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Abstract. Using recently derived explicit formulae for the 2- and 3-cochains in 
SU(2) gauge theory, we are able to integrate the Chern-Simons density 
analytically. We arrive - in SU(2) - at a local algebraic expression for the 
topological charge, which is the sum of local winding numbers associated with 
the corners (lattice points) of the cells covering the manifold plus contributions 
from possible isolated gauge singularities which manifest themselves as 
"vortices" in the 1-, 2- or 3-cochains. Among others we consider hypercubic 
geometry - i.e. covering the manifold by hypercubes - which is of particular 
interest to lattice Monte Carlo applications. Finally, we extend our results to 
SU(3) gauge theory. 

I. Introduction 

Differentiable SU (N) gauge fields on a compact 4-manifold ~VI carry a topological 
charge [1] 

1 4 
Q= 3-~5~z ~d~ xe~ve~Tr[F,~Fo~], (1) 

where 

Fuv = OuA v -  OvA u + [A,, A,] . (2) 

The charge Q is a measure for topologically non-trivial properties of the gauge 
fields, which have been argued to play an important role in the physics of the 
vacuum of QCD and SU(N) gauge theories. 

Preliminary results of calculations of Q in SU(2) gauge theory on the lattice 
[2, 3] hold out hope for a quantitative resolution of the U(I) problem [4]. The 
recent finding [5] that the vacuum of the quantized (pure) SU(2) gauge theory 
possesses an underlying instanton structure brings us furthermore in touch with 
semi-classical ideas of the QCD vacuum [6] and a possible mechanism for chiral 
symmetry breaking [7], which could be the beginning of a better understanding of 
the non-perturbative phenomena of these theories. 
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So far these investigations have been limited to smaller lattices and hence to 
smaller values of ft. The difficulty involved is that a meaningful transcription of the 
topological charge (1), as it stands, onto the (periodic) lattice [8] is mathematically 
voluminous and very time consuming to compute, since the transition functions 
and their derivatives must be constructed everywhere on the boundary of each 
hypercube. 

We realize, that the 4-dimensional integral in Eq. (1) can be performed 
analytically with the help of the cochain reduction given in [9]. The outcome is a 
local algebraic expression for the topological charge (1) in the continuum, which is 
relatively easy to implement on the lattice and fast to compute. The derivation of 
this result, which we believe is also of interest beyond the scope of lattice gauge 
theory applications as it allows a simple geometrical interpretation of topology, 
will be given in the present paper. 

The paper is organized as follows. Sections II and III deal with the continuum: 
in Sect. II we do the integral for SU(2) gauge fields covering the 4-manifold NI by a 
"generic" set of cells, while in Sect. III we take NI to be the 4-torus and cover it by 
hypercubes. In Sect. IV we briefly outline what it involves to evaluate the new 
expression for Q on the lattice. In Sect. V we extend our results to gauge group 
SU(3). We finish with some concluding remarks in Sect. VI. 

II.  Continuum S U ( 2 )  Gauge Fields and Generic Geometry  

The derivation in this section will follow the cochain reduction of the Chern- 
Simons density given in [9]. 

We cover the compact manifold M by a set of cells c~, i.e. 

M = U (3) 
i 

with 

c in  cj = Oc ic~ Ocj. (4) 

The cells are chosen such that 5 - n  cells overlap in a (possibly empty) 
n-dimensional intersection. This we refer to as generic geometry. The topological 
charge (1) can then be written 

1 4 Q = - E d i T r [ f  u,Fo~ ] , (5) 
3 Z 7 ~  i c~ 

where the index i on the fields refers to the gauge in the cell c i. In each cell we may 
gauge transform the gauge fields into a complete axial gauge by 

~ i  _ _  - 1 i A , - g i  (Au + a,)gi. (6) 

Making use of the fact that the Chern-Pontryagin density is a total divergence, i.e. 

1 i i (o) • 
P = - 32n2 ~u~e~ Tr [Fu~F~ ] = OuQ . (0, (7) 

with 
1 

Tr [A~(0oA ~ + ~A~A.)] ,  t2'°)q'=-~n2eu~¢/,tl ~i ~' 2~'~i (8) 
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we obtain 

Q=N,  S d3affa(f)(i) = ~ ~ .~ d a % ( ~ ( f ' ( i ) - f a t f ' ( J ) ) ,  (9) 
i ~3ci • , cic~cj 

where cic~c j has the orientation of 8c i. 
We introduce transition functions relating the gauges i , j  in the cells c~, cj on 

c~c~cj by 

Comparing this with Eq. (6) one finds (on cic~cj) 

% = OT ~9j- (11) 

We recognize now that the integrand on the right-hand side of Eq. (9) is the 
coboundary operation 

( o )  • ( o )  • ( o )  • - ( 1 )  - - ~2,,, (O-f2~, ( j )=AO,  0,./)=8~fa,~(t,j), (12) 

which is again a total divergence. This excludes singular points in the interior of 
cinch, i.e. 

X ~. ( £ i ( ' ~ C j ) \ O ( C i f 3 C j ) ,  (13) 

at which 

v i j = e x p i o t x = c o s c z + i s i n e e , z  , a e  [0, re] 

becomes - 1 ,  i.e. e = re, where [9] 

1 
Q(ul)(i,j) = - ~-Sn 2 (e - sin e cos a)e.~o~e ~ • (0~e~ x 8~e~) 

- 87t2 ~.~o~ Tr[eQviiv/~ A~] 

(14) 

(15) 

has a "vortex" 

1 
(16) 

Applying Gauss' theorem, Eq. (9) then reduces to 

Q = Q( " + Q~" , 

with 

55Z ~ 2 (1). .  
2. i,j o(cit~¢j) 

1 
= - -  d a f2 ~ f2 ~ k + f2 , k  . ,"£ , , . ( , J ) -  . , , ( ,  ) ,~,(J )] 31 i,j,k c,~cj~,'k 

(17) 

(18) 

and 
1 1 

Q(I~ Z' 2 E f 2 = d cru~ ~-europe ~ • (8~e~ x O~e~), 
i , j  x e ( c i n e j ) \ O ( e t n c j )  S~(x)  

(19) 
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where SZ,(x) is a sphere of radius e a round x and where CiC~C/~Ck and SZ~(x) have the 
orientat ion of O(cic~c]). 

The integral in Eq. (19) gives 
z 1 

d au , - -~u ,o~e  ~ • (Oee~ x O~e~)= n(~)(x; i , j )  (20) 
s~(x) 8~ 

where n m is the S 2 winding number  associated with the singularity at x. In the 
vicinity of x we can write 

vq = -- 1 + i M ~ d x , z ~  + . . . ,  (21) 

which for detM=F0 results in 

In total we then obtain 

n(~)(x; i , j)  = sign(det M) = _+ 1. (22) 

0~1~= Y~ rim(x; i,j), (23) 
AO) 

where the sum is over all singular points x, i.e. 

A ~1~= U {x  e (cic~c])\c~(cincj)}. (24) 
t , J  

F r o m  Eq. (11) we derive the cocycle condit ion 

VqV~k = Vik , (25) 
which, writing 

v u = exp (i~t~), Vjk = exp (ili~), Vik = exp (i7~), (26) 

defines a spherical triangle as has been shown in [9]. The integrand on the right- 
hand side of Eq. (18) is the coboundary  operat ion 

( i )  • • ( I )  . ( i )  • f2..  ( t , j ) -  Q~,v (t, k) + f2~ (j, k) = A Q(.iv)(i,j, k) - ~2) . . - Q~f2.vo(t, J, k), (27) 

which again is a total divergence. This excludes singular points 

x e (c~cj~ck)\O(c~ncjncg, (28) 
at which 

(~ + I I -  ~,)e~ = (~ + I~ - ~,)e~ = - (e  + i~ -  ~')% -- - 2~ ,  (29) 

i.e. where the spherical triangle defined by the transit ion functions (26) degenerates 
to a circle, where [9] 

1 
(2) . . + 2 cos ~ cos fl cos ? - cos 2 e - cos a t -  cos 27)- 1 

• {(~t + I~-Y)" (sin ~e~) [ ~  (sin flep) 

. (sin?%)-(sinfle~)- ~jsin~,%)] 

+ (¢t + I I -  7)" (sinfle~) [~ j s in  7%) 

• (sin ~e~)-  (sin ?%). ~ (s in  ~e~)] 

+ (or + g - 7)" (sin ?%.) [~ j s in  ~ze~) 

• (sin fle~) - (sin c~e~) • ~ j s in  fle~)] } (30) 
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has a "vortex" 

- 4n 2 eu~°" S 2 = - 2--~ euvQ" 6-~ ' 
(31) 

S = cos a sin fl sin ?% × e~ + cos fi sin y sin ae~. × % 

+cos? sina sinfl% x %, ~ = % - % .  

The vector S defines the orientation of the great sphere (in group space) spanned by 
the transition functions (26) and winds around by 2n as one runs round the 
singularity. 

Applying Gauss' theorem, Eq. (18) then reduces to 

Q(1)=Q(E) + Q~2) (32) 

with 

1 
Q(z)= ~. Z S dau~oQ~o(i,j, k) 

i , j ,k  ~3(Ci(~Cjr3Ck) 
1 dauve[Qu~q(l,j,k)- ( 2 )  ' ' = - -  f 2 . ~ ( ~ , y , / )  

i,j,k c:~cjnckc~c t 
2) - + f~o(t, k, l) (2) • - f2.~o( j ,  k, /)]  (33) 

and 

1 1 
i,j,k ~(c,~j~)\o(~,~c~) s~(~) 2re 62 , (34) 

where S~(x) is a circle of radius e around x, and where cincj~CknC ~ and S~(x) have 
the orientation of O(C/~C/~Ck). 

One realizes that the integral in Eq. (34) gives 

1 %. ( ~  x ~) = n(2)(x; i,j, k), (35) 
so(x) 2n 

where #2) is the S ~ winding number associated with the singularity x which 
assumes the values 

n(2)(x; i,j, k) = + 1 (36) 

depending on whether S, ~ wind around in the positive or negative sense. We then 
obtain 

Q ( z ) _ _  ~ n(2)(x;i , j ,  k) ( 3 7 )  

with A(2) 

A ( 2 ) =  U (x  ~ (Ci~Cj~Ck)\O(CirSCj~Ck)} . (38) 
i,j,k 

Expression (33) brings together 4 spherical triangles, which build a spherical 
tetrahedron as illustrated in 1-9]. 

The descent continues: 

(2) • . (2) - • (2) • • (2) - c~.~(z,j, + c2,.~(~,j,/)- ouJj, k, l) o.v~(~,j, k ) -  /) 
= Z 1 Q  (2) : i  " 0 (3) i " k .v&,J,k,l)=~,. u,,o~,(,J, ,l). (39) 
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In [9] we have shown that 

1 
~3) i "  (40) f2,~o~ ( ,y, k, l) = ~eu~Q,,V(i , j  , k, I), 

where V(i,j,  k, I) is the volume of the spherical tetrahedron defined by the 
transition functions relating the gauges i, j, k, I. We realize that V(i, j, k,/) has a 
discontinuity at points 

X ~ (Ci( 'SCjNCkNCl)\~(CiNCjNCkNCl) ,  (41) 

where the spherical tetrahedron degenerates to a sphere. Applying Gauss' theorem 
we then obtain two contributions to Eq. (33): 

The first contribution gives 

with 

Q(2) = Q(3) + ~x.-.(3). (42) 

Q(3)= Z n(3)(x; i,j, k, l) (43) 
A(3) 

A (3~= U {xc(c inc jncknc l ) \8 (c inc jncknc l ) } ,  (44) 
i,j,k,l 

where n (3) accounts for the change of the orientation of the spherical tetrahedron at 
the point x, i.e. 

1 x n(3)(x; i,j, k, l) = ~ 2  e ~ A  V(i,j, k,/) = __ 1. (45) 

For the second contribution we obtain 

1 1 
Q~3~_ _ y'. " • k, 0 - 4! o(c,~cj~c~c~ ~ r ~  VO,J, 

1 1 
= 5~ " ~ a.-2-) ~ [ V ( i , j , k , l ) - V ( i , j , k , m )  

C i N C j A C k N C l  ~C m 

+ V(i, j, l, m ) -  V(i, k, l, m) + V(j, k, t, re)I, (46) 

where o-= _+ 1 is a sign factor, which denotes the orientation of 8(c~nc~ncknC,). 
The intersection of 5 4-dimensional cells defines a point which naturally leads 

to the notation of the "lattice": 

A =  U CiNCj(')CkNClF")Cm. (47) 
i ,j ,k,l,m 

Thus we can rewrite Eq. (46) in the form 

Q~3) =~, n(i,j, k, I, m) (48) 
A 

with 

n(i, j ,  k, l, m) = ~ IV(t, j, k, I) - V(i,j, k, m) + V(i,j, 1, m) 

- v ( i ,  k, l, m) + V(j ,  k, 1, m ) ] .  (49) 
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d , "  A 2 " - , ~  

i j j 

(a) 

A1 

J 

(b) 

Fig. l. The 5 spherical tetrahedra covering S 3. A~ is the angle between the spherical triangles 
(i,j, k) and (i, j,/), A 2 is the angle between the spherical triangles (i,j, k) and (i,j, m) and A3 is the 
angle between the spherical triangles (i,j, m) and (i,j, l) 

Note that the 1/5! factor in Eq. (46) has disappeared because of the implicit 
summation over all permutations of cells. As we have discussed in [9], n combines 
5 spherical tetrahedra, which wind around S 3, the group space of SU(2). Since the 
volume of S 3 is 2re 2 and the 5 spherical tetrahedra together are compact and so 
cover S 3 (but at most once), we find 

n = 0, + 1. (50) 

The calculation of n(i,j, k, l, m) proceeds as follows. We take the transition 
functions vu, Vja .... and determine the angles between adjacent spherical triangles 
intersecting along a "hinge" of the spherical tetrahedra (cf. [9]). In Fig. ta we have 
illustrated this for a particular "hinge" with which are associated 3 a@es, A1, A2, 
and A3, belonging to 3 different spherical tetrahedra. For geometrical reasons 

(A1 + A 2  + A3) 
---p=O, +1 ,  (51) 

2r~ 

a special example of which is given in Fig. lb. If one of the 10p's is zero, then 
evidently n=0. If all p's are + 1, then n= + 1, and if all p's are -1 ,  we will have 
n = - - l .  

Collecting our results now, we obtain for the topological charge 

Q=2n( i , j , k , l ,  m)+ 2 n(1)(x;i,J) 
A A(D 

+ 2 n(Z)(x; i,j, k) + 2 n(a)(x; i,j, k, l'), (52) 
A(2) A(3) 

which is the sum of local winding numbers and, consequently, assumes integer 
values. Expression (52) is gauge invariant by construction. It furthermore has a 
simple, geometrical interpretation. 
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In the continuum we can arrange that neither v~ , j=-1  in (c~ncj)\O(cic~cj), 
(a+ll-3,)e,=2~z in (einc/~ek)\?(cic~c/~ck) nor AV(i,j,k,l)l~=+2rc z at 
x E (Cf~C/~ekC~Ct)\O(C/~C/~CkC~el), in which case the topological charge takes the 
simple form 

Q = 2  n(i,j, k, l, m). (53) 
A 

For a further discussion see Sect. IV. 

HI. Hypereubie Geometry 

So far we have considered a generic geometry of cells covering ~[. Now we come to 
the case of a hypercubic geometry, which is of special interest to lattice gauge 
theory calculations, and where ~VI is the 4-torus T 4. 

The "lattice" is now defined by 

A = (s e NIls u e Z,/~ = 0, 1, 2, 3}. (54) 

The cells covering Ni are the hypercubes (of length 1), 

N :  0 c(s) (55) 
s ~ A  

with 

c(s) = {y e NIls, __< y,  __< s, + 1 }. (56) 

The topological charge (1) can then be written 

Q= Z f d ' xe ,  (57) 
s e A  c(s) 

where P is the Chern-Pontryagin density given in Eq. (7). Using 

(o) P=~,f2~, (s), (58) 

we can perform one integration as before and obtain 

Q = Z Z ~ d3au[f2~°)( s ) -  O(f)( s-/2)1, (59) 
s e A  t~ f ( s , # )  

where f(s,  #) are the faces 

f (s, #)=c(s)c~c(s- fO , (60) 

which have the orientation of &(s), and/~ is the unit vector in the #-direction. 
Following the discussion in the previous section we can write 

(o) (o) ~ (o) ~ - O f  2~)(s, s- /~) (61) a. (s)-a. 
except for a set of singular points x ~f(s, #)\Of(s, it). As before the topological 
charge receives contributions from two terms, ' q -  o r e +  o(1) where now 

Q~t) Z Z I 2 (t) - f2(u~,)(s-f ,s- /~-f)]  (62) = d (s ,  s -  
s ~ A  #,v p(s,~,v) 
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with 

p(s, #, v) = c (s )n  c(s - ~)c~ c(s - ¢) (63) 

being a plaquette, which was the orientation of Of(s, #). The contribution Qm, 
which is independent of the particular geometry, is precisely the same as in the 
previous case, 

Q(1)= ~ n(1)(x; s, s--/~), (64) 
A(D 

where the sum is over all singular points 

A (1)= U {X ~ f ( s ,  #)\Of(s, #)}. (65) 
S,g 

Noticing that  [cf. Eq. (15)] 

o~) ( s ,  s -  ~ - ~) = - o~2(s,  s - ~ - ;,), 
(66) 

- O ~ . ( s - v , s - ~ - O ,  

Q~I) can be rewritten 

Q(~)=Z Z I 2 . )  
s~A #,v p(s,~z,v) 

= Z Z I d2truvAf2(1,)(s,s-ft, s - f  t -~)  
s~A #,v p(s,#,v) 

E Z E ~ (2) = d a..OoO~,.o(s, s -  ft, s -  f~ -  f ) ,  (67) 
s~A #,v p(s,#,v) 

which gives as before c)(1)_ c~(2)± c)(2) where 

Q(s z) = Z 52 I 0 (2) " s - / 2 -  f) d%,~[ ,.~(s, s -  #, 
s~A /t,v, co l(s,#,v,~o) 

(2) ~ ~ 
- O u ~ o ( s  - O, s - # - O, s - / ~ -  f - 0 ) ]  (68)  

with 

l(s, #, v, O) = c(s)c~c(s-  f O n c ( s -  f ) m c ( s -  O) (69) 

being a link, which has the orientation of ~p(s, #, v). The contribution Q(2) has the 
form 

Q(2) = ~2 n(2)(x; s, s - /2 ,  s - / ~ -  f) ,  (70) 
A(2) 

where 

A (2)= U {x ep(s, ~, v)\Op(s, ~, v)}. (71) 

Making use of the fact that  [9] 

- . ~ . ~ , s - ~ , s - ~ - ~ - O )  

0 (2){S - - f i - - Y , S - - f i - - Y - - O ) =  - -~ v# o (  ' S  S .~0.  , s ,')(2) s - / i -  f ,  - / i -  f -  0 ) ,  ( 72 )  

0(2) ( .~_~, s -  ~ - O ,  s -  ~ -  ~ - O )  = o¢o~.~(s-0, s -  ~ -  O, s -  ~ -  ~ -  0 ) ,  #vQ\~ 
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Eq. (68) can be written 

sEA #,v ,0  l (s ,#,v,o)  

f2~2) - 
• v) - ~ ( s ,  s - # ,  s -  f i -  0 -  0) 

+ a~)o(s, s -  f i -  ~, s -  ~ -  o -O)-  ~ ( s -  fi, s -  ¢ -  O, s -  f i -  o -  ~)] 
= dau~,oAf2u,,e(s, s - -  fi, S-- fi -- f ,  s - -  f i-- 0-- ~) 

s e A  #,v,Q l(s,.u,v,O) 

= Z E I dau~oc?,,g2(u~o,,(s, s -  fz, s -  f i -  0, s -  f i -  f -  0).  
s~A  # ,v ,~  l(s ,#,v,o)  

This gives, as before, a<2)_ a ~ ) +  c~3), where 

Q(3)= X rt(3)(X;S,s--fi, s - - f i - -O,s - - f i - -O--O)  
A(3) 

with 

so that finally we 
Q(3) _ 

s e A  

(73) 

(74) 

A ~3) = [j {x c l(s, #, v, Q)\c~l(s, #, v, Q)}. (75) 
S,g,V,~ 

For Q~3) we obtain, together with Eq. (40), 

1 
Q?~= Z Z ~,,~,,f~[V(s,s-fi, s - f i - O , s - ~ - o - ~ )  

s ~ A  #,v,Q,a 

- - V ( s - 6 , s - f i - - 6 , s - f i - f - 6 , s - - f i - - f - ~ - 6 ) ] ,  (76) 

where V(s, s -  fi, s -  f i -  0, s -  f i -  f -  0) , . . .  are the volumes of the spherical tetra- 
hedra defined by the transition functions v~,~_ a, . . . .  

Again, making use of the symmetry/antisymmetry properties of e,~o~, Eq. (76) 
can be written 

1 
Q~)= E Z ~ .~d~[V(s ,s - f i ,  s - f i - O , s - f i - o - ~ )  

s e a  # , v , q , a  

- V ( s , s - # , s - # - L s - ¢ - O - ~ - e )  

+ V(s,s-fi, s - ~ - O - O , s - f i - O - O - , ~ )  
- V(s, s - f i - ~ ,  s - f i - o - ~ ,  s - f i - o - O - ~ )  

+ V ( s - f i ,  s - f i - ¢ , s - f i - ¢ - O , s - f i - ¢ - O - ~ ) ] ,  (77) 

obtain 

~_, n ( s , s - f i ,  s - f i - f , s - f i - f - - O , s - f z - - f - - O - - t ~ ) ,  (78) 

where n is the winding number associated with the 5 spherical tetrahedra covering 
S 3 as introduced before with values 0, __ 1. 

In total, the topological charge then reads 

Q= Z E n(s,s-fi, s - f i - ¢ ~ , s - f ~ - o - O , s - f i - o - O - ~ )  
s e A  #,v,~o,a 

+ N n~l) (x;s , s - - f i )+ Z n(2)(x;s,s--f i ,  s - - f i  - f )  
AO) A (21 

+ E n (3 ) (X  ; S, S - -  f i ,  S - -  f i  - -  0 ,  S - -  f i  - -  0 - -  ~ ) .  (79) 
A(3) 
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Again, it can be arranged that 

Q= Z Z n ( s , s - f ~ , s - ~ - ~ , s - ; ~ - ~ - O , s - f ~ - ~ - O - ~ ) .  (80) 
s ~ A  /.t, V, ~,  O" 

The virtue of this construction of the topological charge Q is that it can easily 
be adopted to any geometry of cells. 

IV. Lattice Gauge Fields 

In Sects. II and III we have assumed that the gauge fields are known in the 
continuum (of ~V[). This is no longer true if the theory is regularized by formulating 
it on a discrete lattice of points in space-time - usually a hypercubic lattice, which 
we shall identify with A [Eq. (54)]. In this case the transition functions Vs, s-f, are a 
priori only given at the corners of the faces f (s ,  #), i.e. the lattice points. 

For  the computation of Q~3) this is all that is required. For  the computation of 
Qm, Q<2), and Q(3) we need - if no further provisions are made to know whether 
AO(f)(s,s--fO, AD~)(s,s--fL, s--f~--f), and A O ~ ( s , s - f i ,  s - f i - f , s - f ~ - f - O )  
are singular in f (s ,  #)\~f(s, #), p(s, #, v)\~p(s, #, v), and l(s, #, v, O)\~l(s, #, v, Q), 
respectively. The exact positions of the singularities (x s A °), A (2), and A (3), 
respectively) are, however, not necessary to know. This requires (only) an 
interpolation of v~, s_~ throughout the plaquettes p(s, #, v) and, possibly, to a single 
(but arbitrary) point in the interior of f (s ,  #). A potential interpolation (which 
satisfies the cocycle condition and maintains gauge invariance) has been given in 
the literature [8]. 

In the "continuum region," where the lattice spacing (which we have set to l) 
becomes small in physical units and the gauge fields contributing to the functional 
integral have a small (lattice) action density, 

Tr [1 - U(~p)] < e (81) 

[U(@)" paralld transporter around the plaquette p], the computation of Q = Q~3) 
+Q(t)+Q(2)+Qt3) simplifies greatly. Using Lfischer's interpolation [8] of the 
transition functions, one derives the following (sufficient) conditions under which 
AY2~°)(s,s-fz), AOuv°)(s, s-- f~,s- f~--f) ,  and (2) ~O,~(s. s - p .  s - ~ - ~ ,  s - ~ - ~ - O )  
have no gauge singularities (assuming 14 arc cos(1 - le)__< ~): 

d(v~,~_~(s), 1)+ 11 arc cos(1-½e)< ~, 

d(v~.~ _ ~(s), 1)  + d (v~_  ~,~ _ ~ _ ~(s),  1)  + d ( , < ,  _ ~(s)v~ _ ,~.~ _ ~ _ ~(s),  1)  

+ 6 arc cos(1-½e) < 2~, (82) 
2 d(v~s_ e(s), 1) + max {d(v,_ ~,,_ ~_. ~(s)[v,_ a_ ~,,_ a- ~- 0(s)] , 1) 

" O _ < A < I  

+ d(v,,,_f,(s)v,_;,,,_ ~_ ~(s) [v,_ g_ ~,,_ ~_ ~_ ~(s)] z, 1)} 

+ 8 arc cos(1-½e) =< 2re 

for #, v, 0 s {2, 3, 4} (for #, v or O = 1 the fields that give rise to gauge singularities are 
of measure zero in the functional integral), where d(u, v) is the metric of SU(2) = S 3, 
i.e. 

d(u, 1) = arc cos(½ Tru).  (83) 
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This means that for small e it is possible to gauge transform the transition functions 
- if necessary- such that the bounds (82) are satisfied. The computation of Q then 
reduces to e fl(3) the computation o~ ~g~ , and the charge can be viewed as the sum over 
local SU(2) winding numbers. 

For gauge field configurations with larger action density it is also not necessary 
to compute all of the Q's. One finds that it is always possible to (explicitly) gauge 
transform the transition functions such that Q(3)= Q(2)_Q(1)_ =0. This then 
reduces the problem to determine whether v~,,_z = -  1 in f(s,  #)\Of(s, #), which 
can be done on purely geometrical grounds. 

It is not the purpose of the present paper to go into further details of the 
numerical evaluation of Q on the lattice. This will be the subject of a forthcoming 
publication, where we will also present results of a Monte Carlo calculation of 
(Q2) on large lattices. 

v. su(3) 
It is not trivial to extend the results of Sects. II and III to the physically more 
interesting case of gauge group SU(3). Therefore one is led to ask the question: can 
we reduce the problem of computing the topological charge for SU(3) gauge fields 
to the case of SU(2) [10]? 

In the continuum this is possible by means of the so-called reduction of the 
structure group [11 ]. This means the following. A fibre bundle, which has structure 
group G and is therefore in general given by G-valued transition functions, may 
under certain circumstances be described by transition functions with values in a 
subgroup of G. By means of the theorems proved in [1 lJ it is easily shown that the 
structure group of any SU(3) bundle over T a can be reduced to SU(2). 

The explicit construction makes use of the fact that SU(3)/SU(2) is equivalent 
to S s. Actually, SU(3) is a SU(2) principal bundle over S 5 (cf. [12] for the 
analogous considerations in case of the unitary groups). The projection 

SW (3)-~ SU(3)/SU (2) u S ~ (84) 

simply maps a SU(3) matrix onto its first column. Here and in the following we 
describe points of S 5 by a triplet of complex numbers, 

(a,b,c)~ff~ 3 , ta12+lb12+lc[2=l. (85) 

As S 5 minus one point is a contractible space, SU(3) minus the fibre over the 
removed point is a trivial SU(2) bundle. For example, any u ~ SU(3) with ul 1 + - 1 
may be decomposed as 

( 1 0 0 )  

u=co(ull,u21,u31) 0 ~ -~*  
0 ~ ~* 

where lal 2 + fll z = 1 and 

c0(a, b, c) = (I + a* -[b[ 2) 

cb* 
l + a  

(86) 

l + a  
- - C * - -  

1 +a* 

be* 
1 +a* 

1 
1 +a* (1 +a*--lcl 2) 

(87) 
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for lal 2 + Ibl 2 + lcl 2 = 1, a :t: - 1. The first factor in (86) represents a point of the base 
space S s in SU(3) while the second one describes the fibre SU(2). 

Now the reduction procedure as given in [11] goes as follows. Let ~ be an 
SU(3) bundle over  T 4 specified by transition functions (we shall restrict ourselves 
here to hypercubic geometry) 

f~,~_)(y) s SU(3), y ~f(s ,  #) (88) 

analogous to the case of S U(2). We first construct a section of the bundle ~/SU(2) 
which has T 4 as base space and S s as fibre. Such a section is described by smooth 
functions 

z~ : c(s)-~ S 5 (89) 

satisfying 

z~(y) = ~,~_ ~(y)z~_ r,(Y) (90) 

for y e f (s ,  #). The fact that N/SU(2) admits a section follows from 

rq (S 5) = ~2(S 5) = n3(S 5) = 0. (91) 

If z~ is not surjective - this condition is generically fulfilled - we can find a 
smooth map 

~ : c(s)-~SU(3) (92) 

such that the first column of £~(y) coincides with z~(y) for all y ~ c(s): 

1 

For example, if z~(y)+ ( - 1 , 0 ,  0) for all y e c(s) we can define 

e (y) (94) 

For y ef (s ,  u), we have 

e (y) = zXy)  = = es, - • (95) 

Consequently, if we use the functions ~ to gauge transform the f~,~_¢, we arrive at 
transition functions with values in SU(2): 

~(y) -lf~,~ _ a(y)~_ ~(y) = 

Vs, s -~  

v~,~._ ~(y) e SU(2). (96) 

As the topological charge is invariant under gauge transformations like (96), it can 
be computed from the SU(2)-valued transition functions v,,~_a(y). 

To carry out the reduction explicitly we need to know z~(y). In the continuum, 
where the SU(3)-valued transition functions f~,~_~ are explicitly given in the form 

f~,~_ f,(y) = ~ 0 , ) -  10~_ ~ , ) (97) 
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[cf. Eq. (11)] for all y s f ( s ,  #), we may take 

z~(y) = 0K(Y)-I , (98) 

which, as is easily seen, satisfies Eq. (90) (and, as a result of(91), can be extended to 
c(s)). On the lattice we follow [8] and construct transition functions at the corners 
of f (s ,  #) with help of the standard parallel transporters v?~: 

~,~_ ~(y) = v~(y)v~- ~(y) - 1 (99) 

To extend the ~,~_ ~'s to the whole of f (s ,  #) we may take Ltischer's interpolation 
[8] (which is trivial to extend to the case of gauge group SU(3)). It has been shown 
in [13] that this can be written for all y s f ( s , / z )  in the form (99). The explicit 
expressions for the parallel transporters ~(y) ,  y s &(s) are also given in this 
reference. We then may define 

zs(y) = ~ ( y )  , (1oo)  

which satisfies Eq. (90) and provides us with SU(2)-valued transition functions 
Vs,~-~,(y) for all y Ef(s,  p). 

V. Conclusions 

We have integrated the Chern-Pontryagin density completely and obtained a 
closed expression for the topological charge Q - which requires one to know the 
gauge singularities . . . .  a f 4 o  (°)~ , _..,~AO ~1), and A ~2~Q though. This result applies as well for 
gauge group SU(3), whose transition functions can be gauge transformed into 
transition functions with values in SU(2). The practical use of the expression is that 
it allows us to calculate Q, in the continuum and on the lattice, without resort to 
numerical integration. 

We have seen that Eq. (79) leaves considerable room for the practical 
evaluation of Q on the lattice - including the choice of an interpolation of the 
transition functions. The by far fastest procedure is the first method described in 
Sect. IV, in which it is sufficient to compute Q(z s). This will be applicable in the 
"continuum region" only. But notice that alone in the "continuum region" a lattice 
gauge field configuration can be assigned a unique topological charge [8]. 

While we were preparing this paper we received a preprint by Phillips and 
Stone [14], who also were able to compute the topological charge of SU (2) gauge 
fields by analytical means. The amount of algebra to do in their algorithm is similar 
to that of the second method sketched in Sect. IV, where one has to compute Qm 
only. It will be interesting to compare their charge with, e.g., L/ischer's 
interpolation of the transition functions on individual gauge field configurations at 
various values of the coupling constant to test for uniqueness of the results. 



Topological Charge 481 

References 

1. Belavin, A.A., Polyakov, A.M., Schwartz, A.S., Tyupkin, Yu.S.: Phys. Lett. 59B, 85 (1975) 
2. Fox, I.A., Gilchrist, J.P., Laursen, M.L., Schierholz, G.: Phys. Rev. Lett. 54, 749 (1985) 
3. Arian, Y., Woit, P.: Nucl. Phys. B268, 521 (1986) 
4. 'tHooft, G.: Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D 14, 3432 (1976) 
5. Illgenfritz, E.-M., Laursen, M.L., Miiller-PreuBker, M., Schierhotz, G., Schiller, H.: Nucl. 

Phys. B268, 693 (1986) 
6. Caltan, C., Dashen, R,  Gross, D.: Phys. Rev. D19, 1826 (1979) 

Shuryak, EN.: Phys. Rep. 115, 15t (1984) 
7. Callan, C., Dashen, R., Gross, D.: Phys. Rev. D 17, 2717 (1978) 
8. Liischer, M.: Commun. Math. Phys. 85, 39 (1982) 
9. Laursen, M.L., Schierholz, G., Wiese, U.-J.: Commun. Math. Phys. 103, 693 (1986) 

10. Parisi, G., Rapuano, F.: Phys. Lett. 152B, 218 (1985) 
11. Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, manifolds, and 

physics. Amsterdam: North-Holland 1982, pp. 381-385 
12. Steenrod, N.: The topology of fibre bundles. Princeton NJ: Princeton University Press 1951 
13. Wiese, U.-J.: Thesis (to be published) 
14. Phillips, A., Stone, D.: Commun. Math. Phys. 103, 599 (1986) 

Communicated by G. Mack 

Received February 6, 1986; in revised form June 4, 1986 


