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The SU(2) Higgs model with scalar doublet field is numerically investigated on lattices with 
size between 84 and 124 . Masses and zero momentum couplings are determined at several points 
of the three-dimensional coupling parameter space. Particular interest is given to questions related 
to the order of the confinement-Higgs phase transition. It is shown that for non-perturbative 
scalar self-couplings numerical Monte Carlo calculations are possible in the region of weak gauge 
coupling approximately equal to the physical value in the standard SU(2)® U(1) electroweak 
theory. Our first exploratory results in such a point on 124 lattice give a Higgs mass to W-mass 
ratio 6.4 _+ 0.8 and a Higgs-WW coupling roughly a factor 3 smaller than the tree-level value. The 
circumstances under which these numbers could have some phenomenological relevance are 
discussed. A possible strategy is outlined for future large scale Monte Carlo calculations in the 
strongly self-interacting standard Higgs model with weak gauge coupling. 

1. Introduction 

Our  present  unders tand ing  of high-energy elementary particle interact ions is 

based to a large extent on q u a n t u m  gauge field theories with spin-½ fermion mat ter  

fields. The prototype theories are QED with the electromagnetic U(1) gauge field 

and  the spin-  ½ electron field, and QCD with SU(3) colour gauge field and triplets of 

sp in -1  quarks.  Q u a n t u m  field theories with scalar matter  fields are usually consid- 

ered to be problemat ic  or even inconsistent.  An  often asked quest ion is: can 

e lementa ry  scalar particles exist? 

In  order  to be able to answer this quest ion one has to consider the regularized 

q u a n t u m  field theory. In  the case of gauge fields a natura l  cut-off is realized by a 
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finite space-time lattice [1], and the above question can be formulated by asking: is 
a lattice-regularized quantum gauge field theory with scalar matter fields mathe- 
matically consistent with a very small lattice spacing (i.e. with a cut-off much larger 
than the physical masses in the theory)? In the case of the simplest model with only 
scalar fields, namely the pure q~4 model, it is almost exactly proven that an infinitely 
high cut-off is only possible in the trivial case of free fields, without physical 
interaction (for a review see, for instance [2]). If one requires a very large (but finite) 
cut-off, the value of the renormalized (~4 coupling is restricted to a range with some 
small upper bound. Models without gauge fields have, of course, only academic 
interest, and the inclusion of gauge fields can change the situation. 

A simple prototype gauge model with scalar matter fields is the "standard" SU(2) 
Higgs model with a scalar doublet, which is an important part of the standard 
SU(3) ® SU(2) ® U(1) theory. This and other similar Higgs models are well suited 
for numerical Monte Carlo studies (in fact, from the numerical point of view much 
simpler than gauge fields with fermions). Therefore, presently there is an increasing 
interest in the numerical investigation of Higgs models (for a recent review and 
references see [3]). The case of the standard SU(2) Higgs model is particularly 
simple, because the scalar doublet breaks the local gauge symmetry completely in 
the sense that no massless "photon" field is left over. 

For zero gauge coupling the standard SU(2) Higgs model is identical to a 
four-component q~4 model, which has presumably no non-trivial continuum limit. 
The inclusion of the gauge coupling could, in principle, produce a non-trivial critical 
point (for a non-trivial continuum limit) somewhere in the interior of the 3-dimen- 
sional coupling parameter space. (Besides the hopping parameter ~ and scalar 
self-coupling X of the pure q~4 model the third bare coupling is / 3 -  4/g 2, which 
specifies the gauge field dynamics.) Recent numerical data on the correlation 
lengths and static energies [4-6], however, indicate that this is not probable. 
Moreover, the first Monte Carlo renormalization group (MCRG) study showed also 
no evidence for a non-trivial critical point at finite fl [7]. This is not very surprising 
since, as a consequence of asymptotic freedom, the gauge coupling is always weak at 
small distances, even if it is strong at the scale of the physical masses. A non-trivial 
continuum limit in the standard SU(2) Higgs model can, however, exist at the 
critical line of the pure ~4 component at /3-~ ~ .  This would be similar to the 
asymptotically free gauge theories with fermion matter fields, where the continuum 
limit is also at /3 = ~ .  

The triviality of the pure ~4 model implies that in the continuum limit the physics 
becomes independent of the self-coupling ?, (X is "irrelevant"). In the region 
0.1 ¢ X ~< oe, which was up to now investigated by the Monte Carlo calculations, 
this X-independence seems to be maintained also after the inclusion of the gauge 
coupling, if one considers the physical quantities, for fixed /3, as a function of an 
appropriately chosen variable [4] (namely, the expectation value of the gauge 
invariant link variable). The X-independence is an essentially non-perturbative 
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feature which can be exactly valid only for infinitely high cut-off. For any finite 
cut-off there is some range of sufficiently small self-coupling, where perturbation 
theory in A is expected to be applicable. In this perturbative regime there is 
A-dependence. The present Monte Carlo data in the Higgs model seem to be entirely 
within the strongly coupled non-perturbative region, where approximate A-indepen- 
dence is true. 

In the present paper we report on the results of an extensive numerical Monte 
Carlo study of the standard SU(2) Higgs model. We shall concentrate mainly on 
three new aspects: some zero four-momentum coupling constants of the physical 
Higgs- and W-bosons, a detailed comparison of 8 4 and 12 4 data from the point of 
view of finite size scaling and a high-statistics calculation in two points at weak 
gauge coupling roughly equal to the physical value in the SU(2) ® U(1) electroweak 
theory. The scalar self-coupling is always in the non-perturbative, approximately 
A-independent, region. In the next section, after defining the notations, the obtained 
results for the masses and couplings on the 8 4 lattice will be summarized. Sect. 3 is 
devoted to the comparison of the behaviour near the phase transition on 8 4 and 12 4 
lattices. As a part of this comparison, a finite size scaling analysis will also be 
carried out. In sect. 4 the Monte Carlo results at weak physical gauge coupling will 
be presented and discussed. A possible strategy for future Monte Carlo calculations 
on larger lattices and with higher statistics is outlined in an appendix. A recollection 
of the definitions about "renormalization group trajectories" or "curves of constant 
physics" is also included in the appendix. The last section is reserved for a few 
concluding remarks. 

2. Masses and couplings 

2.1. LATTICE ACTION 

Throughout this paper we shall use for the lattice variables the notations of ref. 
[4]. In particular, the link variable for the gauge field will be denoted by U(x, I~) ~ 
SU(2) (x = lattice point, # = link direction), the Higgs field is specified by its length 
0x >/0 and by an SU(2) angular variable % ~ SU(2). The lattice action in these 
variables can be written as 

Sx.B.~ = flY'~ (1 - ~Tr Up) 

+ ~x {p2x-- 31Ogpx + A(pZ-- l)z--x Y~ px+;,pxTr(a++f,U(x,~)e~x)}. (1) 
/L>0 

Here Y~p stands for a summation over positively oriented plaquettes. The integration 
measure corresponding to eq. (1) is doxd3axd3U(x,  tz) (where d3g denotes the 
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Haar-measure in SU(2)). The peculiarity of the SU(2) doublet scalar field is, that its 
angular part is equivalent to the local gauge degree of freedom. Therefore, at any 
finite fl it is possible to introduce, instead of the SU(2) link- and site-variables, a 
gauge invariant link variable 

(2) 

In terms of this, the lattice action is 

Sx./~,. = fl~_, (1 - ½Tr Vp) 
P 

+ ~x { px2 - 3 log P~ + X(p~- 1)2-  K E p,+~p~Tr V(x,/~)} • 
#>o 

(3) 

After performing the trivial integration over %, the integration measure for eq. (3) 
is dpx d3V ( x, ,tt ). 

In the limit X ---, oo the length of the Higgs field is frozen to unity, and the action 
in eq. (1) can be replaced by 

Sx=o~,~..=B~..(1- ~_TrUp) -~ E Tr(a++~U(x,l~)ax), (4) 
P x, / t>0 

whereas, instead of eq. (3) one can use 

Sx:+,a,,=BE(1-~TrVp)-K Y'. TrV(x,/~). (5) 
P x ,~> 0  

2.2. MONTE CARLO MEASUREMENT OF THE MASSES AND COUPLINGS 

The masses are extracted in the Monte Carlo calculation from the exponential 
decay of two-point correlation functions. In the Higgs-boson (scalar, isoscalar) 
channel we used the diagonal correlations of the quantities 

[ h~) - p~ , 

h~ = ~ h<~ 2) - Tr V(x,/1),  

[h 0~= O~+~p~Tr V(x ,  It), 

(/~ = 1 ,2 ,3 ,4 )  . (6) 

( . =  1 ,2 ,3 ,4 )  

In the W-boson (vector, isovector) channel correlations of 

. <1) = Tr (~y(x , / z ) )  w ~  - 
(7) 
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were considered (r, denotes a Pauli-matrix). The Monte Carlo calculations show that 
the three Higgs-boson and two W-boson channels are strongly correlated, that is, 
the masses determined in the same channel by different quantities deviate from each 
other much less than the individual statistical errors. 

The zero momentum couplings are usually defined on the lattice in such a way 
that no multiplicative wave function renormalization is left over. In the case of the 
n-Higgs-boson coupling A , R  the definition is (for n > 3): 

( 1 / N ) Y ~ . x 1  . . . .  ; h x , . . "  h x  n )c 
a 4-  2nA nH -~ n/2 " 

[(1/N)~,x~:,fh,~hx~} c ] 
(8) 

Here a is the lattice spacing, N the number of lattice sites, 4--. }c means connected 
part of the expectation value, and h x is one of the interpolating fields for the Higgs 
boson in eq. (6). Multiplying eq. (8) by the appropriate power (amH) 2~-4 of the 
Higgs boson mass, one obtains the dimensionless quantity 

l.n---- m 2~ 4AnH. (9) 

Since the coupling A~H is defined off-mass-shell (at p = 0), its value is not 
independent of the choice of the interpolating field h~. Only the corresponding on 
mass shell coupling is independent, and has an immediate physical meaning. The 
best estimate of the physical couplings of some particular state can be obtained by 
using the correlations of those quantities, which are most dominated by that state. 

Let us note that the zero momentum coupling )%H usually considered in weak 
coupling perturbation theory is not exactly the same as Ann, because it is "trun- 
cated" by n propagators (and not by ½n). One can, however, consider ratios of AnH, 
which coincide with the corresponding ratios of )%H, for instance, 

AnH )knH 

P(3}nH ~ IA3Hi./3 i~k3Hi./3 . (10)  

The Higgs-WW coupling is decisive for the decay of the Higgs boson, if it is 
heavier than twice the W-boson. On the lattice, in analogy to eq. (8), the zero 
four-momentum Higgs-WW coupling can be defined as 

(I /N  )EX1X2X3~.F~ h xIWx2g~Wx3r,I£) c 
a -  2A rtww _= 

[(1//N )~-~XlX2( h Xl h x 2 ~c ] 1/2(1//N )~x2x3~_~rl~(Wx2rtzWx3rlx~ c 
(11) 

Here Wx, ~ is one of the interpolating fields for the W-boson in eq. (7). A dimension- 
less quantity corresponding to A uww is, for instance, 

IHW w =- rnHmwA nw w . (12) 
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The numerical problem in the calculation of the zero momentum couplings in eqs. 
(8), (11) is the strong cancellation involved by taking the connected part. In order to 
see this more explicitly, let us consider, for instance, eq. (8) in more detail. Let us 
denote the lattice average of the interpolating field h x by h: 

1 
= ~ E h x .  (13) 

X 

Note that fz is proportional to the zero momentum component of h e. In terms of 
the connected part in eq. (8) is: 

1 
E (hx~...h~,,) c = N "  1(~,,)c. (14) 

X 1 . . ,  x n 

Therefore we have (n >/3): 

a 4 2nAnH = N " / 2 - 1  ( 1 5 )  

The cancellation involved in eqs. (14) and (15) is displayed by the large factors given 
by the powers of the number of lattice points (N). 

In order to obtain (~,)c, one can proceed (at least) in two different practical 
ways. The first is to calculate (h" )  in a straightforward way for different binnings 
of the sweeps and determine the connected part (~,)c from the sweeps belonging to 
one bin. This immediately gives an estimate of the errors of (f~,)c, too. Another 
possible way is to measure the probability distribution w(h, h + Ah) of the values of 

during the updating. The expectation value of fz" is, obviously: 

-"  - a h b ) .  (16) 
b 

Here the sum goes over the bins (h, h + Ah) for the values of h. Of course, this 
equation is exact only in the limit Ah ~ 0. The error estimate for (~,)c is somewhat 
cumbersome in this case, because one has to consider subsets of the performed 
sweeps, and obtain the probability distribution w and the value of (~,)c in these 
subsets. 

2.3. M O N T E  C A R L O  RESULTS ON 8 4 AT fl = 2.3 

In the Monte Carlo simulation at fl = 2.3 we mainly investigated the immediate 
vicinity of the confinement-Higgs phase transition. In the present section we discuss 
the results for the masses and couplings obtained on the 8 4 lattice. Some similar 
results on the 12 4 lattice were already published in ref. [6], and the comparison of 8 4 
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and 124 from the point of view of the order of the phase transition will be the 
subject of the next section. Most of the points in the coupling parameter space are 
at X = 0¢ and h = 1.0, but we have also a few points at h -- 0.1. 

The Monte Carlo calculation was performed by using the Metropolis method with 
6 hits per gauge invariant variables in the actions in eq. (3) and eq. (5). From 
previous experience [4] we know, that at such fl-values the inclusion of the gauge 
degrees of freedom is unnecessary. The site- and link-variables were updated in 
alternating sweeps in a randomly changing order. The acceptance rate was kept near 
! per hit. We always used the full SU(2) group on the links. The boundary 3 
conditions were periodic. The total number of double-sweeps was typically (8-10) × 
10 4 per point. The statistical errors were estimated by binning the data in bins of 
length 2 k (k = 0,1,2 . . . .  ), and estimating the standard deviations from the bin 
averages. Right on top of the phase transition very long time correlations were 
observed (sometimes in the order of 10 000 sweeps), therefore the error estimates did 
not always saturate with the increasing bin length. In these points the errors may be 
underestimated. Away from the phase transition the time correlations are consider- 
ably smaller and, therefore, the statistical error estimates are reliable. 

The measured masses in the W-boson (amw) and Higgs boson (amn) channels 
and some average quantities like the average link L, average p-link R, average 
plaquette P, average length P and average action per site s are collected in table 1. 
The definitions of the average quantities are 

L = ( ½ T r V ( x , g ) > ,  R=(½px+~p~TrV(x,l~)>, 

P =  (1 - ½TrVp>, 9 =  (9x>, 

s = 6 f l ( 1 -  ½TrVp) + (p  2 -  31ogpx+X(gx 2 -  1) 2) + 8 x ( 1 -  ½px+f,p~TrV(x,l~)). 

(17) 

The correlations could always be determined up to the largest distance (dma x = 4), 
therefore mass estimates could be obtained from all distances by using the formula 

a m  (d) = 
dmax - ~ l o g  + 1 (0 ~ d <  dmax) , (18) 

where C a is the correlation at distance d. Usually, d = 2, 3 gives already consistent 
results, that is, these distances are reasonably well dominated by the lowest state. At 
some points, for instance very near to the phase transition in the W-boson channels, 
am (3) was still definitely smaller than am (2). In such cases the time extension of the 
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TA8LE 1 
The W-boson mass ( a m w )  and Higgs boson mass (amH) in lattice units 

on 8 4 lattice at fl = 2.3 

x am w am H L R P p s 

oo 0.380 1.40(13) 1.35(14) 0.2325(2) 0.3930(1) 8.756(2) 
0.385 1.11(14) 0.68(7) 0.2403(4) 0.3922(1) 8.753(3) 

oc 0.388 0.94(11) 0.55(4) 0.2455(6) 0.3915(2) 8.744(5) 
0.390 0.78(9) 0 .45(5)  0.2504(6) 0.3907(2) 8.729(4) 

~c 0,392 1.16(12) 0.45(4) 0.2574(10) 0.3894(3) 8.702(7) 
oo 0,393 0.86(8) 0 .36(4)  0.2601(10) 0.3889(2) 8.694(6) 

0,394 0.76(8) 0 .33(3)  0.2638(10) 0.3882(5) 8.677(14) 
0,395 0.68(6) 0 .32(3)  0.2690(12) 0.3871(6) 8.653(14) 

oo 0.396 0.66(6) 0.39(4) 0.2741(13) 0.3858(4) 8.633(12) 
oc 0.397 0.66(6) 0 .39(4)  0.2787(11) 0.3849(6) 8.60(2) 

0.398 0.53(7) 0 .41(3)  0.2863(10) 0.3833(3) 8.561(6) 
ac 0.400 0.66(7) 0 .54(7)  0.2933(7) 0.3822(2) 8.536(4) 

0.402 0.56(5) 0 .56(7)  0.2992(6) 0.3814(1) 8.518(4) 
0.405 0.51(5) 0.91(10) 0.3071(4) 0.3804(1) 8.494(3) 
0.410 0 .53(4)  0.82(7t 0.3214(3) 0.3784(1) 8.448(2) 

1.0 0.3036 0.64(9) 0 .32(3)  0.2576(16) 0.3585(25) 0.3871(3) 1.1254(6) 8.406(9) 
1.0 0.3038 0.61(6) 0 .29(3)  0.2701(18) 0.3780(29) 0.3847(3) 1.1301(7) 8.332(9) 
1.0 0.3039 0.74(6) 0 .33(3)  0.2666(18) 0.3724(29) 0.3857(4) 1,1288(7) 8.357(10) 
1.0 0.3040 0.58(6) 0 .33(3)  0.2720(20) 0.3809(31) 0.3845(3) 1,1309(7) 8.322(10) 
1.0 0.3041 0.62(6) 0 .31(3)  0.2678(21) 0.3743(33) 0.3855(3) 1,1293(8) 8.352(10) 
1.0 0.3042 0.69(8) 0 .31(3)  0.2727(21) 0.3821(33) 0.3846(3) 1,1312(8) 8.325(10) 
1.0 0.3045 0.67(7) 0 .46(4)  0.2790(13) 0.3921(21) 0.3831(3) 1.1336(5) 8.283(9) 
1.0 0.3070 0.53(5) 0.68(4) 0.3015(8) 0.4283(13) 0.3798(2) 1.1428(3) 8.171(4) 
0.1 0.194 0.55(5) 0 .25(3)  0.2882(46) 0.683(13) 0.3809(5) 1.4245(39) 7.360(17) 
0.1 0.196 0.53(5) 0 .86(3)  0.3485(6) 0.8710(20) 0.3733(2) 1.4800(6) 7.059(4) 
0.1 0.250 1 .12(3)  2 .14(6)  0.7475(2) 3.5955(18) 0.31235(4) 2.1778(3) 3.481(2) 

The average quantities L, R, P, 0 and s are defined in eq. (17). The statistical errors in the last 
numerals are given in parentheses. 

84 lattice is obviously too small for a good mass estimate. In any case, the masses in 
table 1 can be taken as upper limits. From this point of view, the situation on the 
124 lattice is much better, because there a m  (d) could be taken with dm~ x -- 6. 

The masses of, respectively, the W-boson and Higgs boson are shown in fig. la  
and lb  as a function of the link expectation value L. The figures show that the 
approximate universality observed in ref. [4] is good within the considerably smaller 
errors of the present calculation, too. In particular, the universality is not worse in 
the Higgs channel than in the W-channel, quite contrary to the weak coupling 
perturbation theoretic expectation. The only point where a deviation from universal- 
ity of the Higgs mass may be indicated by the data is at (X = 0.1, m¢ = 0.194). This 
point, however, is in the region of the phase transition, where metastability can be 
observed (see next section). Since the metastability is strongly volume dependent, 
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Fig. la. The W-boson mass in lattice units ( amw)  as a function of the link expectation value 
L = (~Tr V(x, ~)) for different ;~-values at fl = 2.3, on 8 4 lattice. 
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Fig. lb. The same as fig. la, for the Higgs-boson mass (amH). 
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such points are not characteristic to the infinite volume limit. (In the next section we 
shall also see that the metastability effects mainly the Higgs mass.) 

The new data confirm the qualitative behaviour of the masses seen in ref. [4], The 

W-mass is large below the phase transition. Just below the phase transition and in 
the phase transition region itself it drops rapidly to a value about am w - 0.5 and 
stays practically constant, with a rather slow increase, above the phase transition. 

The Higgs mass am H is greater or equal than am w in the Higgs phase (i.e. above 
the phase transition), and smaller than am w in the confinement phase (i.e. below 
the phase transition). Inside the phase transition region am n has a rather small 
value ( a m  H = 0.3 on the 84 lattice). All these features are in good agreement with 

the recent findings of the Aachen-Graz group [8] at slightly different parameter  
values. 

For some technical reasons, the zero momentum couplings were not determined 
in every point. We have only two points with full statistics for the n-Higgs couplings 

(n H; n = 3, 4, 5, 6) and for the Higgs-WW coupling (HWW). As discussed in sect. 2, 

these quantities are, in general, difficult to calculate with an acceptable statistical 
error, because the extraction of the connected parts from the correlation functions 
involves a high degree of cancellation. From this point of view the HWW coupling 

is somewhat more favourable than the 3H coupling. The 4H and 5H couplings are, 
of course, even more difficult, and the 6H coupling is not measurable at all within 
our statistics. 

The two points where the couplings were determined are (always with/3 = 2.3): 

poin t  A: )t = 1.0, K = 0.307; poin t  B: X = 0.1, K = 0.196. (19) 

We tried both methods for the extraction of the connected parts discussed in sect. 2. 
The probabil i ty distribution w for the average values was collected in 10000 bins. 
The two ways gave for the couplings identical results within errors. The distribu- 
tions of the averages O, L and R at point A are shown in figs. 2a-2c. The results for 
the nH couplings a~J) obtained by using the interpolating fields h o), ( j  = 1, 2, 3) in ~ n H  

eq. (6) are: 

A: 

a 2A(1) = - 5 . 6  ± 2 . 5 7  

a -l~.~H = - -  11.0 + 5.5, 
2At3) a 3H = - 9 . 4 + 5 . 2 ,  

6 M 1 )  
• 4 A ( I )  - -  (2.9 + 1.6) × 10 2 a ~sn 

u ~ 1 4 H  - -  __ 

4,~z) _ (9.8 + 4.7) × 10 ? • 6 A ( 2 )  
a i I 4 H  -- __ u ~ X 5 H  

a 4A~3 h = ( 9 . 4 + 4 . 5 )  ×102 ,, 6A,3t 
- -  ~ ~ 5 H  

= ( - 1.5 +_ 1 .3)  × 10 4 

= ( - 4 . 7 _ + 4 . 5 )  × 1 0 4 ,  

= ( - 3 . 3 _ + 4 . 2 )  X 1 0 4  

2a~11 -6 .9  + 3.2 a ~ 1 3 H  ~ _ 

B: a ---_~H = --12.6_+ 5 .0 ,  

eao) -- 7.8 + 4.3 

4A(I) - -  (4.3 + 1.9) × 102 a 6A(51) 
a I X 4 H  - -  __ 

a 4 A ( 4 )  H = ( 8 . 5  + 2 . 7 )  X 1 0  2 , a 6 A ( ? )  
- ~ 5 H  

• 6 A ( 3 )  4A~3) =(5.0+_2.6) ×10 2 , - ~5H 
a I I 4 H  

=( -1 .1_+0 .5 )  ×10 5 

= ( - 6 . 0  + 8.8) × 104 . 

= ( - 4 . 5  +_ 7.7) × 1 0  4 

(20) 
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Fig. 2a. The distribution of average field length (P) in the point (X = 1, # = 2.3, ~ = 0.307) during the 
updating. 
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Fig. 2b. The same as fig. 2a for the average link (L). 
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The errors are, unfortunately, still very large. The dependence on the choice of the 
interpolating field is reduced for the ratios defined in eq. (10). For instance, for the 
3H and 4H couplings we have: 

A: ,,(1) - 2 8 . 9 ,  (2) 39.8  p(3) - ~ 4 7 . 6  
v ' ( 3 ) 4 H  - -  P ( 3 ) 4 H  ~ , ( 3 ) 4 H  , 

B: ,,~1) - 33.0, ,,~2) - 29.0 pO) = 32.1 (21) V ( 3 ) 4 H  - -  ~ ' ( 3 ) 4 H  - -  , ( 3 ) 4 H  • 

Let us remark that in a recent paper [9] the zero-momentum renormalized @4 
coupling in the one- and four-component @4 model was calculated from the 
probability distribution w of averages. The aim was to obtain an upper bound on 
the Higgs boson mass. Since the Monte Carlo calculation in ref. [9] has only a rather 
limited statistics (42000 sweeps on 44 and 14000 sweeps on 64 lattice), it seems to 
us that the quoted small errors are incorrect. (The way of estimating the errors is not 
discussed in the paper.) 

The HWW coupling has smaller errors, and its dependence on the choice of h (j), 
( j  = 1,2, 3) is negligible compared to the statistical errors, therefore we averaged 
this coupling over j .  The influence of the choice of the interpolating field for the 
W-boson w (k), (k = 1,2) in eq. (7) is more significant: 

-2a (k= l )  _ 1 .66  + 0 . 2 8 ,  , , -2A~k-2)  _ 2 .56  + 0.24, A :  a ~ H W W  - -  - -  t~ ~ H W W  - -  - -  

B" ,,-2a(k=l) = 1.60 + 0.21 . , -2A(k=2) _ ~  3.34 + 0.27 (22) .z x H W W  _ , u ~ x H W W  - -  " 

One can see that, within the present errors, the couplings show no dramatic 
h-dependence. (Note that, according to table 1, the link expectation values are only 
approximately equal in the two points.) Of course, the large errors of the nH 
couplings, unfortunately, prevent any firm conclusions for the moment. A dedicated 
high statistics numerical study of the couplings clearly deserves future attention. 

3. 8 4 v e r s u s  12 4 lattice 

3 . 1 .  Q U E S T I O N I N G  T H E  O R D E R  O F  T H E  P H A S E  T R A N S I T I O N  

The order of the confinement-Higgs phase transition is an important issue in the 
standard SU(2) Higgs model. In particular, the existence and properties of the 
continuum limit at the fl = ~ critical points may depend also on the order of 
the phase transition at finite ft. In the case of a second-order phase transition line in 
the ~ = const planes the correlation lengths are infinite along this line. This allows 
for the expected exponential rise of the correlation lengths exp(const fl) along the 
renormalization group trajectories (RGT's) going to the critical point at/3 = ~ near 
the phase transition line. (For a recollection of the definition of renormalization 
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group  trajectories or "curves of  constant  physics" in a lattice field theory with 

several coupl ing parameters see appendix A.1.) The picture of the R G T ' s  in the 

(/3, x)-plane could then qualitatively be given by fig. 3a. In this case the analogy 

between the SU(2) gauge theory with scalar doublet  matter  field (for ?~ -- fixed) and 
an SU(2) gauge theory with a spin-½ fermion doublet is almost perfect, since for 

fermions there is also a second-order critical line at zero fermion mass. If, however, 

the phase transit ion line in the Higgs model is first order  everywhere except for the 

endpo in t  at fl = oo (where it is second order), then there is no reason for the 

correlat ion lengths to diverge for finite/3. If  the maximum of the correlation lengths 

does not  increase sufficiently fast for/3 ~ oo, then the (approximate) R G T ' s  can not 
reach the critical point  at /3 = oo: they end on the discontinuity at the first-order 

line for some finite correlation length, as it is shown by fig. 3b. In  this case the 

critical point  a t / 3  = oo is likely to be trivial (i.e. equivalent to the pure gauge theory 

\ ;K = const. 
\ .  \ ! 

\ .  " \  
. \ " \  \ 

• . " . • 

~ ~cr(~ 

Fig3a 

Fig. 3a. The schematic picture of RGT's in a ?, = const plane in the case of a second-order phase 
transition line (full line). The dashed-dotted lines are the RGT's in the Higgs-phase, the dashed ones the 

RGT's in the confinement phase. The correlation lengths diverge for fl --* o~. 
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\ ~, -- co ns't. \. "x. 
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,~.cr(k) 

Fig. 3b. The same as fig. 3a in the case of a first-order phase transition line (full line) ending in a second 
order point fl = oo, rot(X), provided that the correlation length along the phase transition line is not 

increasing fast enough for fl --* oo. 
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in the confinement phase and to a free theory of massive bosons in the Higgs 
phase). Therefore, in the case of a first-order phase transition line, the sufficiently 
fast increase of the maximum correlation length along the line is a non-trivial 
requirement for the existence of a non-trivial continuum limit in the fl = ~ critical 
point. 

Recent high-statistics Monte Carlo results imply [8] that for small ~ the confine- 
ment-Higgs phase transition is strongly first order. For increasing ~ a n d / o r  
increasing fl it is observed that the first-order transition becomes weaker. Therefore, 
in principle, it is possible that on the phase transition surface there is a tricritical 
line and beyond this the transition is second order. However, as far as the 
h-dependence is concerned, this does not seem to happen for fl = 2.3, because of the 
two-state signal observed on a 12 4 lattice [6]. In this section we want to elaborate on 
the question of the two-state signal by presenting more details of the 12 4 calculation 
and also by comparing the behaviour near the phase transition on 8 4 and 12 4 

lattices. 
The investigation of the volume dependence is important, because a statement 

about the order is, in fact, a statement about the volume dependence for very large 
volumes. Mathematically speaking the distinction refers only to the infinite volume 
limit but, of course, the qualitatively different features normally set in on finite, but 
large enough, lattices. In the case of an expected first-order phase transition, 
however, one has to be aware of the peculiar volume dependence implied by the 
metastability of the two phases. On a finite lattice the first-order phase transition is 
" rounded-off"  and there is a finite range of parameters (in our case, for fixed 2, and 
fl, a range of x), where the system shows metastability and flips between the two 
phases during the Monte Carlo iteration. This, of course, implies long-range 
correlations. For increasing volume the range of metastability in x shrinks to zero 
and also moves towards the discontinuity point for infinite volume. (For a sys- 
tematic approach of the description of finite size effects in phase transitions see the 
recent paper of Br6zin and Zinn-Justin [10], where references to previous work can 
also be found.) As a consequence, the observation of long-range correlations in a 
finite volume does not necessarily mean second-order phase transition. In the case 
of a first-order phase transition, for fixed parameter values which do not coincide 
with the discontinuity, the long-range correlation disappears once the volume is 
large enough. At a second-order phase transition the region of large correlation 
lengths has a finite limiting extent. In other words, for a first order phase transition 
there are strong finite size effects in the region of metastability. Therefore the 
metastability region has to be avoided if one wants to draw conclusions about the 
properties of the infinite volume system. 

3.2. TWO-STATE SIGNALS 

The Monte Carlo calculation on the 12 4 lattice was performed in the same way as 
on 8 4 (the number of sweeps was (8-12) × 10 4 per point). Some results on 12 4 were 



W. Langguth et al. / SU(2)  Higgs model  

TABLE 2 
Summary of the masses and average quantities obtained 

on 124 lattice at/~ = 2.3 

25 

)~ K am w am H L R P p s 

0.390 1 .26(6)  0.40(2) 0.2485(2) 0.39126(8) 8.744(2) 
oc 0.392 0.82(6) 0.35(2) 0.2535(3) 0.39047(9) 8.729(2) 
oG 0.394 0.70(8) 0.35(4) 0.2599(4) 0.38937(15) 8.706(4) 
oo 0.395 0.73(6) 0.21(2) 0.2677(8) 0.3876(3) 8.664(7) 

0.396 0.47(3) 0.24(2) 0.2735(6) 0.3864(4) 8.629(9) 
0.397 0.31(4) 0.26(2) 0.2783(6) 0.3854(3) 8.610(8) 
0.398 0.45(4) 0.44(3) 0.2856(4) 0.38377(14) 8.570(4) 
0.400 0.48(2) 0.53(4) 0.2931(3) 0.38253(11) 8.544(4) 
0.410 0.51(2) 0.79(3) 0.3214(2) 0.37860(5) 8.450(2) 

1.0 0.3020 1.18(23) 0.63(7) 0.2378(4) 0.3275(6) 0.39125(9) 1.1177(2) 8.520(3) 
1.0 0.3041 0.53(4) 0.16(1) 0.2651(14) 0.3702(21) 0.3863(3) 1.1284(5) 8.373(10) 
1.0 0.3042 0.52(5) 0.17(2) 0.2682(14) 0.3750(21) 0.3855(3) 1.1295(5) 8.352(8) 
1.0 0.3045 0.40(3) 0.18(2) 0.2751(14) 0.3860(22) 0.3840(3) 1.1322(5) 8.304(9) 
1.0 0.3050 0.39(3) 0.35(4) 0.2865(6) 0.4039(10) 0.3821(2) 1.1365(3) 8.244(4) 
1.0 0.3070 0.50(3) 0.57(5) 0.3030(4) 0.4308(6) 0.37973(6) 1.1434(2) 8.167(2) 
1.0 0.3100 0.52(3) 0.78(4) 0.3229(3) 0.4639(5) 0.37720(6) 1.1520(1) 8.076(2) 

already published in ref. [6], for instance the masses and some average quantities. A 
summary for the 124 lattice, similar to table 1, is given by table 2. 

The main emphasis in the comparison of 84 to 124 lattice was put on the 
behaviour at the phase transition. A study of the time dependence of the average 
quantities during the updating revealed a clear signal of metastability in a narrow 
range of ~ (in the order of AI¢ -- 10-3-10-4) .  The resulting two-peak structure of 
the distribution of the average plaquette was shown in ref. [6]. The time dependence 
of the average plaquette at (X -- 1.0, K = 0.3041) is given in fig. 4a. One point in the 
figure represents the average of 200 sweeps, but this averaging is not essential, it was 
chosen mainly for the better optical presentation. Taking averages over less sweeps 
(say 50 or 100) gives the same qualitative picture, of course, with larger intrinsic 
fluctuations within a phase. The two-peak structure of the distribution can also be 
seen without averaging (the curves become even smoother because of the large 
number of entries). The two peaks show up also in other average quantities, like 
average link, average o-link, average length, average action etc. For another exam- 
ple, the time dependence and the distribution of the average link is shown in fig. 
4b-4c.  

On the 84 lattice a similar behaviour can be seen near the phase transition at a 
slightly smaller K. For instance, the time dependence and distribution of the average 
link in the point (X = 1.0, K = 0.3038) is shown by fig. 5a-5b. Although the 
fluctuations in fig. 5a make an optical impression similar to fig. 4b, the more 
reliable representation in terms of the distribution in fig. 5b implies that the 
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two-state signal is weaker on the 84 lattice. (In fact, the appearence of several points 
in table 1 close to each other in t¢ is the result of a long search for metastability.) 
Fig. 5b alone would certainly be inconclusive for the existence of two metastable 
states. Going to a smaller h-value makes the search for metastability much easier. 
For  instance, the distribution of the average link on the 84 lattice at (k,=0.1,  
~¢ = 0.194) in fig. 5c shows a bump at a low average link. In the time development 
there is a clear flip to the low value. In fact, we planned this point for the 
measurement of the couplings, and the metastability was for that purpose an 
unpleasant surprise. Fig. 5c also shows that the distance of the two peaks is 
substantially larger at ~ = 0.1 than at 3k = 1.0, that is, for small ?~ the region of 
metastability is extending in the average link variable. Therefore, near the phase 
transition one has to be careful about the judgement of A-universality, because it 
can be better in the large volume limit than for a fixed, relatively small, volume. 
This may explain the "bad"  ~ = 0.l point for the Higgs mass in fig. lb. 

The lesson from all this is that for the distinction of first versus second-order 
phase transition one has to (i) tune the coupling parameters very carefully, (ii) 
collect high statistics (in the range of 105 sweeps or more), and (iii) use large lattices 
(with 104 sites or more). In our opinion, the weaker two-state signal at ?, = oo on 
the 124 lattice [6] can be expected to become stronger (and conclusive) on lattices 
like 164 or  20 4. Therefore, the confinement-Higgs phase transition is probably first 
order at fl = 2.3 for every ?~. 
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3.3. V O L U M E  D E P E N D E N C E  OF THE SUSCEPTIBILITY 

The critical behaviour near a phase transition can also be investigated by 
calculating the normalized susceptibility X L for different lattice sizes L. The 
definition of X L can be 

~,y[(TrV(x,#)VrV(y, tt)) - (TrV(x, l~))(TrV(y,  tt))] 
XL= ([Tr  V(x,/~)]2) - (Tr V(x,/~)> 2 

(23) 

Due to the lattice symmetries, this does not depend on x and #. Another possible 
definition would be to sum in the numerator over the link directions, too, but as 
short checks in a few points showed, this does not change any of the qualitative 
features. Therefore, we used the above definition, which was easier to implement in 
our programs. 

Following the ideas of finite size scaling [11], it is customary to fit the susceptibil- 
ity Xt. o n  L 4 lattice by the form [12,13] 

x L =   L)2} 2' ' (24) 

Here x L is the position of the maximum of susceptibility on the L 4 lattice. (It is 
assumed here, for simplicity, that only the hopping parameter ~ changes, the other 
two couplings X and fl are fixed.) Besides the critical exponent of the correlation 
length p < ½ there are two arbitrary parameters C, ~2, which provide a simple 
parametrization of an arbitrary scaling function. 

The data for XL (L = 8,12) are shown in fig. 6. Besides XL an analogous quantity 
in the W-boson channel is also given, which is defined similarly to X L, only in eq. 
(23) Tr V is replaced everywhere by Tr(zV). As one can see, the phase transition 
influences X L strongly, but the analogous quantity in the W-channel shows no 
appreciable structure. Obviously, the phase transition dynamics is dominated by the 
zero momentum mode in the Higgs boson channel. 

For the susceptibility X L not even a qualitative fit could be achieved by the form 
in eq. (24). The reason is that the growth of the maximum between 8 4 and 12 4 
would require a critical exponent u-- 52 (this corresponds to the roughly linear rise 
of the maximum with L). For such values of ~,, however, the above form cannot 
reproduce the general shape of the curves, which have a somewhat flat plateau near 
the maximum and a rather abrupt decrease. Another functional form we also tried 
w a s  

x L = C { L  4/~+X4(~-xc)n} "-°s (25) 

This gives a somewhat better description if the asymmetric 8 4 points, farther away 
from the maximum, are omitted from the fit. The 8 4 curve shown on fig. 6 belongs 
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to (C = 0.6, p = 0.41, ~k 4 ~--- 8 0 ,  I£ 8 = 0.3955). This describes the central part  of the 84 
points well, but  the best choice of x12 = 0.396 fails to reproduce the 124 curve. (The 
X 2 is about  100.) We were unable to find any better simple fit. We are aware of the 
fact that logarithmic deviations from the above simple forms are expected in 
dimension four [14], but we do not think that this could explain the observed large 
deviations. Therefore, our conclusion is that the finite size analysis does not agree 
with the shape of the susceptibility curves. This is consistent with our expectation 
that the confinement-Higgs phase transition at /3 = 2.3 is of first order for every ~. 
Nevertheless, we do not consider the finite size analysis alone decisive. The main 
argument  in favour of the first-order transition comes from the observation of the 
two-state signal. 

Note  that the authors of ref. [13] also concluded from their finite size analysis that 
the phase transition is of first order. Their argument, however, was based mainly on 
the apparent  lack of increase of the maximum between L = 4 and 5. Here one can 
see, on larger lattices and with much better statistics, that the situation is more 
subtle because the maximum does increase with L. Obviously, finite size scaling 
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ideas are applicable, if at all, only to really large lattices and at the same time good 
statistics and a reasonable relative change in lattice size is required, in order to see 

some effect. 

4. Weak physical gauge coupling 

4.1. HOW TO CHOOSE THE BARE PARAMETERS? 

The measured points in the region/3 = 2-3 describe a situation with strong SU(2) 
gauge coupling at the scale of the W-mass (see, for instance, the discussion in ref. 
[4]). In the standard electroweak theory the gauge interaction is weak. It would be 
obviously interesting to perform numerical calculations also in this physically 
relevant range, particularly in the strong self-coupling region where perturbation 
theory in ?t is not applicable. 

The strength of the gauge interaction can be characterized by the coefficient of 
the Yukawa potential a w at distance mw 1. This could simply be defined in terms of 
the derivative of the potential at r = m w 1, but later on we shall use a definition 
which is better suited for a lattice calculation. Specifying the physical distance is, of 
course, absolutely crucial because the shape of the potential is not purely Yukawa- 
like. For instance, in QCD with a single quark mass parameter the short-distance 
potential is known to behave as V ( r ) -  A / ( r  ln(r/Ac) ), and therefore it would not 
make sense to characterize the physical situation by the coefficient of the Coulomb 
force, unless the distance is fixed. By putting r = m~ 1 (m +=  mass of the lowest 
quark-antiquark bound state) one could, however, uniquely define the physics by 
the value of [rZdV/r]r=,,8~. (What is specified here is, of c o u r s e ,  mff/Alattice. ) 
Similarly, in the Higgs model one has to fix the distance near mw 1. Besides the 
analogy to QCD with a single heavy quark mass there is, however, also an important 
difference. Namely, the infrared physics is cut-off in the Higgs phase by the mass of 
the W-boson, therefore (unlike in QCD) the force between static external charges 
will never be strong (Alattic e is in the Higgs model the scale where the gauge 
interaction "would become strong" if there were no Higgs mechanism). The absence 
of the infrared tail makes the numerical MC calculations in the Higgs phase with 
weak gauge coupling much easier than, say, the corresponding calculations in QCD 

with a very heavy quark m a s s  (mq~/Alattic e >> 1). 

Where could the points in the space of bare parameters be which describe weak 
gauge interaction at the W-mass scale? We know from previous studies [4] that in 
the Higgs phase a w decreases and RHW- mH/m w increases if x is increasing. At 
the same time ~ w - a m w  and /~H--amH are increasing, too, therefore at fixed 
?, - 1 and /3 - 2-3 it is not possible to reach the small a w region, because/~w and 
/~ H will become too large (therefore the lattice artifacts will become dominant). One 
can, however, simultaneously increase/3 in order to keep/z w and /~H below, say, 1. 
The scalar self-coupling ?~ seems to be irrelevant in the wide range 1.0 ~< ?~ ~< ~ ,  at 
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least as far as the limited accuracy of the present Monte Carlo data can tell. 
Therefore, the value of k can be fixed for convenience, and only the two relevant 
parameters /3 ,  ~ have to be tuned. 

At small distances the coefficient of the Yukawa potential is expected to decrease 

logarithmically. In a Monte Carlo calculation on very large lattices and with very 
good accuracy one has to worry about this slow change, too, but in a first 
exploratory study the sensitivity is usually not good enough, therefore, as a first 

orientation, the value of a w can be taken from a simple potential fit as in ref. [4]. In 
the present calculation a more detailed investigation below will show a rather weak 

dependence on the distance, too (see eqs. (35)-(37)). In the standard SU(2) ® U(1) 
electroweak theory the value of the renormalized SU(2) coupling 2 gr~ =- 4~aw at the 
scale of the W-boson mass is 2 grin = 0.5, corresponding to a w = 0.04. (Here we 
neglect possible differences due to the different definitions of the renormalized 
gauge coupling: the couplings are usually defined in momentum space and not by 

the potential  in coordinate space.) In view of gren 2 = g -2  + O(1), a good first guess is 
to take/3 - 4g -2 = 8 and then try to tune the hopping parameter x in such a way 

that a m  w and a m  H be in the measurable range 0.1-1. 
A potential  difficulty for the numerical calculation is if R nw becomes too large, 

because a mass ratio of the order of 10 or more is difficult to control with the 
presently available computing capacities. A first check at k = 1, /3 = 8 and ~ = 
0.28-0.32 on 104 lattice showed [5] that m H / m  w is about 6, which is difficult but 

seems feasible. 
In this section we shall present and discuss the results of a high statistics Monte 

Carlo calculation at /3 = 8. For such a high/3 the inclusion of the gauge degrees of 
freedom is important,  therefore we used the lattice action in eq. (1). Otherwise the 
calculation was performed in the same way as at /3 = 2.3. The value of the scalar 
self-coupling was k = 1.0. On a 104 lattice we have chosen the hopping parameter 

= 0.30 and performed about 5 x 104 full sweeps. We shall refer to this point as 
point C. The other point is at K = 0.28, on 124 lattice, and has about 2 × 105 
sweeps. This will be called point D. The main emphasis of this first calculation at 
large/3 was put on the precise determination of the correlations in as large a spatial 
volume as possible. This motivates the choice of symmetric lattices, where the 
correlations between timeslices could be determined after every sweep in all four 
time orientations. For some questions elongated lattices in the time direction are 
advantageous, therefore in later calculations with higher statistics such asymmetric 
lattices should be considered, too. In general, we consider the present calculation 
only as a first exploratory study. As we shall see, the actual numbers obtained may 
have large systematic errors on our lattices. The main point we want to make is that 
the numerical Monte Carlo calculation at high /3 is not very much more difficult 
than at /3 = 2 -  3. The relaxation behaviour of the scalar degrees of freedom is 
completely normal and is quite similar to the behaviour in the pure ~4 model at 
/3 = oo. There is some noticeable rigidity in the gauge degrees of freedom, mani- 
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rested by a slow drift of expectation values at the scale of a few thousand sweeps, 
but the amplitude is small even in the long-distance quantities (like large Wilson 
loops or long-distance correlations). In short, the numerical Monte Carlo investiga- 
tion of the standard electroweak model with strongly interacting Higgs sector in the 
physical range of weak gauge couplings is feasible. A possible stategy for future 
large scale computations in the standard Higgs model is outlined in appendix A.2. 

Future Monte Carlo calculations will hopefully allow for some limited change of 
the lattice spacing, too. In order to follow some singled out renormalization group 
trajectory (RGT), one has to keep a w (or m l q / m w )  fixed for decreasing am w. If 
the qualitative picture of the RGT's is given by fig. 3a, then the RGT goes first close 
to the phase transition and then it goes to fl = o¢ almost parallel to the phase 
transition line. In this latter stage the massless RG equation gives a good description 
of the change of lattice spacing. In the lowest order approximation the lattice 
spacing a depends exponentially on fl: 

aA su(2 ) ~ exp( - 12_2n] (26) 

Here A su~2) is the RG invariant A-parameter for SU(2). In case of fig. 3b, eq. (26) 
can still be approximately valid, but then the lattice spacing has a non-zero 
minimum value, corresponding to the finite fl where the singled out RGT ends. 
Taking, as a first approximation, the mass independent eq. (26) down to am w 

0.1-1, we have at fl = 8 

m w / A  su(2) = 108-10 9. (27) 

This tells that the infrared scale of the SU(2) gauge coupling, where a w would 
become o(1) (would there be no Higgs mechanism) is far below the scale of the 
W-mass. The large ratio in eq. (27) may seem unnatural. In any case, one would like 
to have an explanation for it. 

4.2. YUKAWA POTENTIAL 

In order to determine the static energy (in short, "potential") of an external 
SU(2) doublet charge pair, the Wilson-loop expectation values were calculated in 
both points at fl = 8. The statistics for the Wilson loops was collected in about 8000 
sweeps in point C and about 30000 sweeps in point D on the 104, and 124 lattices, 
respectively, used also for the measurement of the correlations. Actually, for a more 
accurate extraction of the large-distance potential elongated lattices would be better 
suited. From the experience gained in pure gauge theory it is known that a precise 
measurement of the potential at distance R requires time extensions T >> R. For our 
present purposes it is, however, enough to know the intermediate distance part of 
the potential with moderate accuracy. The results for the Wilson loops are sum- 
marized in table 3. The potential at lattice-distance R was extracted from the 
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TABLE 3 
The expectation values of the Wilson loops WR, 7 = WT, R in the two points 

C and D defined in the text 

T = I  T = 2  T = 3  T = 4  T = 5  T = 6  

R = 1 0.90401(1) 0.83894(2) 0.78215(3) 0.72991(4) 0.68135(4) 0.63608(5) 
R = 2,1 0.90432(2) 0.75448(4) 0.68797(5) 0.62942(6) 0.57643(7) 0.52812(8) 
R = 3,2 0.83960(5) 0.75577(9) 0.62033(7) 0.56290(8) 0.51181(9) 0.46580(10) 
R = 4,3 0.78311(7) 0.68984(13) 0.62301(16) 0.50827(10) 0.46043(12) 0.41776(13) 
R = 5,4 0.73116(8) 0.63179(14) 0.56626(19) 0.51247(23) 0.41608(14) 0.37687(16) 
R = 6,5 0.68286(9) 0.57925(16) 0.51583(21) 0.46546(26) 0.42211(32) 0.34107(17) 

Entries below the main diagonal refer to the point C (10 4 lattice), the rest gives the result in point D 
(12 4 lattice). Statistical errors are given in parentheses, 

Wilson loops WR, r by fitting the T-dependence with two exponentials for 1 ~< T 4 5 
on the 10 4, and for 2 ~ T~< 6 on the 12 4 lattice. Alternatively, a single exponential 
fit for T >/4 was also performed, in order to reduce the dependence on the small T 
region. The numbers given below for the potential were obtained by the first 
procedure. As the reader can easily check from table 3, the second method gives, 
within errors the same result, although with somewhat larger errors. 

The shape of the potential is expected to be Yukawa-like, corresponding to the 
massive W-boson exchange. On our lattices the physical potential is, however, 
distorted by both finite lattice size and finite lattice spacing effects. Since we are in 
a region of small gauge coupling, these effects can presumably be described (and 
corrected for) by lowest order perturbation theory. Let us, therefore, briefly consider 
the Yukawa potential in lattice perturbation theory. 

The Yukawa potential in the continuum is generated by the exchange of a 
massive boson and is proportional to the integral 

d3k  e ikr 1 

I(r'm)= f (2w)3 k2+m 2 4~rr - . , r  ( 2 8 )  e 

with r - [r I. A lattice version is given by 

where 

I(r,  m, a) = f, ,/2 d3k e ikr 
- , , / ,  (2~') 3 k 2 + m 2 ' 

(29) 

2 
~c~ = - s in~k~a .  (30) 

a 

Note that if aM is the mass determined by the decay of a 2-point function, then in 
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the propagator one has am = 2 sinh{aM. If we consider the Wilson-loop in per- 
turbation theory and give the vector boson a mass, then in lowest order we obtain 
(for SU(N)) 

1 N 2 - 1  
V ( r ) = -  lim WR,T =  log - -  f=/" d3k (1 - -  e ik3r) 1 

-,~/~ (2~r) 3 ~c 2 + m z 
- -  +o(g ' )  

N 2 - 1  
= c o n s t -  a0.4~r-~-- ~ I ( r ,  m, a) + o(g  4) 

= c o n s t - a  0 • 3 ~ r I ( r , m , a ) +  o(g4) .  (31) 

Here we used R - r / a ;  a o - g2/(4rr), and in the last step we have put N = 2. The 
integral in eq. (29) refers to the infinite volume limit. The deviations from the 
continuum integral give finite a effects. For small a we have, keeping m, r fixed 

4~7r { a2 [1 + m r +  ~(mr) 3] + o ( a 4 ) }  I ( r ,  m ,  a )  = e -mr 1 + 4r---- f (32) 

In our case we have relatively small volumes and large loops, therefore we expect 
significant finite volume effects. To get an estimate of such effects we consider a 
finite volume version of I ( r ,  m,  a )  (with l ~ a L  as the physical lattice extension): 

1 e ip3R 

a I ( r ,  m ,  a, 1) - J ( # ,  R ,  L )  = - ~  Z • 
t, z Ei4 sin2(lpi ) + (33) 

Here we have put # = am,  and the sum goes over the vectors p 

2rrn i 
P i -  L ' II i =  0 . . . . .  L -  1. (34) 

The difference of sums J ' ( t t ,  R, L)  = J(#,  R - 1, L)  - J(#,  R, L)  for (# = 0.19, 
L = 12), respectively, (# = 0.24, L = 10) is given in table 4. One can see that for the 
larger R-values the finite volume effects are sizeable. The dependence on # is small 
in this range. 

We define an effective SU(2) gauge coupling on our lattices by 

a V ( a R ) -  V ( a R -  a )  

° t s u ( 2 ) ( R )  = 37r J ' ( ~ ,  R, L)  (35) 

From the Monte Carlo data in table 3 we obtain, in point C with (# = 0.24, L = 10) 
for distances R = 2, 3, respectively: 

C: asu(2)(R = 2,3) = 0.0478(5), 0.051(4). (36) 
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TABLE 4 

T h e  f i n i t e  s ize d e p e n d e n c e  o f  J ' ( / z ,  R ,  L )  fo r  a f e w  c h a r a c t e r i s t i c  p a r a m e t e r  v a l u e s  

R LL = 0 .19 ,  L = 12 ~ = 0 .19,  L = 20 ~ = 0.19,  L = oc ,tt = 0.24,  L = 10 ~ = 0.24,  L = 

2 4 . 1 6 8 E  - 2 4 . 1 7 0 E  - 2 4 . 1 7 1 E  - 2 4 . 0 8 8 E  - 2 4 . 1 1 4 E  - 2 

3 1 . 3 9 3 E  - 2 1 .410E  - 2 1 .412E  - 2 1 .315E  - 2 1 . 3 6 9 E  - 2 

4 5 . 7 9 5 E  - 3 6 . 1 7 4 E  - 3 6 . 2 0 9 E  - 3 4 . 9 1 0 E  3 5 . 8 7 1 E  - 3 

5 2 . 5 5 1 E  - 3 3 . 2 2 4 E  - 3 3 . 2 7 5 E  - 3 1 . 3 2 0 E  3 3 .009E  - 3 

6 7 . 3 8 9 E  - 4 1 .861E  - 3 1 .931E  - 3 

This is somewhat larger than the value reported in ref. [5], because there just a 
simple Coulomb form was assumed for the short-distance potential. In point D with 
(/z = 0.19, L = 12), for distances R = 2,3,4, we get 

D: asu~2)(R = 2, 3,4) = 0.0476(2), 0.0496(12), 0.051(7). (37) 

These are only slightly R-dependent and not far from the naive value g2/(4~r)--- 
0.040. One can also see that, within our errors, there is no difference between the 
points C and D. From the data at strong gauge coupling it is expected that the exact 
value at R - ~ w 1 should be slightly smaller in point C than in point D. 

4.3.  M A S S  R A T I O S  A N D  Z E R O  M O M E N T U M  C O U P L I N G S  

For the determination of masses and zero momentum couplings the same quanti- 
ties were calculated as in the 84 points discussed in sect. 2. A summary for the fl = 8 
points C and D (defined above), similar to tables 1-3, is given in table 5. 

The extraction of the mass in the W-boson channel is straightforward but in the 
Higgs channel one has to be careful, because the two-W states can also appear, 
Since on the larger lattice (124 ) we have much better statistics, we shall discuss point 
D in detail and give only the final results in the 1 0  4 point C. A sample of the 
numerical results for the correlations in point D is given in table 6. The correlations 
are always normalized by the value of the zero momentum correlation at distance 
zero. (The sum of the zero momentum correlation over the time slices gives the 
susceptibility analogous to X L in eq. (23).) 

TABLE 5 

S u m m a r y  o f  t he  m a s s e s  a n d  a v e r a g e  q u a n t i t i e s  in  t he  t w o  p o i n t s  C a n d  D a t  fl = 8.0 

~ a m  w am H L R P p s 

1.0 0 .30  0 .24(2)  1,39(12)  0 .4652(2)  0 .7048(2)  0 .09568(1 )  1 .2004(1)  6 .9214(6)  

1 .0  0 .28 0 ,19(1)  1.21(8)  0 .3695(1)  0 .5295(1)  0 .09598(1 )  1 .1560(1)  7 .2027(2)  
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TABLE 6 
Normalized correlations in the point D with (~ = 1.0, fl = 8.0, ~ = 0.28) 

37 

d =  0 1 2 3 4 5 6 

C~, 2) 0 .871(2)  0.157(2)  0 .111(2)  0 .097(2)  0 .088(2)  0 .084(1)  0.082(1) 
C~ 3~ 2 .243(4)  0 .453(3)  0 .139(2)  0 .046(2)  0 .018(2)  0 .010(2)  0.008(2) 

The  zero m o m e n t u m  corre la t ions  C~ k) ob ta ined  by  the in te rpola t ing  fields w (k) in 

eq. (7) are  s t rongly  domina ted  by  a single low-mass  state. The dis tances  3 ~< d ~< 6 

can  be  well  f i t ted by  a single exponent ia l :  

C (1 ) (d )  = (0.128 _+ 0.011)exp{ - d ( 0 . 1 9 6  _+ 0.016)} + ( d  ~ 12 - d ) ,  

C~{2)(d) = (0.133 + 0.013)exp{ - d ( 0 . 1 9 6  _+ 0.018)} + ( d - *  12 - d ) .  (38) 

The  qua l i ty  of  the fits is very good  (see, for instance,  C (2) in fig. 7). Nevertheless ,  

due  to the  l imi ta t ion  in t ime differences,  it  is not  comple te ly  excluded that  the 

b e h a v i o u r  for  3 ~< d 4 6 is different  f rom a cosh (for instance,  inverse power-l ike) .  In 

-2£ 

-2.5 

-'~1 X = 1.0 
log [3 =80 124 lattice 

~t = 0.28 

I 
0 

Fig. 7 

33 (~°196d .~0196(12-dl ) 

I I I J I I ~,_ 
1 2 3 4 5 6 d 

Fig. 7. The correlation C, ~2} in the W-channel at ?~ = 1.0, fl = 8.0, ~ = 0.28 compared to a single cosh fit 
for distances 3 ~ d ~< 6. 
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view of fig. 7 we consider this improbable, but a final decision can only be achieved 
in the future on larger lattices. For the time being we assume that what we see 
is really the mass gap in the W-channel (otherwise one should go to somewhat 
larger x). 

The fit program we used searched for the minimum of the sum of squared 
deviations divided by the input statistical error squared (X2). The errors of the fitted 
parameters were estimated by treating the input values as independent normally 
distributed random variables. This is a rather conservative way of error estimation, 
since the correlations at different distances are obviously strongly correlated with 
each other (see fig. 7). Alternatively, we also divided the data in 4 bins of 50 000 
sweeps and performed the fits in the individual bins. The errors estimated in this 
way are also consistent with eq. (40). The correlations Cw ~k) can be well fitted by a 
single mass also for distances 2 ~< d ~< 6, but then the masses are 5-10% higher. This 
shows that the excited states in the W-channel have either very high mass or are 
weakly coupled. A two-mass fit for 1 ~< d ~< 6 is consistent with a second state about 
10-12-times heavier than the lowest state. The 3 ~< d ~< 6 fits in the lowest non-zero 
momentum channel give: 

C'w°)(d) = (0.076 +_ O.O02)exp{ - d~/¢6~ "2 + (0.183 +_ 0.019) 2 } + ( d ~  1 2 -  d ) ,  

Cw~2)(d) = (0.079 + O.O02)exp{- d~/3~6~r 2 + (0.185 + O.020)z I + ( d ~  12 - d ) .  

(39) 

The mass obtained from Cw ~k) is practically the same as the one from C~ k), therefore 
Lorentz invariance is well satisfied. The result for the W-boson mass, together with 
point C, is 

C: a m  w = 0 . 2 4 ( 2 ) ,  D: a m  w =0.19(1) .  (40) 

The correlations C~ j) of the variables in eq. (6) have a qualitatively different 
behaviour, because there are clearly at least two masses present. This is shown by a 
fast decrease at smaller distances and a strong flattening-off at the largest distances. 
The statistical errors are, unfortunately, still somewhat too large, especially in the 
correlations of h m, therefore we shall here consider only C~ j), ( j  = 2,3). The two 
mass fits for the distances 1 4 d ~< 6 are somewhat unstable due to the large errors. 
The rough outcome is that there is a strongly coupled high-mass state at a m  - 1.2-1.3 
and a very weakly coupled low-mass state with a coupling strength about only 1%. 
(Correspondingly, the low mass is badly determined.) The mass and the weak 
coupling to our local variables is consistent with the assumption that the lower state 
is a 2W-state (see ref. [15]). In order to have tolerable errors from the fit we fixed 
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the value of the lower state (which we interprete as a 2W-state) and fitted only the 
remaining 3 parameters. For instance, by fixing the low mass at 2 a m  w = 0.38, the 
fit for 2 ~< d ~ 6 is: 

C~2)( d ) = (0 .017 _+ O.O09)exp ( - d .  0 .38 } 

+(1.15 4- O.12)exp{ -d (1 .22  _+ 0.07) } + ( d ~  12 - d ) ,  

C~3)(d) = (0.031 _+ O.O08)exp( - d .  0.38) 

+ (1.55 _+ 0.22)exp( -d (1 .26  _+ 0.08) } + (d ~ 12 - d ) .  (41) 

Varying the fixed lower mass gives the fits in table 7. 
The very small values of X 2 show that the values of the correlation at different 

distances are strongly correlated. For a m  f larger than 2 a m  w the fits become worse, 
but in the range 0 ~ 2 a m w  the parameters of the higher state are stable. Masses 
below 2 a m  w could have to do with the limited time extension of our lattice ("finite 
temperature effects"). Taking only the fits with a m  f<~ 2 a m  w, a somewhat subjective 
summary of the results is: 

C: a m  H =  1.39(12), D" a m  H =  1.22(8). (42) 

In point C the two mass fit is not possible due to the larger errors, nevertheless the 
flattening-off at the largest distances can still be seen. The value in point C in eq. 
(42) was obtained from the distances 1 ~< d ~< 3. 

If our interpretation of the states in the Higgs-boson channel is correct, then 
besides the zero relative momentum 2W-state there are also other states to be 
expected below the high-mass Higgs-boson resonance, namely zero relative momen- 

TABLE 7 
Three parameter fits for C~3); am r is the fixed lower mass 

d amf  am H C H Cf X 2 

2 --, 6 0.00 1.20(6) 1.47(16) 0.0030(8) 0.008 
2 ~ 6 0.19 1.21(6) 1.49(18) 0.0094(26) 0.008 
2 ---, 6 0.38 1.26(8) 1.55(22) 0.031(8) 0.02 
2 ~ 6 0.57 1.39(14) 1.70(41) 0.11(3) 0.08 
2 ~ 6 0.76 1.83(45) 2.5(4.7) 0.34(6) 0.37 
1 --* 6 0.00 1.21(2) 1.50(3) 0.0031(7) 0.04 
1 ~ 6 0.19 1.21(2) 1.50(3) 0.0096(23) 0.02 
1 ~ 6 0.38 1.24(3) 1.50(3) 0.030(7) 0.07 
1 --0 6 0.57 1.31(4) 1.48(3) 0.093(21) 0.49 
1 ~ 6 0.76 1.43(8) 1.35(4) 0.28(5) 1.67 
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turn multi-W states and also multi-W states with non-zero relative momentum. The 
resolution of all these states is impossible on our lattice even if higher statistical 
accuracy would be available. One can expect, however, that the multi-W states are 
all weakly coupled, similarly to the observed low-mass state, therefore cannot be 
responsible for the dominant high-mass state. The states with relative momenta are 
well above the lowest 2W states since 2~r/L is still relatively large. In future Monte 
Carlo calculations one has to study the volume dependence of the spectrum on 
lattices elongated in time, which allow for the better separation of several exponen- 
tials. For the theoretical background to the volume dependence of the multi-particle 
spectrum, including resonances, see ref. [15]. 

The zero momentum couplings were measured in the same way as for fl = 2.3. 
Here we expect in general smaller couplings. These are, of course, even more 
difficult to calculate with sufficient precision than the relatively strong couplings at 
/3 = 2.3. In point C the nH couplings disappear completely in the noise. The only 
useful information we could obtain was for the HWW coupling: 

C: ,~-2a(k=l) = 1.56 + 0.42 ' ~ - 2 A ( k = 2 )  = 2.29 + 0.41 (43) 
" ~ H W W  - -  , ~ ~ ~ I - 1 Y q W  - -  • 

In point D the situation is slightly better: at least some information for the 3H and 
4H couplings could be obtained: 

D : 13H --  6.2 + 2.8, 4/3 : m w  P ( 3 ) 4 H  ~ <  5 .  (44) 

For the HWW coupling the result in point D is: 

D: ,,-2a(k=l) = 0.79 -J- 0.32, ,,-2a(k=2) _ 1.54 + 0.35. 
~ x H W W  ~ ~ ~ H W W  - -  - -  (45) 

This corresponds to an average value IHWW -= m H m W A HWW = 0.27(10), substantially 
smaller than the value obtained from the tree-level relation IHWW = gren = 0.8. 
Assuming pole dominance of the zero-momentum HWW amplitude, the 2W width 
Frtww of the Higgs boson is given by 

(4  (4m 12m4) 
rnH 128~rmZ/i~ww 1 m2 1--  rn--~-- n + rn----~n =0.019.  (46) 

For  a Higgs boson mass of rnr~ = 500 GeV our value of IHww gives a width of about 
10 GeV. 

5. Concluding remarks 

Let us briefly summarize the main results of the Monte Carlo calculation: 
(i) The approximate X-independence of the W-boson and Higgs boson mass in 

the range 1.0 ~< X ~< oo, if considered as a function of the link expectation value, 
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turned out to be valid within the present statistical errors (see fig. l a - l b  and also 
the corresponding fig. 2a-2b for 124 in ref. [6]). 

(ii) The detailed study of the behaviour near the confinement-Higgs phase 
transition at fl = 2.3 revealed strong indications of metastability at X = 1.0 and a 
somewhat weaker two-state signal at X = oo (see also ref. [6]). The comparison of 
the susceptibility on 84 and 124 lattices is not consistent with simple finite size 
scaling. Therefore, the long range Higgs-channel correlations on finite lattices in the 
phase transition region are presumably due to the metastability associated to first 
order and not to the critical behaviour associated to second-order phase transition. 
Our conclusion is that the confinement-Higgs phase transition is probably first 
order for every ~ at finite fl, but the strength decreases for increasing X and /o r  ft. 

(iii) The zero-momentum n-Higgs-boson couplings are numerically difficult to 
obtain. Because of the large statistical errors the present results can only be 
considered as upper limits in absolute value. The zero-momentum Higgs-WW 
coupling turned out to be measurable and does not show strong h-dependence 
between ~ = 1.0 and ~ = 0.1. 

(iv) A high-statistics Monte Carlo calculation at weak physical gauge coupling, 
roughly equal to the weak SU(2) coupling in the standard SU(2) ® U(1) electroweak 
theory, showed that a numerical investigation at strong self-coupling and weak 
gauge coupling is feasible. The chosen value X = 1.0 of the scalar self-coupling is in 
the non-perturbative range, where the non-perturbative feature of ),-independence is 
expected. (In fact, the observed h-independence at fl = 2.3 and fl = oo strongly 
suggests a similar h-independence at fl = 8, too.) The 2 x 105 sweeps on a 124 
lattice allowed the separation of two distinct states in the Higgs boson channel: a 
weakly coupled state with roughly twice the W-mass and a strongly coupled 
high-mass state with 

m H 
- 6 .4  _ 0 . 8 .  (47)  

m w  

Our interpretation for the low-mass state, based on the comparison to the low-fl 
points, is that it is a zero relative momentum 2W-state, therefore the Higgs-W mass 
ratio is as given by eq. (47). (Future careful studies of the volume dependence of the 
spectrum may clear up the origin of the low-mass state.) The W-boson channel is 
dominated by the lowest state. The next excited W-state has a 10-12 times higher 
mass. For the n-Higgs couplings we only obtained upper bounds in absolute value, 
but the zero-momentum Higgs-WW coupling turned out to be measurable. Its value 
is roughly by a factor of 3 smaller than the naive application of the tree-level 
formulas would give. Therefore, the width of the high-mass Higgs boson can be 
reasonably small, unless decays into multi-W channels dominate. All our fl = 8 
results could still contain considerable finite size effects, because the correlation 
length in the W-channel is only slightly less than the half of the lattice extension. 
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The effect of the finite time extension ("finite temperature effects") may also be 
important. Further Monte Carlo calculations on larger lattices (e.g. 123 × 36, 164 or 
20 4) should be performed in order to determine the magnitude of these "systematic 
errors" in eq. (47). Because of these uncertainties it is not yet possible to draw the 
final conclusion about the Higgs mass to W-mass ratio at the given coupling 
constant values. 

We consider the calculation at fl = 8.0 in the present paper only as a first 
exploratory study. The important point is the possibil i ty  of MC calculations in the 
strongly self-interacting standard Higgs model with weak gauge coupling. Future 
numerical studies could, however, go much further. A possible strategy of an 
"ideal" large scale MC calculation in the standard Higgs model is outlined in 
appendix A.2. The main information obtained from such a calculation would be the 
functional relation between different physical quantities in the non-perturbative 
self-coupling regime. For a phenomenologically realistic calculation the Yukawa- 
and gauge-couplings to the fermions have to be included, too. Taking all the 
foreseeable difficulties into account, we believe that a Monte Carlo calculation with 
10% error in the non-perturbative X regime of the standard SU(2) ® U(1) model is 
easier than the Monte Carlo calculation of the proton mass in QCD with 1% 
accuracy. 

In order to have a firm theoretical interpretation of the Monte Carlo data, one 
has also to do more analytic work. The numerical calculation is necessarily re- 
stricted to relatively small cut-off's. The extension of the conclusions to higher 
cut-off's requires that numerical calculations be performed also in the validity range 
of an analytic expansion. In particular, a small gauge coupling expansion around 
the critical line Xcr(X ) (X fixed) of the ~4 model at fl = o¢ should be done [16]. 

All our Monte Carlo data are consistent with the expectation that (at least for 
large enough k and fl) the pattern of the RGT's is qualitatively given either by fig. 
3a or by fig. 3b. The first would be the case if the confinement-Higgs phase 
transition would be second order, or if the maximum correlation length at the 
first-order transition would increase sufficiently fast for/3 + oo. This would imply 
the existence of a non-perturbative non-trivial k-independent continuum limit, in 
the mathematical sense, at the fl = oo critical point for sufficiently large k. In the 
second case no exact continuum limit would exist, suggesting a fundamental 
difference between elementary fermion and scalar matter fields. Due to the bounded 
correlation length at the first-order phase transition, the RGT's would end on the 
discontinuity for finite lattice spacing (i.e. for finite cut-off). Of course, if the 
maximum cut-off would be very high, the distinction would not be important from 
the practical point of view. In the case of a non-perturbative non-trivial k-indepen- 
dent continuum limit the Higgs mass could, in principle, be predicted from the 
W-mass and the strength of the gauge coupling. Unfortunately, the MC calculations 
are unable to decide the question of the existence of such a continuum limit. 
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We are indebted to W. Hollik, M. LiSscher and T.T. Wu for helpful discussions. 

Appendix A 

A.1. RGT'S  OR CCP'S 

The notion of renormalization group trajectories (RGT's)  in the general case of 
several independent couplings was introduced in the earlier literature on field theory 

and statistical physics [17,18]. Still it seems to us useful to recollect here the 
definitions in the specific context of lattice regularization, in order to make clear 
what do we precisely mean in the discussion of the continuum limit. 

Let us consider a lattice field theory with n coupling parameters [ g ] -  
ga, g2 . . . . .  gn. In order to define the RGT's  or "curves of constant physics" (CCP's) 
in the space of coupling parameters, let us choose a "reference quantity" m~ with 

physical dimension of mass. Its value in lattice units #1 = am1 is a function of the 
couplings: /~1 = #l[g]. In addition let us choose (n - 1) independent, dimensionless 

ratios of physical quantities: [ ~ ] -  ~2, ~3,---, ~n, and consider the "curves of con- 
stant reference ratios" CE~ 1 with ~k = const(k = 2, 3 . . . . .  n). Along such curves the 
change of the reference quantity/~1 = am1 defines the change of the lattice unit a 
uniquely. An absolute value of a in terms of some physical units (e.g. eV -~) is 

specified if the physical value of m~ as a function of [~] is given. A simple 
possibility is to take the value of m~ [~]-independent, but other choices can be 

sometimes more advantageous. (One has to keep in mind, that for m 1 = [~]- 

independent  the absolute scale on CI~ j depends on the choice of the reference 
quantity.) On a given curve CI~ j the coupling constants g~ (i = 1 . . . . .  n) can be 
considered as functions of the lattice spacing: g, = g}~J(a), and the corresponding 
//-function can be defined as 

d g ~ l ( a )  (A.1) 
/ / , [g]  - - a  da  

Sometimes it is also convenient to choose a reference coupling, say, gl and consider, 
on a given curve CI~ 1, the lattice spacing and the other couplings as a function of it: 
a = aE~l(gl) and gk = g ~ l ( g l )  ( k  = 2, 3 . . . .  , n) .  In this case one has, obviously 

dg l  ~1 Bk[g]  

dgl / / l [g ]  " 
(A.2) 

This can be considered as a differential equation for the curves of constant reference 
ratios. 
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The necessary condition for the existence of a continuum limit is, that there exists 
(at least one) "critical point" [gc] -- glc, g2 . . . . . .  g,c in the coupling space, such that 

(i) [go] lies on some subset R c of the curves of constant reference ratios; 
(ii) for C[~ 1 ~ R~ we have limg, _~glflNl(gl)= 0; 
(iii) every (in general dimensionful) physical quantity P measured on the lattice 

tends on CI~ l ~ R c for [g] ~ [g~] to a [~]-dependent value p t~l in such a way, that 
the deviation from the limiting value vanishes at least as fast as some integer power 
of ~l (or of a). 

In other words, physical quantities are constant along Ct~ 1 ~ R c in the vicinity of 
the critical point [gc] up to corrections ("lattice artifacts") of order at most #1. It is 
useful to define a "scaling region" S c belonging to [g~] by the requirement that the 
deviation of physical quantities from the continuum limit p t~l is in some specified 
sense "small"  for [g] ~ S c. Within the scaling region S~ the curves CEt I can simply be 
called "curves of constant physics" (CCP's). Since dimensionless ratios of physical 
quantities are, apart from small scaling violations, constant in the scaling region, the 
CCP's are, within these small lattice artifacts, independent of the choice of the set of 
reference quantities. Because of the above mentioned freedom in defining the scale, 
it is natural to consider the dimensionful physical quantities as functions of the 
lattice spacing a and of the couplings [g]: P = P(a, gl ..... g,). In the scaling region 
Sc the constancy of the physical quantities along the CCP's can be expressed by the 
"renormalization group equation" (RGE): 

I - a  o-- ~ + ~ fl,[g] P = o ( / ~ l ) .  (A.3) 
i=1 

Here the r.h.s, stands for the "scaling violating" lattice artifacts. This equation 
reflects the fact, that in the scaling region the change in lattice spacing can be 
compensated (up to lattice artifacts) by an appropriate change (" renormalization") 
in the couplings. Therefore, the CCP's can also be called RGT's. 

In a general situation one cannot expect that there is only a single critical point in 
the coupling parameter space. The "critical set" consisting of all critical points may 
contain subsets describing completely different continuum physics. A singled out 
critical subset belonging to a unique continuum theory can also consist of more than 
one point. For instance, if some combination of the coupling parameters is "irrele- 
vant", the critical point can occur for different values of this irrelevant combination. 
The number of "relevant" variables belonging to a given unique critical subset is 
very important, because it gives the number of independent physical parameters in 
the continuum theory. For simplicity, let us now only consider the situation, where 
every point in the critical set defines the same continuum theory. For a precise 
definition of the number of relevant couplings let us consider the (n - 1)-dimensional 
hypersurface H~, where the value of the reference quantity is equal to At 1. As a 
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function of ~1, the values of the reference ratios [~] on H~I define a one-parameter 
family V,~ of subsets in the space of possible values of reference ratios. The number 
of relevant couplings ( n -  l) is defined as the dimensionality of V,~ in the limit 
/~1-o 0. (The number of irrelevant couplings is, of course, l.) Another possible 
(equivalent) definition is obtained if one considers, for given continuum values [~0] 
of the reference ratios and for some small e, the region A ~[~0] in the coupling space, 
where the deviation of the reference ratios from [~o] is small: I ~ k - Q k l  < e, 

(k  = 2, 3 . . . . .  n). If the section W~,~[~o] = H~ (~ A ~[~0] for e, /~1 ~ 0 has dimension 
l, then the number of irrelevant couplings is l. (These two criteria for the relevance 
of couplings will be referred to later on as "first" and "second" criterium, 
respectively.) 

It is interesting to consider, what happens with those curves CI~], where the values 
of the reference ratios are not equal to some possible set of values in the continuum 
limit. (These curves are outside the subset R c considered in the above definition of a 
critical point.) First of all, it is enough to consider only the subspace, say, U,1 < 1V~1, 
because the points where the reference mass in lattice units is larger than 1 is of 
little interest for the continuum limit. If in this subspace there are still curves CI~ ] 
outside Re, then these curves can either end on the boundary with/~1 = 1 or on the 
boundary of the parameter space (some of the couplings can become, for instance, 
infinite), or they can end on a discontinuity inside the parameter space. Such 
discontinuities can be produced, for instance, in the infinite volume limit by a first 
order phase transition. 

It follows from the above definition that for the study of the continuum limit the 
irrelevant couplings can be omitted or kept constant. The RGE will be valid with 
(n - l) instead of n couplings. A critical point [g~] with (n - 1) relevant couplings 
can be said to have " rank"  (n - l). 

It is possible that the above requirement (iii) for a critical point is fulfilled only 
for some well defined subset Qc of physical quantities. (For instance, P ~ Qc is 
allowed to depend only on some subset of field variables.) Such a critical point can 
be called "reduced".  The number of relevant couplings for a reduced critical point 
is usually smaller (its rank is lower) than for a normal critical point. 

Let us now apply these definitions, for example, to the case of the possible 
continuum limit of the standard Higgs model as conjectured in ref. [4]. Since in this 
case there are 3 couplings (~,/3, x), we have n = 3. The set of critical points of 
interest is the line (~, Xc~(?~)) at fl = ~ .  The critical points may be equivalent to the 
k, = ~ point for every ~ > 0 or, perhaps, only for sufficiently large ?~ > ?~0- In the 
following we shall only consider the subset equivalent to ~ = ~ .  As the reference 
quantity one can choose the W-mass: ~tl - /~w = amw. For one of the dimensionless 
quantities one can take ~2 =- RHW = mH/mw" For the other one let us choose the 
coefficient of the Yukawa potential ~3 = aw at distance m w  1. (This can be defined, 
for instance, by eq. (35) with R--/~wl.) The fixing of the physical distance is, of 
course, very important because at small physical distances the coefficient of the 
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potential is expected to decrease. If in the continuum limit at the fl = o~ critical line 
there is one irrelevant coupling, then for the above second criterium one has to 
consider the regions W~w[Rtrw, aw], where/~w is small and the deviation of RHw 
and a w from the correct continuum limit value is small. In the limit /z w ~ 0 and 
vanishing deviation e ~ 0 this region has to be one-dimensional. A simple realiza- 
tion of this would be the X-independence of the physical quantities for fixed 
expectation values of the gauge invariant link variable, because then W,o~[R Hw, a w] 
would have a one-dimensional limit. Of course, the limited accuracy of the present 
MC calculations (e and /~w are not very small) does not really allow for a strong 
conclusion. The observed crude X-independence can, however, be considered as a 
first hint for the irrelevance of the self-coupling X. Assuming the existence of a 
X-independent non-trivial continuum limit at X, Kcr(X), (X > Xo), it follows from the 
above first criterium of relevance that the Higgs mass to W-mass ratio RHw is 
uniquely determined if ct w is given. In other words, the Higgs mass is not a free 
parameter as it seems to be in perturbation theory. Every CCP where this relation 
between ot w and Rnw is not satisfied has to end on the boundary or on some 
discontinuity and has, therefore, a minimum lattice spacing (maximum cut-off). 

Returning again to the general case, the definition of CCP's does not necessarily 
require the existence of true critical points with infinite correlation lengths (i.e. 
a --* 0). It is very well possible that in the vicinity of some point with very large (but 
finite) correlation length the long distance physical quantities show an approximate 
scaling behaviour. In this case the CCP's or RGT's, the number of relevant 
couplings etc. can be defined as before. An example is the scaling behaviour 
represented by fig. 3b. Compared to the fl = ~ critical point of rank two in fig. 3a, 
the difference is that in fig. 3b the one-parameter manifold of CCP's does not reach 
fl = o~ but, depending on one of the relevant parameters, ends somewhere on the 
first order discontinuity. The h-independence (for large enough X) remains in this 
case presumably only approximate. Considering the whole 3-dimensional coupling 
parameter space, there is a two-parameter family of CCP's ending on the discontinu- 
ity. The fl = oo critical line has in this case only one relevant parameter. In the 
Higgs phase it is a trivial free theory of massive W-bosons. Going to the fl = 
critical line from the confining phase (~ < xcr ), one has presumably a reduced 
critical point with one relevant coupling equivalent to pure SU(2) gauge theory. 

A.2. AN IDEAL MONTE CARLO CALCULATION IN THE STRONGLY INTERACTING 
STANDARD HIGOS MODEL 

Let us now describe a MC calculation in the standard Higgs model under 
generous assumptions concerning computer time and storage. Namely, we shall 
assume good statistical accuracy of the measured masses, coupling constants, 
potentials etc. in the range of correlation lengths between 1 and 10 lattice units. In 
addition, the possibility of reliable MCRG studies of the RO trajectories up to 
correlation lengths like 40 or 80 will be assumed. 
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The MC calculation consists of two stages. In the first stage the reference 
quantities/~w = amw (W-mass), RRw = m H / m  w (Higgs mass to W-mass ratio) and 
a w (the coefficient of the Yukawa potential at distance mw 1, which is defined by eq. 
(35) with R - - # w  1) are measured, together with other physical quantities like 
coupling constants etc. One can concentrate the measured points on the surface 
a w = 0.04, corresponding to the physical strength of the Yukawa potential in the 
standard SU(2)® U(1) model. Due to the limitation 0.1 ~</~w, / ~  ~< 1 the points 
have to be within some strip on this surface. It has to be expected that there is a 
limitation of measurability also at small ?~-values. Up to now the high-statistics MC 
calculations were restricted to the range 0.1 ~< ?~ ~ ~ .  This region may perhaps be 
extended to still smaller ?~-values, for instance by more sophisticated updating 
procedures, but the flatness of the effective potential in the Higgs field length will 
somewhere set a lower limit: ?~ >/~min" 

The main physical information obtained from the Monte Carlo calculations is 
contained in the functional relations between different physical quantities in the 
"measurable strip". As an example, let us consider the Higgs-WW coupling IHWW- 
A possible outcome of the MC calculation is illustrated in fig. 8a for fixed reference 
mass (for instance, #w = 0.2). The interesting part of the figure is the region of 
non-perturbative self-coupling (NP), where low-order perturbation theory in ~ is 
not valid, therefore the MC calculation can provide us new information. It would be 
nice, if the lower limit ?~ rain of the measurable strip would be such that some overlap 
between the validity of lattice perturbation theory and of the MC calculations could 
be found. 

The second stage of the MC calculation is the study of scaling along the curves of 
constant physics (CCP's). To some extent this can be done by changing the scale 
within the measurable strip. For instance, Fig. 8a has to be the same (apart from 
small scale breaking "lattice artifacts") also for/~w = 0.1. For very large correlation 
lengths, however, the long-distance physical quantities are very difficult to measure. 
Fortunately, one can follow the CCP's (or RGT's) with MCRG methods based on 
some other quantities which satisfy the RG equations: generalized Creutz-ratios of 
Wilson-loops or block-spin expectation values etc. The result can be that some 
CCP's end for correlation lengths which are too small for a reasonable quasi-con- 
tinuum effective theory. A minimum requirement could be, for instance, that the 
maximum correlation length in the W-channel be at least - 5 0  (corresponding to 
/~wmin < 0.02, or in physical units to a cut-off > 4 TeV). Those points in fig. 8a 
where the corresponding CCP does not satisfy this requirement should be discarded 
(dashed piece of the curve). The rest of the curve describes respectable quasi-con- 
tinuum effective theories, which are of interest even if the strict continuum limit is 
trivial. 

A favourable situation would be that every measured point would satisfy the 
minimum requirement for a sensible quasi-continuum effective theory. Moreover, if 
there were a non-trivial true continuum limit, some points of the curve in fig. 8a 
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Fig. 8a. The functional relation between the Higgs-WW coupling constant lnw w and the Higgs-W mass 
ratio Rnw" PT is the regime of perturbation theory, NP is the non-perturbative region where MC 
calculations are particularly interesting. The dashed piece of the curve is in the region, where the 
maximum correlation length on the corresponding CCP is smaller than some reasonable lower bound 

(say, (t~Wl)m~ < 50). 
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Fig. 8b. The picture corresponding to fig. 8a in the case of a X-independent non-trivial continuum limit. 
The perturbative regime is denoted also here by PT. There is a non-perturbative cross-over region (CO) 
with finite maximum cut-off, which leads to the unique point (®) corresponding to the continuum 

theory. 

would  correspond to a CCP with infinite maximum correlation length. What  would 
be the picture if there were a h- independent  non-trivial cont inuum limit (with 2 

relevant parameters),  as conjectured in ref. [4]? (In this case the CCP's  in the 

X = const  planes, at least for sufficiently large X and fl, would look like fig. 3a.) As 
it is depicted in fig. 8b, every point  on the curve/Hww (R Hw) would correspond to a 
finite max imum cut-off (the corresponding CCP's  would end on the first-order 

phase  transit ion surface in the intermediate X range), except for the endpoint  (®).  
This unique point  would correspond to the cont inuum theory characterized by a 

unique relation between aw,  Rnw and luww. In this case every M C  calculation in 
the scaling region with sufficiently large X (say, X >/1.0) would give this unique 
relation. Unfor tunately ,  the question about  the existence of the h-independent  
con t inuum limit cannot  be answered by numerical MC calculations, which are 

limited to rather modest  values of the correlation lengths. 
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