz~((v, + v2). v23 = 1 ) } ( v +  2)] .2 

+ [ ( , ' +  1)1,,: 
1 

+ ~.v[ N; (v , . th2  = 1, v 2, v23 = 1)(v + 3)(v  + 4)] u 4 

1 
+ ~ [ Nf(UI,  U12 = 1)(v + 2)(v  + 3)] u 4 

1 
+ 2T [ N2r((uI ~- ['2 )* ['23 = 1)(v + 2)(v + 3)] u 4 

1 
+ ~ [(v + 1)(v + 2)]u 4 + O(fl 6) 

Pin, Pout the map ')-z is defined as 

• f 6D~ ~ '  (5.22) 

where I Col := I D I W {pin, Poot } and Pin, Pout carry the nontrivial irreducible represen- 
tation of the gauge group Z 2. 

The map ~z  is onto because in general there exist several irreducible decorations 
which are all mapped to the same cluster do.  Consequently, the map '~T z induces a 
decomposit ion of the set @. 

Moreover, ~ is identified with the set of clusters which constitutes the cluster 
expansion of the free energy logZ. Thus, with the help of the map ',T z o ?Tp, the 
cluster expansion of F is reduced to the cluster expansion of logZ. 

The first step in the cluster expansion of log Z, i.e. in the determination of the set 
(.? is the classification of all E'~ 2"  according to the supports of the included 

* As in the following there will be no more reference to the irreducible decoration associated with a 
cluster (~'. we drop the subscript D in order to avoid clumsy notation. 
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polymers. This means that we perform the map 

^ 

• d =  (Yt"', U ' : , . . . )  ~ s ( d ) : =  (I Yt I"', I ~ 1 " ~ , . . . )  . 
(5.23) 

As the gauge group Z 2 has only one nontrivial irreducible representation, this step is 
trivial in the case under consideration because the map is one-to-one. 

The next step is to characterize each collection S((~) of polymer supports of a 
cluster (~ with support [C'] according to its volume Vs/&. This amounts to a 
classification of the elements > according to identical volumes. For example, all 
clusters C, ( " , . . .  which consist of the same choice of polymers but which have 
different multiplicities n I ::i t: r /~  . . . . .  n 2 = ¢ :  n~ . . . .  assigned to them are mapped to 
different collections S(( ' ) ,  S(C' )  . . . . .  but have the same volume V: 

D@nition 5.10. Let ICI be the support of a cluster (~e  ~ with S((~') = ~,'Ts(~') 
and let { A I, A, . . . .  } be the complete set of all subsets of t(~'[ which satisfy 

o a ,  = o ,  i -- 1 2 . . . . .  ( 5 .24 )  

where the boundary is to be computed modulo Z:  and the subsets A, are considered 
as chains of plaquettes. (5.24) implies the existence of volumes V with 0V~ = A 

Then the volume V s~(-,~ of S( ( ' )  is defined by 

v,., e ,  = U G -  (5 .25)  
4 ,  

The notion of the volume is illustrated in fig. 8. 
Now, as already indicated above, the classification of all S((~') according to their 

volumes induces a decomposition of the set £ into pairwise disloint subsets, 

£ =  ~ £~,, £ ~ , ~ > t , = ~  f o r a l l V #  {~', (5.26) 
1 ' e  "~ 

Fig. S. The supports  of four clusters which have the same xolumc. 



K. Decker / Strong-coupling expansiom 317 

where S v C  ~ is the set of all S (C)  which have volume V and the sum runs over the 

set ~-~ of all volumes. Note that each OV itself is the support of a 1-polymer cluster 

= (Yv) with S (C)  = (] Yv]) = (OV). Consequently we have OVe 5 v for all V. 
We finally discuss how S v can be reconstructed from the volume V. This is 

essentially the reversal of the construction presented in definition 5.10: On the 

lattice, the volumes have a cell structure, i.e. they may be considered as connected 

chains 

V=  '~'~ c~, c, 4: ca., ~ k 4: k '  (5.27) 
k 

of cubes c k of the lattice. 

Definition 5.11. Let V be a connected chain of cubes on the lattice with volume 
V. Let w 1, w 2 . . . .  ___ V be connected subchains of V. Then the collections V are 
defined as 

where 

V I =  (]4211"/1 , W 2'12 , . . .  ) , n i --> 1 , ( 5 . 2 8 )  

[,,Jw i = v .  (5.29) 
w, 

Using the cell structure, the generation of all non-equivalent collections V derived 
from some connected chain V is not very complicated. Identification of 0% with I Y,[ 
completes the reconstruction of 5 v- 

5.2.6. The Cluster expansion of log Z and point configurations on the dual lattice. 
The remaining step in the cluster expansion of logZ and therefore in the truncated 

cluster expansion of /~ as well as in the strong coupling expansion of the mass gap m 
is the determination of q~. 

The essential trick is the utilization of the duality transformation * ; in particular, 
duality maps cubes c e A one-to-one to points a* e A*, 

A -+A* 
• " ( 5 . 3 0 )  

c,---~ a* 

where the dual lattice A* is isomorphic to A because the simple cubic lattice is 
self-dual [12]. Hence, by duality, the determination of 5," is mapped to the easier 
task of generating a certain set of point configurations on A*. 

Next  we note that up to volumes which result in corrections to m of O(13 24) and 
more*,  the cubes of all volumes have the additional property of being plaquette- 
connected: 

* The m i n i m a l  volume of this type is composed  of six cubes which are ar ranged in a completcls, 
s y m m e t r i c  way, i.e. any two cubes share one l ink only. 
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Definition 5.12. Let V be a chain of cubes on A. V is called plaquette-connected 

(p-connected)  ca there exist no V L, V 2 c V such that V = V~ + V, and V~ ~ V, = 

with {pip ~ Oc, for some c ~ Vt} ~ {PIP ~ Oc, for some c ~ V 2 } = ~ ,  

Al though the generation of the set of all point configurations (including those 
which are not dual to p-connected chains) causes no fundamental  difficulties, we 

restrict the following discussion to the subset of point configurations which is dual to 
the set of p-connected chains. From a practical point of view this is a completely 

irrelevant restriction because a computat ion of m up to O(fi 24) is not feasible at 

least in the near future due to lack of computer  power. 
With this limitation in mind. we have 

c~,c 2 G A p-connected ¢. c~ ~ V0c  t 

co-p-connected ca a~ ~ away, (5.31)  

where we identify a~ and a* to be link-connected points on A*. Consequently,  the 

duali ty t ransformat ion (5.30) maps p-connected chains V on A to link-connected 

point  configurat ions K on A*. 

How should a useful algorithm for the generation of these point configurations 
look like'? First of all, as we expect a very large number  of these configurations 

needed in a high order computa t ion of Am. the algorithm should be such that each 

configurat ion is generated in a unique way because due to computer  storage 

requirements  one cannot afford to store the data of all configurations and to scan 

through this set each time a new configuration is generated in order to avoid 

double-count ing.  Secondly, in order to meet the speed requirements, a fast algorithm 

should be such that in the average only a very small number  of operations is needed 

lo generate a new point configuration from the previous one. This can be achieved if 

the algori thm provides for a tree structure on the set of point configurations. This 

then would avoid double-counting by construction. 

N o w  we describe such an algorithm in detail. For notational convenience, we 

agree upon dropping  the superscripts * in the following. That  we actually deal with 
the dual lattice and with quantities defined on it is to be understood implicitly. 

Furthermore,  we choose the (dual) lattice to be finite: the following construction can 
of course also be performed if this restriction is dropped. However, the limitation to 

a finite lattice allows us to keep the presentation as close to the actual algorithm as 

possible. 

Definition 5.13. Let A = L × L X L c 2g 3 be a simple cubic lattice with lattice 

spacing a = 1 and linear extent L. A lattice point s ~ A is a triple of integer 
numbers  s = (n D n 2, n3). Without  loss of generality we choose the coordinate frame 
such that 

.~, = ( n , ,  n~,  "3 )  c ,~. ca 0 _< , ,  _< L .  (5.32) 
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Then the map 

Z3 D A  ---~A c No 

S = ( h i ,  n2 ,  n3 )  ~ s = n 1 -}- ( t  + l )n  2 + ( Z  + 1)2n3 

is linear and one-to-one for all s ~ A. E is called linearization of A. 

(5.33) 

Before we give the precise definition of a link-connected point configuration K, 

we define some elementary geometrical properties of A. 

Definition 5.14. Two lattice points a, b ~ A are called neighbouring ¢* ]fi - t~] 
L+ 1,(L+ 02). 

Next we define an order relation. The canonical ordering of the natural numbers 
N o induces an ordering of lattice points of A by means of the map ~: 

Definition 5.15. Let a, b ~ A. 
(i) a > - 0 e * h > 0 ,  

(ii) a >- b,=,  ( ~ -  ~,) > 0. 

If the statement (ii) is true, we say that a is larger than b with respect to > .  

Definition 5.16. Let xl, x :  . . . . .  x e ~  A. 

(5.34) 

is called a link-connected point configuration ~ any two points y, z ~ K can be 
connected with a path composed of edges of length 1 which passes only through 
points which are contained in K. 

For notational convenience, a link-connected point configuration is also simply 
called a connected configuration where this does not lead to any confusion with the 
notion of connectedness as used in the context of polymers and clusters. 

The next step is the construction of a unique numbering scheme for all points of a 
configuration. To begin with, we define the notion of the generation: 

Definition 5.17. Let K be a connected configuration. Let x, y ~ K. Furthermore, 
let x~ be the base point of K, i.e. x 1 is the smallest point in K with respect to -<. 

(i) The one-element point set (Xl} is called 1st generation G 1 (of points of K),  

G~ :-~ ( x l } .  (5.35) 

(ii) The 2nd generation G 2 is defined as 

G2 := { YlY is a neighbour of x I }. (5.36) 
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(iii) The (n + 1)th generation G,,, t, n _> 1, is then defined as 

G, ,} l :=  { y l y i s a n e i g h b ° u r ° f s ° m e x e G , , A y C G t ,  for a n y k _ < n } .  (5.37) 

Now the actual numbering scheme is established by affixing labels to all points 

of  K: 

Definition 5.18. Let K be a connected configuration and let v ~ K. A label is a 

map 

x ~  (17,, m , ) ,  ,~ ,  m , e  ~ .  (5.3s) 

is called generation index, m,  is denoted as generation element number. 

Definition 5.19. Let K be a connected configuration. A numbering is a map 

K ~  {(,,,  ,,,)} (5.39) 

according to the following rules: 

(i) The base point  x~ ~ G 1 obtains the label (1,1). 

(ii) All points y ~ G 2 carry the generation index 2: within G~, the generation 

element numbers  m are assigned to successively with respect to the order < ,  

i.e. for two points y, y ' ~  G 2 with y < v' which have labels (2, m , )  and 

(2, m < ) respectively, we have m ,. < m ~,. 

(iii) All points of G,, ~ 1, n >_ 1, carry generation index n + 1: within G,,+ L, we first 

at tach labels to all points neighbouring to z~,,.~ ~ G,, with respect to -< ; then 

we label all neighbours of z~,,.2~ G,, with respect to -< etc., until G,, is 

exhausted. 

Points which already have been labelled are passed over. 

A n  

- \ (  pL J~l } 

immediate  consequence of this numbering scheme is that to every point 
K of a connected configuration there exists a path of length ~ 1 

~1/" x ....... ) : (_X." L , X ( 2 . .  ) . . . . . .  V(,+ 1.. }, k ( , ~ . m ) )  {5.40) 

which connects  .,c~ ...... ~ with the base point v~. 

Proposition 5.20. Let K be a connected configuration. Fhen the numbering 
(5.39) is uniquely determined. That  is, to every point .x¢ ...... ~ ~ K. there exists exactly 

one path of  the type (5.40). 
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This p ropos i t ion  is obvious f rom the definit ion of the number ing  scheme. Next  we 

define an order  relation on the set of points  of  a connected configuration:  

D e f i n i t i o n  5 .21.  Let K be a connected configurat ion and let 
y~,,,.,,, ) ~  K. x is called smaller than y with respect  to <, x < y  

(i) n~ < n~., or 
(ii) m,.<m,,,if n x = n , , .  

x is called larger than y with respect to E>, xE>y ~ y < x .  

X¢n,,m~) ~ K,  

Anothe r  obvious  consequence of the number ing  scheme given above is that  
ne ighbour ing  points  x( , , ,  . . . .  ), y( , ,~, , , , )  ~ K obey 

I n , -  ny I _< 1. (5.41) 

Moreover .  in the case under  consideration,  we have 

P r o p o s i t i o n  5 .22.  Let K be a connected configurat ion on a simple cubic lattice. 
Then  for two neighbouring points  x, y ~ K with generat ion indices n X and n,. we 
have the strict equali ty 

In,. - n,,] = 1. (5,42) 

P r o o f .  We assume that n x = n = n,~ and prove that this leads to a contradict ion 
with the lattice geometry.  

Accord ing  to the propert ies  of  the number ing  scheme, there exist two uniquely 
de te rmined  paths  W~ ..... , and W~. . . . .  with n - 1 edges each which connect  x and y 
with the base  point.  Two cases have to be distinguished: 

(i) W,. and  W,. have no point  in common.  Consequently,  the closed path  

( X 1 ,  X(2 , . . .  ) . . . . .  X(  . . . . . . .  ) , y (  . . . . . .  ) '  -Y(n-  1 . . . .  ) . . . . .  Y(2 .. . .  ) ' X 1 )  (5.43) 

is nonself intersect ing and has 2n - 1 edges, which is clearly in contradict ion to the 
geometr ica l  propert ies  of a simple cubic lattice. 

(ii) W~ and W~ have one point  in common,  say the point  u. If  there exist several 
points  u, u ' , . . ,  shared by W x and W v, take the largest one with respect to the order  
t>. If  this poin t  carries generat ion index n',  then the closed path  

(ul ,  ,, .... l ,x~,,,+l .... ) . . . . .  x< . . . . .  ), y( ...... ) ,Y ( , ,  1 .... ) . . . . .  Y~, ,+I .... ) ,u~, , ,  .... ~) (5.44) 

is nonself intersect ing and has 2(n - n ' )  + 1 edges . . . .  

For  the de terminat ion  of further propert ies  of the above number ing  scheme we 
define 

D e f i n i t i o n  5 .23.  Let K (z*l) be a connected configurat ion with l + 1 points  and n 
generat ions.  Let xz+ 1 =-- X(, , ,m) ~ K ~+~) where m is maximal ,  i.e. xt+ ~ is the largest 
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poin t  of  K ~z*l) with respect to the order  ~>. Then  a reduction R of K Iz+~) is a map  

R: K"+~)~K( ' ) :=K( t~ ' ) \ ( x ,+ , } .  (5.45) 

N o w  we have 

Proposition 5.24. Let K (~+l) as defined above. Then K(II=R[K (z+l)] has the 
proper t ies  

(i) K ¢/) is connected.  

(ii) K I/) is numbered  correctly. 

The  p roof  is obvious f rom the definition of the numbering.  
It  is clear that  successive applicat ion of R to a connected configurat ion K ~¢+~) 

defines a uniquely determined chain of maps  

K(I+I)~_-~ K(I)~.__~ . . .  ~--~ K(2)~--~ KI1) ,  (5.46) 

Hence,  the reduct ion R generates a tree structure on the set ~3t of connected 

conf igurat ions .  
For  the construct ion of a recursive algori thm for the determinat ion of the set 

~-~t+~ := { K~/~ 1)} of all connected configurat ions with l + 1 points  from the set 
~3( (~ := { K (~) } of all /-point configurations the map  R has to be inverted: 

Definition 5.25. Let K (/) = {x~, x 2 . . . .  , xt} be a connected configurat ion with l 
points  and n generations. An extension of K ~) is a configurat ion 

K ( I + I I : = K ( I I U  {a}, a ~ A ,  (5.47) 

with the proper t ies  

(i) a ~ x  I ~ K  ~ .  
(ii) K I/+l) is connected.  
(iii) R [ K  (/+l~] = K ~/). 

We note that  the third proper ty  means that  in K (/+l) the points  x 1, x2, .  . . . .  ~ 
car ry  the same labels as they do in K (t). 

For  the determinat ion of the set 

'.'~'(/+ I)(K(/)):= { K ( l t l ' I K ( l ~ l ) i s  extension of K I " } ,  (5.48) 

of l +  1 po in t  configurat ions K (/+t) which are extensions of some fixed K (1~, it is 
clearly sufficient to determine the members  of ".~lt+l~(K")) in fixed order. As the 
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,~-<l ~ 1)(K(t) ) p rov ide  a decompos i t ion  of  %(/+1), 

~.~(/+ l) _~ E ~'~(/+ 1)(K( / ) ) ,  
K(/)E,Kd) 

with 
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(5.49) 

~ ( l + l ) ( K ( l ) )  4= ~ U + I ) ( K ( / ) ' )  for K (/) v~ K u)' , (5.50) 

this  d e t e r m i n a t i o n  of  all K (/+1) E ~£(/+1)(K(l)) in fixed order  for some K u) is also 

suff ic ient  for  the  de te rmina t ion  of  ~£d+~). 

W e  first no te  that  for a given K d), not  all poin ts  s ~ A with s ff K (t) m a y  be used 

for  an ex tens ion  of  K (°. Hence,  for la ter  convenience,  we in t roduce  the no t ion  of  a 

free po in t  a ~ A which is chosen such that  p rope r ty  (iii) of  the def in i t ion  of  an 

extens ion ,  

R [ K ( ' ) U  { a } ]  = K (') (5.51) 

is fulf i l led au tomat ica l ly .  

D e f i n i t i o n  5 .26 .  Let K d) be a connec ted  conf igura t ion  with l points ,  n genera-  

t ions  and  base  po in t  x 1. Let  x / ~ G, be  the largest  po in t  of  K (z) with respect  to the 

o r d e r  t> and  a ne ighbour  of  z = z( ,  t, m) ~ G, -1 .  A po in t  a ~ A is cal led free with 

respec t  to K (/) ,=, 

(i) a > - x l / x a ~ K  (/). 
(ii) a is no t  ne ighbour ing  to any  x ~ K u) with x , ~ z .  

(iii) a is ne ighbour ing  to z or  any y ~ K (0 with yt>z;  if a is ne ighbour ing  to z, 

then a >- x# 

W e  now def ine  the sequence of  extensions of  a connec ted  conf igura t ion  K (z) 

which  a m o u n t s  to define an order ing  on the set of  poin ts  which are  free with respect  

to K(h :  

D e f i n i t i o n  5 .27 .  Let K u) be as def ined above.  Let  

A := { a l ,  a 2 . . . .  , a r, 61 , b 2 . . . . .  b , , . . .  },  a i, b i . . .  ~ A  (5.52) 

be  the ent i re  set of  poin ts  ne ighbour ing  K (~) which are  free with respect  to K u) 

where  the a , ,  b i . . . .  are def ined by  

(i) a l, a 2 . . . . .  a r are ne ighbour ing  to z with 

x I -~ a I "< a 2 -< . . .  ~ a r . (5.53) 

(ii) b 1, b 2 . . . . .  b~ are ne ighbour ing  to z '  with 

b l -< b 2 -< . . . - < b ,  

, ( 5 . 5 4 )  
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where :, z ' , . . ,  are immediately successive points contained in K ~t) such that 

, < z ' < . . .  (5.55) 

Then the configurations 

Kl l )  k..5 { a  I 

K(I) u {a,. 

K u ~ U  { b l 

(5.56) 

are called 1st extension . . . . .  r th  extension, (r + 1)th extension . . . .  of /<~1~. 

This ordering on the collection of extensions assigns to every K i~ ~ ~ ~ ~v~. J)( K ~t)) 

an unique sequence 

alth ext. a~th cx t  c*/th ext. 
K(1), -> K(2) ,~ _~ . . . .  +Kt~'  ~) (5.57) 

If K d/ runs over the set %u* the property (5.57) extends to all K t j ~  G qi7 ~ t ~  
This then manifests the tree structure on 

/>1  

6. The algorithm and its implementation on a computer 

Conceptually, the algorithm which has been developed, exactly performs the 
graphical expansion in terms of polymers and clusters of the truncated cluster 
expansion F, eq. (5.3). Therefore the distinct steps of the algorithm correspond to 
subsects. 5.2.3 to 5.2.6 (fig. 9). It is widely believed that such an algorithm which for 
any given order of the calculation generates and processes all the necessary graphs is 
much more efficient than one which evaluates the strong coupling expansion in a 
purely algebraic way for a finite system. Hence, relying on graphical techniques, 
there is some hope to obtain real high order expansions. 
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Fig. 9. The distinct steps of the algorithm illustrated with the help of the support of a 2-polymer cluster. 
The numbers  in parentheses refer to the sections where the details of the corresponding step are 

described. 

6.1. S C H E M A T I C A L  F L O W - C H A R T  

Before we discuss some basic principles how the algorithm can be put on the 
computer,  we first give a schematical flow-chart: 

(1) Choose desired maximal order O(fl)m ~ of computation; l ~ 0. 
t> (2) l (--l + 1; generate the set ~c~) of all link-connected point configurations 

with l points. 
(3) Take one K (t) ~ K (t) and map to the dual volume V. 

c, (4)Genera te  one collection S ( C ) =  (f YtI"', [ Y21"2, --.) of polymer supports 
which has volume V. 

t> (5) Determine one cluster C which can be constructed from S(C). 
~> (6) Determine one irreducible decoration D which can be constructed from 

(7) Compute all contributions to Am up to O(fi)m~x due to the set of clusters 
represented by (D). 

(8) Keep the characteristic data of all those decorations which are needed for 
the representation of those sets of clusters which are represented by a 
collection of more than one irreducible decoration and which contribute to 

~m up to O(fi)ma~. 
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(9) Continue at (6) until no more irreducible decoration D can be obtained 
from the current cluster C. 

(10) Continue at (5) until all clusters which can be derived from the current 
S(C)  have been constructed. 

(11) Continue at (4) until all S(C) which have the current volume V have been 
generated. 

(12) Continue at (3) until .~-~/~ is exhausted. 
(13) Continue at (2) until all corrections Am have O(B) > O(B) .... . 
(14) Compute all contributions to Am up to O(fl)m~ due to those sets of 

clusters which are represented by (D 1, D 2); (D~, D 2, D 3) ; . . . ,  according to 
an analogous scheme. 

6.2. IMPLEMENTATION ON A COMPUTER 

We first comment on the point configurations on the dual lattice A*. As suggested 
by (5.33), the (dual) lattice is realized as an one-dimensional array which we call 
lattice site list. Describing the lattice by an one-dimensional array corresponds to a 
specific numbering of the lattice sites of A*. 

Now for each point configuration we establish an one-dimensional array called 
point configuration site list which holds the numbers of the lattice sites contained in 
the point configuration. Hence the point configuration site list operates as an index 
list to the lattice site list. As we only have to know, whether a site of the lattice is 
occupied by the point configuration or not, the lattice site list is realized as a logical 
array. This helps to keep the program small. It also makes possible quick references, 
whether a site of the lattice is contained in a point configuration or not. Besides the 
point configuration site list, we set up a label list which contains the set of labels 
affixed to the points of the point configuration. Finally, in order to speed up the 
operation of the extension (of a given point configuration to a point configuration 
with one more point), we mark in the lattice site list all those lattice points as being 
occupied which are not defined as free with respect to the point configuration under 
consideration. The corresponding list of lattice sites is called marked lattice points 
list and is specific for each point configuration. 

With this terminology, the recursive generation of the set "3( ~I~ 1) of point 
configurations with 1 + 1 points from the set ~ / i  of point configurations with l 
points is described as follows: 

E> (1) Read the lists representing the next /-point  configuration K i/) from the data 
set containing K ~/) (i.e. the point configuration site list, the label list and 
the marked lattice points list). 

(2) With the help of the point configuration site list, mark all points of the 
configuration as being occupied in the lattice site list; do the same with the 
help of the marked lattice points list for all lattice points which are not free 
with respect to the point configuration under consideration. 
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Determine the next extension of K~Z); if there exists no next extension, 
continue at (5). 
Evaluate the appropriately supplemented lists representing the new l + 1 
point configuration K ~t+~) and store on the data set containing the l +  1 
point configurations generated up to the present; continue at (3). 
Initialize the lattice site list (mark as being free all lattice sites with the help 
of the point configuration site list and the marked lattice points list); 
continue at (1) until ~ )  is exhausted. 

This algorithm needs only a few bytes to store the specific data of each configura- 
tion which is absolutely necessary in view of the fact that in high order r u n s  10 6 and 
more point configurations have to be tackled and stored in between. In addition, it is 
very fast; it turns out that the actual time needed for the generation and storage of 
the point configurations is roughly of the order of one to three percent of the time 
needed for the whole calculation. 

We now turn to the further steps. The lattice A needed for explicit coordinate 
handling is realized as described above for A*. Then a point configuration on A* is 
mapped point by point to the corresponding cubes on A by explicit construction of 
the corners of each cube. Simultaneously, the corners, the links and the plaquettes of 
the resulting chain of connected cubes (dual to the point configuration) are subject 
to canonical numbering. In addition, incidence tables, i.e. link boundary and 
plaquette boundary tables of the chain of cubes considered as a cell complex are 
determined and a matrix describing the sense of connectedness of the cubes of the 
cell complex is established. Finally, marking one lattice action as time direction 
enables one to distinguish between time-like and space-like oriented plaquettes. 

This information is enough to perform all the remaining steps like construction of 
the volume V, generation of $ v, determination of Pin and Pout etc. However, in the 
actual algorithm, in the course of the processing of a single configuration, additional 
lists and tables are established with the help of the basic information described 
above. They are merely rearrangements of this information according to different 
aspects. Although in principle being completely redundant, they help to speed up the 
processing considerably. 

We close this section by noting that the set of programs has been written in 
Fortran. From a conceptual point of view, this is clearly not the optimal choice. 
However, the Fortran compilers currently available, in particular the Fortran HXE 
compiler, generate a very efficient and fast code. This has been checked by direct 
Assembler programming of some CPU time controlling parts of the algorithm. The 
gain in execution speed was only of the order of a few percent. 

6.3. TESTING THE ALGORITHM 

The test of the algorithm has been carried through in several steps. 
First of all, some subtle parts of the program have been programmed twice 

independently, as for example the generation of all link-connected point configura- 
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tions "~(, the determination of the set 5:, of all S((~') which have volume V and the 
determination of all p:,, and P,,u~ of a given cluster C ~'. We then made sure that the 
results produced by the program are invariant under the exchange of one or several 
of these parts. 

Next we checked the logic of the set of programs developed very carefully. In 
particular, we independently tested that component of the algorithm which is 

sufficient for the computation of the cluster expansion of the free energy logZ by 

reproducing a nontrivial part of the series presented in ref. [131. It turns out that this 
part of the algorithm is very fast, i.e. roughly 250 configurations can be generated 
and processed each second on an IBM 3081-K. Therefore it seems feasible to enlarge 
the O(fi4°) series given in [13] with the help of our algorithm. 

The last check was dedicated to the whole set of programs. We recovered the 
O(fi~0) series for the mass gap of Tarko and Fisher [14] on the first attempt without 
any difficulties. The CPU-time needed for this calculation corresponds roughly to 
12 s on an IBM 3081-K. 

We finally comment on the consistency checks which have been performed in 
production runs. To begin with, aiming at a certain order n, we generated the 
corresponding strong coupling expansion step by step: we first performed an order-4 
run. Then we calculated up to order 6 and checked that the result of the order-4 run 
was reproduced. We repeated this procedure until the desired order was obtained. 
The other check made use of the fact that in an order n calculation (n even), 
contributions arise only from decorations which are deduced from point configura- 
tions which have n - 2 points or less. In particular, the contributions derived from 

n - 3  and n - 2  point configurations are known: they are +16u"  and - S u "  
respectively (for example, the only contributing decorations which can be deduced 

from n 2 point configurations each have a support which is a double tube of 
length ~2(n- 2)). We carefully checked that these contributions were generated at 
each step mentioned above. 

1 am very much indebted to Gernot Mi~nster for constant support. 1 thank Martin 
Li~scher for a critical reading of the manuscript. Financial support from the 
Bundesministerium fiir Forschung und Technologie, Bonn, Federal Republic of 
Germany  during part of this work is gratefully acknowledged. 

Appendix A 

SOME BASI(" DEFINITIONS IN MATHEMATICAL GRAPH THEORY 

We recollect some basic definitions of mathematical graph theory necessary for 
the discussion in sect. 5 and appendix B. 

The graphs which will be considered here are the usual graphs defined in 
mathematical  graph theory, i.e. graphs consisting of vertices and edges. In particular 
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they should not be confused with graphs in the spirit of definition 4.1. In order to 

distinguish this different kind of graphs to be introduced here, we shall denote them 

explicitly as vertex-edge graphs. We shall always implicitly assume that these 
vertex-edge graphs are finite. This is no restriction for our purpose but it helps to 
keep the discussion simple. Furthermore, we shall not distinguish between vertex-edge 
graphs and their embedding in some lattice structure. 

Definition A. 1. A vertex-edge graph is a pair ~ = (V, E)  consisting of a set V and 
a set E of two-element subsets of V. The elements of V are called vertices, the 
elements of E are the edges of the graph .~. 

Definition A.2. Let ~ = (V, E)  and 9 '  = (V' ,  E ' )  be two vertex-edge graphs. .~ '  is 
called a sub-vertex-edge graph of .q, if V' c V and E '  G E. 

Definition A.3. Let G = (V, E )  be a vertex-edge graph. A finite sequence W-'= 
(x 1 . . . . .  x,,) in V is a path from x 1 to x ,  in .q, if for 1 < i < n -  l we always have 
{x i, x,+l} ~ E. The number n - 1 which is the number of edges of W is called the 
length of the path. 

Definition A.4. Let .~= (V, E)  be a vertex-edge graph. The distance d(x, y)  
between x ~ V and y ~ V in .q is defined by 

d(x ,  y ) :=inf{ lengthof  W ] W i s a p a t h W = ( x  . . . . .  y ) i n  .~}. (A.1) 

If there exists some path W =  (x . . . . .  y)  in .q, we write d(x, y) < oo, otherwise we 
write d(x, y)  = o~. 

Definition A.5. Let .G = (V, E)  be a vertex-edge graph. Lq is called connected, if 
d(x,  y)  < ~ for all x, y, ~ V. 

Definition A.6. Let .~ = (V, E)  be a connected vertex-edge graph. Let X c V and 
let .~q' := .cq\X be the vertex-edge graph obtained from ~ by removing all vertices in 
X from V and removing all edges which are incident on the vertices in X from E. If 
.~q' is not connected, then X is called separating set of vertices of the graph .~. If the 
separating set of vertices consists only of one element x ~ V, then x is called 
articulation point or cut vertex of ~. The number of connectedness of .~ is defined 
by 

K(~) = inf(card X]X is separating set of ,q}. (A.2) 

c~ is called n-times connected, if tc(.G)= n. In particular, if ~ ( ~ ) =  1, ~ is called 
simply connected. 
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Fig. 10. A graph g~(C) which has no articulation points. 

Appendix B 

PROOF OF THE FACTORIZATION OF h(C) 

The proof makes use of a convenient representation of the cumulant a (C)  which 
is proven in ref. [15]. 

The notation is as follows: Let C = (Xl"~, X~'e . . . .  ) be a (connected) cluster. We 
draw a vertex for every polymer in C; if two polymer supports IX[, I X'I ~ C are 
connected in the sense of connectedness as following from definition 4.3, we connect 
the corresponding vertices by an edge. Then the sense of connectedness of C is 
represented by a (vertex-edge) graph .~(C)* (fig. 10) in the sense of definition A.1 
and we have according to ref. [15] 

a ( C ) =  E ( - 1 )  '(~r'' (B.1) 

The sum runs over all connected partial graphs ,~' of ,c~, i.e. all connected subgraphs 
which have the same vertex set as ~ and l(,@) is the number of edges contained in 
,@. ,~¢ is the usual intersection graph of a set system where the vertex set V is the set 
of polymer supports of the cluster C. 

We now restrict to the relevant case C ~ ~. Then ,c~(C) is always of the type as 
indicated in fig. 11. There exist articulation points or cut vertices, the deletion of 
which (and all their incident edges) produces a graph which is not connected. The 
subgraphs which are obtained by disintegration of ,~ at its articulation points are 
called stars ~ (fig. 11) and .c~ is called simply connected. 

An important property of a simply connected graph .~ is that each connected 
partial graph c], of .~ is composed of connected partial graphs .~' which lie in the 
stars £, of ~, 

"' = I ,"1 '  "%2 . . . .  )" ( B . 2 )  

* In the following we shall only use vertex-edge graphs; for notational convenicnce, they will be simply 
denoted by graphs. 
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A 

Fig. 11. A graph .~(C) with its articulation points indicated by "A". The stars of ~(C) are indicated in 
the second line. 

Clearly, if .~' c ~ is a connected partial graph of g, .~" must be a connected partial 
graph of S i for all i because G is simply connected and consequently there exists no 
possibility of connecting two eventually disconnected vertices within some star $~ by 
a path of edges leaving g~. 

Conversely, if g[ is a connected partial graph of 5,, i =  1 ,2 , . . . ,  then G '=  
(.~[, .~ . . . .  ) is a partial graph of G and is connected. 

Hence, we obtain from (B.1) 

a(C)  = E ( - 1 )  '(~'' 
( ~ { ,  .q~ . . . .  )c~ 

= E E "'-(-1) '('~;)+'('~;)+''" 
giGS l ~dCe~ 2 

= E (-1)'(~{) Z ( -1 )  `(~9"'" 

= a ( ~ l )  • a ( e ~ 2 )  . . . .  ( B . 3 )  

which is the factorization of the cumulants claimed in subsect. 5.2.3. • 
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