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Abstract. We calculate the t w o  nonvanishing O(~t if) 
parity-violating structure functions that contribute to 

)bZ 
e + e -  ---*q~tg.  We discuss how these can be measured. 
We work with massless quarks and gluons and use 
dimensional regularization to regularize ultra-violet 
and infrared singularities. We carefully discuss how to 
deal with Y5 in the dimensional regularization scheme 
when infrared singularities are present. 

I. Introduction 

Much experimental [1-6] and theoretical work [7-11] 
has been expended on the elucidation of the role that 
O(~) corrections play in the description of 3-jet events 
in e+e--interactions. These have been found to be 
nonnegligible and thus affect the ~s-determination 
from 3-jet event data. 

The first O(~ 2) calculations were done for the trace of 
the hadronic tensor, i.e. the O(~ 2) corrections to space- 
direction averaged 3-jet events. With more data it will 
be desirable to check also on the O(~ 2) corrections to 
oriented 3-jet events,* or, vice versa, it will be desirable 
to be able to generate O(~]) oriented 3-jet events via 
Monte Carlo. 

The general space-orientation of 3-jet events in 
e + e--annihilations is described by 5 parity-conserving 
(PC) and 4 parity-violating (PV) structure functions 
[14]. In massless QCD one of the PC and two of the PV 
structure functions can be shown to vanish identically 
in O(~ z) [15, 14]. A set of 4 linearly independent PC 
structure functions have recently been obtained by two 
of us [16]. In the present paper we complete our 
program of calculating oriented O(~ z) 3-jet events by 
presenting the results of a calculation of the two non- 
vanishing O(~) PV structure functions. 

* For O(cq) results see [12, 13] 

The PV asymmetries that are induced by the PV 
hadronic structure are measurable for the present high 
energy machines and are sizeable in the energy range 
available to the next generation e+e--maehines 
(TRISTAN, SLC, LEP). Offthe Z these result from the 
usual electro-weak 7-Z interference effects, whereas a 
measurement on the Z requires longitudinally pola- 
rized Z's due to the smallness of the leptonic vector 
contribution proportional to (1-4sin2Ow). Longi- 
tudinally polarized Z's are planned to be available at 
the SLC using longitudinally polarized electrons 
and/or positrons for the annihilation process. The 
measurement of the PV asymmetries does, however, 
require quark flavour tagging, which will reduce the 
available data sample. 

On the theoretical side the calculation of PV quant- 
ities involving parity-odd fermion traces requires a 
careful discussion of how to deal with 75 or the totally 
antisymmetric ~,or6 in n-dimensions. The n-dimen- 
sional parity-odd Dirac traces generate O((n-4)% 
m>0) anomalous contributions, which in turn 
lead to f i n i t e  anomalous terms when multiplied with 
ultraviolet (UV) or infrared (IR) divergent integrals. 

Spurious UV anomalies can be and must be can- 
celled by taking the appropriate renormalization 
scheme [17-19]. In the IR case one encounters axial 
and charge conjugation anomalies. These cannot be 
removed by renormalization. We demonstrate in this 
particular application that the IR charge conjugation 
anomaly vanishes after IR integration and that the 
finite IR axial anomalies are spurious in the sense that 
they cancel among the real and virtual contributions to 
the PV structure functions as do the IR singular 
contributions. 

We choose to work with massless quarks and gluons 
and use dimensional regularization to control UV and 
IR infinities. 

We use the 75-scheme of Breitenlohner and Maison 
(BM) [20] which, to our knowledge, is the only n- 
dimensional ys-scheme free of internal inconsistencies 
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[-17]. The BM scheme was originally developed for the 
regularization of UV singularities in the presence of 75. 
We found that the BM scheme is also well suited for the 
treatment of IR singularities in the presence of 75. For 
the purposes of the present calculation the BM 75- 
scheme can be implemented by observing the following 
two simple rules: i) Do not commute by 75 ii) The trace 
-i/4Tr757~7~7~7~ equals the conventional antisym- 
metric e-tensor e,r in 4 dimensions (e0~23 = 1) if the 
tensor indices c~, r ,  7, 6 are "4-dimensional" and equals 
zero otherwise. A more complete account of the BM ?5- 
scheme is given in 1-21] and in Appendix A. 

Concerning technical details we are very brief on 
those features which are similar to the corresponding 
PC case treated in detail in [8, 9]. However, the 
presence of 75 in the PV case brings in some novel 
features which require careful discussion. These are 
treated in more detail since we feel that the expertise 
gained from this first explicit calculation of a higher 
order QCD correction to a PV cross section will be 
quite valuable for the many higher order QCD calcul- 
ations that have to be done for the interpretation of PV 
experiments at the high energy machines to be com- 
pleted in the following years. Finally, our IR in- 
tegrations are done up to O(y~ where y is the 
dimensionless invariant mass cut-off such that 
(Pi + pj)2 ~ yq2. 

Our presentation is organized in the following way. 
In Sect. 2 we write down the general structure of the PV 
hadron tensor and discuss how the PV structure 
functions are related to experimental observables. In 
Sect. 3 we treat the IR integrations of the O(~ 2) 4- 
parton processes e+e ~ q J l g g a n d e + e - ~ q g l q E l .  In 
Sect. 4 we deal with the O ( ~ )  virtual l-loop contri- 
butions to the PV structure functions. In Sect. 5 we 
combine the results of Sects. 3 and 4 and show that the 
IR singular pieces and the finite anomalous pieces in 
the real and virtual contributions cancel. One remains 
with a finite, IR cut-off dependent contribution free of 
anomalies. Their contributions to some physical PV 
cross sections are evaluated numerically and are 
compared to the O(as) results. 

In Appendix A we provide a brief introduction to the 
BM ?5-scheme*. In Appendix B we calculate an n- 
dimensional integral of a 4-dimensional scalar that is 
needed in the main text. For the sake of completeness 
we present results on the O(~s) corrections to the PC 
and PV cross sections in e+e ~qc~ in Appendix C. 

2. A n g u l a r  A s y m m e t r i e s  

The differential cross section for e+e - ~qg lg  has the 
following form 

do = auud.Q~3) LUV Hu~. (2.1) 

Here d.Q (3) is the invariant phase space for three 
massless particles in the final state, L.v is the lepton 

* F o r  m o r e  de ta i l s  see [ 2 0 , 2 1 ]  
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tensor and H,v the hadron tensor, respectively. H,v 
depends only on the final-state parton momenta  and 
receives its contribution from the C-even, parity con- 
serving current times current terms V V  and AA,  
whereas the C-odd, parity-violating term originates 
from the VA + A V interference. Therefore we can write 

_ PC Pv (2.2) Huv - Huv + H.~ 

where for massless Q C D  

PC - -  1 [f_IVV AA Huv - 2 i..tl ~v -+- Huv ) 
HeV 1 [L~'VA ..2_ ~I AV]  (2.3) 

/iv ~-2\~ta / tV / a a / t v / "  

For unpolarized e+e - beams the parity-conserving 
lepton tensor is 

L~ c = p.+ p;- + p~- p~+ - (p + p )g,~ (2.4) 

and the parity-violating contribution is 

Pv . P ~ (2.5) Luv = le,v~q p -  

p+(p_) is the positron (electron) momentum and 
q = (p+ + p ). Then for unpolarized beams 

L. v 2 PC 2 PV = g l ( q  )Lu~ +gs (q  )Luv- (2.6) 

All flavour dependence or all dependence on the 
particular neutral-current model used goes into the 
two functions gl (q2) and g5(q2), ffuu is the lowest order 
e + e -  --*/~ + p -  cross section used for normalization as 
usual. The dependence on beam polarization is easily 
accounted for. The corresponding formulas for the 
general case of arbitrary transverse and longitudinal 
polarization ofe  + a n d e  beams can be found in [13]. 

Before we go on let us recall some well known 
properties of (2.1), (2.2) and (2.3): (i) Since H ,  Pv arises 
from the C-odd VA interference it does not contribute 
to observables which do not distinguish quarks from 
antiquarks. (ii) The parity conserving hadron tensor 
Hu pc is the same as for pure one-photon exchange. This 
is because the quarks are assumed to be massless. So 
v - a 7 5  factors can be trivially moved through the 
traces, yielding only a common factor which is absor- 
bed into gl(q2). Therefore all angular distributions, 
thrust distributions etc. which do not distinguish 
quarks from antiquarks are not changed by the 
inclusion of the A A term. (iii) The C-odd asymmetries 
for unpolarized leptons are products of a pure QCD 
factor times the electroweak function rs(q2)= 
gs(qZ)/ga(q2). For the GWS-model  gs(q 2) can be 
found in many papers [13, 22]. It is large over a wide 
range of energies and stays large above the Z energy. 

The tensor structure of H,v is fixed by the require- 
ment q"H.v = qVHuv = 0 and the fact that besides q it 
can depend only on two more momenta,  for instance PI 
and Pz, where Pl(P2) is the quark (antiquark) momen- 
tum (q = Pl + P2 + P3,P3 = gluon momentum). Then 
H .  Pc depends in general on five structure function 
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Hi(i = 1, 2, 3, 4, 5) in the following form [14, 15] 

HP. c = H,  (g.~ - quqffq2) + H2!31up,~/q2 

7 t- H3P2t~P2v/q 2 "[- H4(pltLP2 v -I- p 2 , P l v ) / q  2 

-1- H5(/31.102v - - / )2 . i01v) /q  2 �9 (2.7) 

The parity-violating tensor Hav has the following 
general structure [14] 

HPu v = H 6 q -  2 i~u~q~pP 1 + H vq-  2 ieu~pq~p~ 2 

+ Hsq-4(~ luF~ + ~,~F u) 

+ H9q-4( )zuF~ + iOzvFt,) (2.8) 

where Pu = P, - p.q/qZq,  and F u = ieu~pp]p~q v. From 
Huv = H* u one concludes that Hi ,  H2, H3, H4, H6 and 
H 7 a r e  real and H 5, H 8 and H 9 a r e  imaginary. We note 
that H , , H 2 , H 3 , H 4 , H  8 and H 9 a re  associated with 
symmetric tensors and Hs, H 6 and H 7 with antisym- 
metric tensors, respectively. Therefore contributions to 
H x , H 2 , H 3 , H 4 , H  8 and H 9 c a n  be detected only with 
the symmetric part of the lepton tensor and Hs, H6 and 
H 7 only with the antisymmetric part of the lepton 
tensor present. 

To fix our normalizations it is appropriate to present 
the formulas for e+e - --'qglg in lowest order a~. For 
this purpose we write (2.1) in the form 

da = da ce) + da (~ (2.9) 

with the C-even part o fe+e  - ~ y , Z  ~qc~g denoted by 
de  (e) and the C-odd part as da (~ After specifying the 
usual coordinate system for the orientation of the q~g 
momenta with respect to the e-  beam direction [13] 
the angular distribution for da (~ has the following form 

da(o) 

d x  1 d x  2 d cos Odz/2n  
da P 3 da A 

=a4coSO dx~dx2 x//2sin O c o S X d x l d x 2  . (2.10) 

xi = 2Pio/x /~  (i = 1,2, 3) denote the scaled energies of 
the outgoing quark, antiquark and gluon. 0 is the 
polar angle of the parton z axis with respect to the e-  
beam direction. The parton z-axis may be either the 
direction of the quark, the antiquark or the gluon 
momentum. ~( is the azimuthal angle of the qflg 
production plane with respect to the z-axis-e--beam 
plane [13]*. Z is defined by the antiquark (quark) 
momentum if the z-axis is in the direction of the quark 
(antiquark); if the gluon defines the z direction Z is 
marked by the quark. The angles 0 and Z vary 
b e t w e e n 0 < , 9 < n ,  0<~_-<2n. 

Depending which of the quark, antiquark or gluon 
are chosen to define the z- and x-axis the partial cross 
sections dae(da A) differ. In 0 ( % )  these partial cross 

* In (2,10) we ha,ze omitted cross section contributions with sin 2 O 
sin 2X and sin 20 sin )~ angular dependencies. In massless QCD one 
finds these to be zero at O(c~) [15, 14] 
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sections have been calculated before [13]. They are 

X 2 ^ X 2 d~ (1) as -~ l P l z  - 2P2z 

d x l d x 2 - g s a  ~ t ~ F ( i - ~ L ) ( i ~ 2  ) 

d~r A ( ,  as ~ x ~ P ~ x -  X~&x 
axxdx-g   (2.11) 

with 

Pix = sin ~)ik, Piz = COS Oik , i = 1, 2 
2 

COS~)ik=piPk = 1 + (1 - - X i - - X k )  (2.12) 
XiXk 

Pk always refers to the parton which is used to define the 
z direction, i.e./~k = (0, 0, 1). a (~) = 3au,, CF = 4/3 and a~ 
is the QCD coupling, g5 contains all constants of the 
GWS model and the dependence on the longitudinal 
polarization of the electron (~t-)) and the positron 
(((+)), respectively. 

95 = 2 Re fl(ae(1 + ~(-)~(+)) - Ve(~ (-) + ~(+)))aqQ~Qq 
+ ]fllZ[2v~a~(l + ~(-)~(+)) 

-- (re 2 + aeZ)(( ( - )+  ~(+))]2Vqaq. (2.13) 

In (2.13) 
gm2q 2 

fl q2 m2 + i m z F  z (2.14) 

and the electromagnetic and weak coupling constant 
are specified as follows: 

7 coupling: eQT,  with Q = - 1 for electron 

Q = 2/3, - 1/3 for quarks 
(2.15) 

Z coupling: vector coupling = ex /gmzVT,  

axial-vector coupling = ex fgmzay ,75 .  (2.t6) 

m z and F z are the mass and the width of the Z boson 
and g = G F ( 8 X / 2 n a ) 1 , ( a = e 2 / 4 7 c ) ,  G v being the 
Fermi weak coupling constant. In the GWS model 
m z x ~  = (2 sin 2 0 w ) -  1, v = -T- 1 - 4 Q sin 20w, a = -T 1, 
where the upper sign holds for electrons and quarks 
with charge - 1/3 and the lower sign with charge 2/3. 
The contributions (2.11) to the cross section give (i) the 
forward-backward asymmetry of the Oz axis with 
respect to the e-  beam direction (the term ~ cos 0) and 
(ii) the azimuthal asymmetry of the event plane with 
respect to the scattering plane (the term ~ sin 8 cosx), 
both coupled with a charge asymmetry of quark versus 
antiquark distribution (sign change for 1~--,2). One 
should note from (2.13) that g5 deviates substantially 
from zero at the Z resonance energy only if electron 
and/or positron are longitudinally polarized. 

Since later on we shall present our higher order 
results for the structure functions H 6 and H 7 the 
relation of d a P a n d d a  A, as defined in (2.10), with H 6 

and Hv are of interest. For the case that the quark 
momentum is along the z-axis, and the antiquark 



184 

momentum in the (pos. x; z)-half-plane, we have 

"d 6rP g5 
dx~ dx2 - 64 n 2 % , 2 ( H +  + - H_ _) 

- 694~auu(xa... H 6 + x 2 COS Oi2H7)  

d ffA g5 
dx l  dx2 - 6 4 ~  ~ruu Re(H+ o + H_ o) 

_ g5 x 2  i ~ " 
64nzauu2wf~s  n 1 . ~ 1 2 / " / 7  . 

(2.17) 

(2.18) 

Comparing (2.17) and (2.18) with (2.11) allows one to 
read off the lowest O(~,) contribution to H 6 and HT. 

So far we have looked at the VA interference terms 
solely in connection with their appearance in e+e - 
annihilation. Up to now Z's (and similarly W's) have 
been produced only in p f  collisions at the collider at 
CERN. Depending on the polarization of the produced 
Z's and W's the VA interference terms can also be seen 
in their angular decay distributions. The PV contri- 
butions to the decays Z ~ q C t g  and W ~ q ~ ' g  are 
described by the same 2 PV structure functions H 6 and 
H 7 calculated in this paper to 0(~2). Thus our results 
also apply to the decay of hadronically produced Z's 
and W's although we do not work out the details of the 
spin kinematics of these decay processes. 

3.  I n t e g r a t i o n  o f  F o u r - P a r t o n  C r o s s  S e c t i o n  

(i) General Remarks 
Our aim is to integrate the 4-parton processes 
e + e - - ~ q f t g g  and e + e - ~ q i l q f l  over the various 
2-parton sub-phase-spaces up to an invariant mass 
cut-off s~ < yq2. Since we desire an accuracy of O(y ~ 
we need to consider only those regions of phase space 
in which the 4-parton processes become IR singular. 

The techniques of IR integration have been presen- 
ted in detail in [8,91 where the trace of the hadronic 
tensor was integrated. In our case we are dealing with a 
more complex case. Firstly we are integrating a tensor 
quantity H Pv and secondly, we have the added com- 
plexity o f  odd-parity fermion loops. These added 
complexities bring in new technical features which 
have to be carefully discussed. 

First note that the PV hadron tensor H ,  vv defined in 
(2.3) is (#~-~v)--antisymmetric for (real!) tree graph 
contributions, i.e. 

H~, (tree). (3.1) H~V(tree) = _ vv 

The antisymmetry (3. l) is true regardless of the space- 
time dimension n since it does not depend on the 
commutat ion property of Ys. 

The 4-parton tensor H~ 4)Pv involves odd-parity 
fermion traces. These n-dimensional Dirac traces gene- 
rate O((n - 4)m;m > 0) anomalous contributions. 

Thus the above two processes develop chiral (or 
axial) anomalous terms for n # 4, i.e. H AV # H VA and 
q~Hpv v Pv __~ # 0, q H ~  # 0. These anomalous terms have to 
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be taken into account explicitly when the IR in- 
tegrations are done. 

Also due to the fact that { V,, Y5 } # 0 for n # 4 one 
finds c ( j A ) c  - 1 # j a .  This charge conjugation anom- 
aly, however, cancels after IR integration as shown 
after (3.5). In addition, the charge conjugation anomaly 
is of no physical relevance since the physical cross 
sections derive from the contraction of the hadron 

/ P V  H # v P V  tensor and the lepton tensor _~__  as in (2.1). 
Therefore the (#,v)-indices are constrained to be 4- 
dimensional [see (A7)] and thus the proper charge 

a l  e H ( 4 )  PV conjugation properties v_. . ,~ are restored in phys- 
ical cross sections. 

The sum over the various 2-parton IR integra- 
tions leads to the 3-parton hadron tensor 
H(3)PV/,7 uv t'11, q2, q3, Y) which is a function of the 3-parton 
momenta  and the invariant mass cut y. The IR in- 
tegrations are best performed in the C MS-system of the 
various two-body phase-space regions { i j }  integrated 
over [9]. At the O(y ~ level this may be expressed by 
writing 

t y q2 f a n 5  r ( 1  - ~) , - , ~ ,  _t  
[ ~ - ]  F ~  - f~e) 2., jaYi,jYis 16rc2\-, / ~ -- J{ij}o 

n -  1 (4 )PV "{Sd-Oij }Hu~ (Pl ,Pz,P3,P4)= H~)(ql ,q2,q3,Y).  
(3.2) 

dO"-1  is the spherical element in ( n -  1) dimensions 
normalized to unity, i.e. Sd-0"-~ = 1 and ~=(4-n ) /2 .  
The curly brackets in {d.Q~" 7 ~ } mean that proper care 
has to be taken to avoid double counting for overlap- 
ping singularities. We shall deal with this problem in the 
manner of [161 which has been referred to as the direct 

H(4)PV (n.~ dressing approach in [11] [see also (C2)].._~ . . . . .  
denotes the PV 4-patton hadron tensor. The p~(i= 
1 . . . . .  4) are the 4-parton momenta.  They are on-shell 
p2 =0 .  They have to be chosen as n-dimensional 
vectors when integrated over. The 3-patton momenta  
qz(l = 1,2, 3) can be taken as on-mass-shell (q2 = 0) in 
the O(y ~ approximation. The coordinate system must 
be chosen such that the q~ have only 4-dimensional 
components [see e.g. (B1-B3)]. Finally we introduced 
qZYij = S i j  = 2piPj(q 2 zij= t i j  = 2qiqj ). The densities 
H(4)PV(n3 have been calculated in n = 4 dimensions in ]tv ',t" lJ 

[221 for the various 4-jet cross sections. Of course we 
need them for n # 4. So they had to be recalculated. 

There are two possible ways to proceed with the 
angular integration in (3.2). Using the representation 
(A5) for ?s one can calculate 

H(4)PV(n ] - e T(4)[otfl'~Ol in ~ (3.3) 
l t v  ~ r i l  - -  ~ a [ /~v]  t k ' i l "  

The angular integration on the n-dimensional rank 6 
antisymmetric tensor _[,,j w~) can then be done by 
the standard methods, viz. 

~d.O"- 1T(')t~P~]t,, ~ T(3)[~//~'~]/'o ~ (3.4) 
a [ # v ]  ~ F i !  = ~ [ g v ]  t t t i ] "  

The 75-substitution in (3.3) necessitates the calculation 
of very long traces. Also the tensor integration in (3.4) is 
not simple. 
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Instead of doing the tensor integration (3.4) we use a 
short cut and directly scalarize the integrand in (3.2) by 
writing down the most general expansion for the angle 
integrated 4-parton tensor* 

S d ~ r ~ n  - 1H(4)PV(D ~ - -  HP6V e(l~vqqx) 
- ' - -  - - l t V  ~ t ' D  - -  

+ H Pv e(kt vqq2) + H'ave(~vqlq2). 
(3.5) 

The invariants H~ v and H~ v obtain the conserved 
current contributions whereas H 'Pv carries the anoma- 
lous contribution. Use has been made of the antisym- 
metry (3.1). Further covariants as e.g. q~,e(vqlqEq3) 
-q~e(l~qlq2q3) are not independent and can be 
related to the above set by using the Schouten identity 
(A4). This is legitimate since we always choose our n- 
dimensional coordinate systems such that the outer 
momenta  q~ have only 4-dimensional components [see 
e.g. (B1-B3)]. 

Since the RHS of (3.5) carries only 4-dimensional 
tensor indices/~ and v it is clear that the anomalous 
charge conjugate pieces in H ~4)Pv resulting from --/tV 
C(7~75)C -~ ~(Vuy5) r vanish after the angular in- 
tegration (3.5). 

The integrand in (3.5) can be scalarized by using the 
three parity-odd projection tensors 

HP6V :q2~e(#qx q2q3) 
HPV :q~e(#ql  qzqa) (3.6) 

H'PV:q~e(laqx q2q3) 

which at the same time project out the three invariants 
H Pv, H Pv and H 'Pv as indicated in (3.6). Note that the 
contractions (3.6) can be exchanged with the angle 
integration in (3.5) since the q~ do not depend on the 
angular integration variables. 

The action of the parity-odd projectors (3.6) on the 4- 
parton integrand in (3.5) bring into play 4-dimensional 
scalars via the products of ~-tensors [-see (A6)]. These 4- 
dimensional scalars have to be treated separately from 
the n-dimensional scalars resulting from the trace 
manipulations. However, this does not pose a big 
problem, since there is only one relevant 4-dimensional 
scalar for every IR region. 

Consider for example the (3-4) IR region in the (3-4) 
CMS system (P3 q-P4 =0). An explicit representa- 
tion of the 4-parton momenta  pl in this system is 
given in (BI-B3). The relevant 3-parton momenta  
ql =P~,  q2 = P2 and q3 =P3 +P4 are 4-dimensional. 
All 4-dimensional scalars can be expressed e.g. in 
terms of/~2. Thus/~3/~, = P4(P3 + P4) - / ~ , / ~  =/~2 and 
/~1/~3 =Pl/~3 =PIP3 etc. The n-dimensional angular 

P4 is done in Appendix B. P4 is propor- integration of ,2 �9 ,2 
tional to s34 as (B3) or (B5) show. This means that all/~2 
contributions can be dropped except for the true 
double pole contributions s3-42 as long as one is 
calculating at O(y~ 

* The 3-parton momenta ql in (3.5) are in general off-shell 
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After the angular integration (3.5) one still has to do 
the invariant mass integration in (3.2). Apart from the 
ylj-dependence in the scalar functions H~ v, H Pv and 
H 'ev there is also the yij dependence in the tensors 
themselves, since the q~ are in general off-mass-shell. 
However, this need not concern us at the O(y ~ level as 
can be shown as follows. It is convenient to do the y~j- 
integration in the e + e -CMS-system. Define the z-axis 
by the off-mass-shell parton q~ = p~ + p j, and q2= 
yijq z. Then one has q l u = ( q l 0 , 0 , 0 , ~ )  
(qlo, O, O, qto (1 1 2 -- ~Sij/qlo q- ...)). Thus the s~ 
dependence of the tensors in (3.4) can be neglected at 
the O(y ~ level since no true double-pole s~ 2 contri- 
butions remain after the angular integrations (3.5)*. 

Finally, let us remark, that we did not find it more 
difficult to implement the PV calculation on the com- 
puter than the corresponding PC calculation, despite 
the fact that the BM 75-scheme looks formidable at first 
sight. First, note that in the parity-odd traces there is 
no need to use the "ugly" commutat ion rules (A3) since 
all trace manipulations can be performed without 
commuting by 75 because of the cyclic property of a 
trace. Second, we did not need to use the 75- 
substitution (A5) since the action of the projectors (3.7) 
reduced the 4-parton traces to traces with 75 and four 
7's. Lastly, the appearance of 4-dimensional scalars 
brought in by the projection method causes only 
minimal additional problems as discussed above. 

(ii) Integration of  e + e-  ~ q(p 1) FI(Pz)g(P3)g(P,) 
An inspection of the relevant Feynman diagrams (see 
e.g. [-8,9]) shows that the cross section becomes 
singular in the regions where s13, s14, s23, $24 and s34 
approach their mass-shell values. As discussed in detail 
in [8, 9] for the PC case there are symmetry relations 
obeyed by the 4-parton cross section under l ,--,2 and 
3,--~4 exchange which allows one to consider only the 
(1-3) and (3 4) phase space regions in detail. Care has 
to be taken in that the PV cross section is effectively 
antisymmetric under 1,--~2 exchange** compared to 
the symmetry in the PC case due to the replacement of 
a vector current by an axial vector current. 

Following the classification of [8, 9] we first consider 
the Q E D - Q E D  contributions class A and class B and 
the Q E D - Q C D  interference contributions of class C. 
The latter will be denoted by Cx. Since there is no true 
double-pole singularity in these contributions, no care 
has to be taken in tagging 4-dimensional scalars as 
discussed after (3.6). One obtains 

H(3)PV (real; A, B, C I )  gv 

= g 4 Nc CF(CF A + NcB) A~ )Pv (Born) (3.7) 

* It should be noted though that the IR singular pieces are picked up 
at the on-mass-shell limit q2 = 0 regardless of the O(y ~ approxim- 
ation. This is of course quite necessary in order to cancel the IR 
singular pieces of the loop contributions which occur for on-mass- 
shell qf s 
** See discussion of the charge conjugation property of the 4- 
parton hadron tensor after (3.7) 
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where 

n 2 2"~F(1 - -  20  ' 
A = C l + ~ - e  ) ' ~ 5 - ( ~  ! dy13Y131-~ 

11 " 2 ! d v -  I dv v-~(1-v)  -~ 
1 --y/Zl2 , /  

t ,38, �9 ( 1 -  v 

B = C  l + ~ - e  ) ~  dy,3y;~ -~ 

1 l) 
]" , / o v - , ( l _ v ) - ,  

1 - - v  t-y/z12 

Y - l - e  f l - Y / Z t 3  1 -i/z23 ) 
+I  dy34y34 I I dr+ dv v -e 

o \ o o 

�9 (1 - v ) - ' (1  V ~ v  + ~ ) }  (3.9, 

and where 

1 F (1 -e ) (4~#2" ] ' (1_~_22e2  ] 
c - 8 n 2 F ( 1 - 2 e ) \ ~ - - J k  __ / 

(3.10) 

v is related to the polar angle O of one of the partons in 
the 2-parton subsystem as described in Appendix B. 
The peculiar v-integration limits in (3.8)-(3.10) arise 
from the direct dressing approach of [ 16] and take care 
of the double counting problem. In the v-integration 
limits we have introduced the 3-parton variables z u via 
i) (1 3) system; yz3=(1-V)Za2 ii) (3-4) system; 
Y13 = (1 - v)z13 and Y23 = (1 - v)z23. This is legitimate 
to O(y~ 

A(3)Pv (Born) refers to the space-time structure of the /zv 
3-parton Born term amplitude squared and is given by 

1 - z 1 2  -I 
- (1 ~--* 2) - e 213223 ie(#vql q2)J" (3.11) 

Equation (3.7) shows that the PV contributions of class 
A, B, C~, when evaluated at the O(y ~ level, exhibit the 
same factorization into Born term and Altarelli-Parisi 
type kernel as the PC contributions [8, 9, 16]. 

The contribution from the QCD-QCD graphs* in 
class C (denoted by C30 ) is more subtle due to the 
occurrence of the double pole singularity s3q 2. In this 
case one obtains in addition also contributions from 
terms proportional to the 4-dimensional scalar /~  as 
explained after (3.6). One has 

H ( 9  )Pv (real; Csg ) 

= g4 Nc C 2139 A~u3)ev (Born) + g'* Nc C2F IR 

* In calculating the ghost contribution to the QCD-QCD graphs 
one cannot use the poor man's ghost prescription 1-23] since this 
prescription is no longer valid for n ~ 4 
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1 -.712 \ 
"( z T ~ e ( # v q  qO--( l *-* 2) ff Z;~2~2 F'(#vql q2)) 

(3.12) 

where 

. 722 2 , F ( 1 - - 2 e ) ~ .  - 1 - ~  
130 = C(1 -t- Z / ~  )~-(f--~Joay34Y3a. 

1 

�9 ~dvv-~(1 - v)-~[v(1 - v) - 1] (3.13) 
0 

and 

C(1  722 2 \ F ( 1  - 2 e )  r -1-~ 
In + ~  ) 2 F 2 ( 1 _ 0 !  dy34y3* 

k 

I ev(l-v)-(l -O uo, 

�9 ~dO 1 s in  -2e  0 1 - - ~ d O  2 sin-1-2~ 
o No2o $34 d 

(3.14) 

The normalization factors Nol and No~ are given by 

N o ,  = x/ -r(�89 - 2 0 ) / F ( 1  - e) (3.15) 

and in (B6). 
As is evident from (3.12) the PV triple-gluon contri- 

bution does not manifestly factorize into the Born term 
contribution and an universal Altarelli-Parisi type 
kernel as in the PC case [9, 16]. However, doing the/~42 
integration in (3.14), as described in Appendix B, the 
nonfactorizing terms in IR(3.14) can be seen to cancel 
and we remain with a universally factorizing triple- 
gluon contribution as in the PC case. 

(iii) Integration of e + e- ~ q(pl)fl(P2)q(p3)fl(p4) 
Following again the notation of [9] we found that the 
contributions of diagrams class F vanish identically 
because of their charge conjugation property. Also the 
contributions from class E vanish at the O(y ~ level. 
The singular regions of the diagrams from class D can 
all be mapped into the (3-4) singular region. Since one 
has a double-pole singularity s32 one obtains a 
nonvanishing ~z �9 �9 p4-contrlbutlon as in the triple-gluon 
contribution to e + e - ~ q f l g g .  One obtains 

H~3) Pv (real; qglqq) 

4 Nf  (3)vv ~ IR =g NcCe~-IoAu~ (Born) + g4NcCe__ 1 - z 

�9 re (#vqqO ( 1 ~ 2 ) +  1 - z ~ z  e(#vq~q2)) 
\ z13q 2 g13223q 2 J 

(3.16) 
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where 

7Z2 2 F ( 1 -  2e)Y- 
I o = C(1 4-~- ) ~ 2 ( i ~ e ) ! d y 3 4 Y 3 4  

.~dvv_,(  _ v)_ V 2 +(1 - v )  2 - e  
(3.17) 

0 1--e  

and where the integral IR containing the /~2 contri- 
bution is identical to the corresponding contribution in 
the triple-gluon case (3.14). Since I R = 0 we find again 
the factorization into the Born term contribution and 
an Altarelli-Parisi type kernel as in the PC case [9, 16]. 

(iv) Integrated 4-Parton Cross Sections 
In this subsection we present the final results for the 3- 
parton hadron tensor after integration of the remain- 
ing variables Yii and v in the 4-parton hadron tensor 
integrands (3.8, 3.9, 3.13, 3.17). 

After a bit of regrouping the final result is 

(3)PV ( Nc N H ~  ( rea l )=g4NcCf  CFHC 4 - ~ H  
\ 

(3.18) 
where 

=C2___{ 1 H c ke 2 ~(21n z 1 2 -  3 ) + 7 -  21n2y + 41n ylnz l2  

) 
H N = C ( 2 - - 2 1 n  z13z23 + ~ - - l n  / --lnZz23 

\~;z ~; Z12 Z13 

+ In 2 z12 - 21n e y + 41n yln z13z23 + 
Z'12 

e 3 ~-lny . (3.19) 

One notes from (3.18) that the O(y ~ IR result factorizes 
into a Born term contribution and an universal IR 
factor as in the PC case discussed in [9, 16]. The 
universal IR factor is the same for the PC and PV 
contributions. 

Note that the hadron tensor (3.18) contains anoma- 
lous pieces of O(e- i) and O(e ~ due to the anomalous 
piece in the Born term structure A(,3)eV(Born) propor- 
tional to e(12vqlq2 ) [see (3.11)]. 

4. One-Loop Contributions 

In [14] two of us have calculated the O(~ 3/2) one-loop 
contributions to the vector current amplitude in 
e+ e ~ q q g .  Writing* 

* We are suppressing colour indices for the present discussion 
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j v  = (g(q3)q(q2)q(ql)ljv(O)lO ) 

= lJ(ql)TVfv(q2)e~(q3) (4.1) 

we expanded the vector current amplitude TuV~ along a 
complete set of seven covariants, c.f. 

v _ N  v vi ( i = l ,  ,7). (4.2) Tuf f - Cur �9 .. 

Our one-loop results were then in terms of the 
invariants N[.  

To begin with we concentrate on the IR singular 
pieces of the one-loop amplitude. These were shown to 
occur only in N7 V, where C,V~ has the covariance 
structure of the Born term amplitude 

V7 02 4- 03 01 4- 03 (4.3) 
Cur = 7u t2~T-Tf -- 7fl t l ~ Y U  

and where tij = 2qiqj. 
For our later discussion we also need the corre- 

sponding axial vector current Born term amplitude 

c,A2 7f t ~ - - 3  7u75. (4.4) 

It is clear that cuA7 is not a conserved quantity, i.e. 
qur'A7 �9 ~,f r 0, even if the outer momenta ql and the outer 
index # are 4-dimensional because of the n- 
dimensionality of the inner gluon index ft. 

The O(C~s 2) PV one-loop hadron tensor H (3)Pv --/ZV 

(l-loop) is given by 

H(u3)ev (l-loop) = �89 [ ( j v  (Born)J~* (l- loop)) 

+ ( jA (Born ) j r ,  (1_loop)) 
+ ( jA(l_loop)Jv,(Born))  

+ (jv(1-1oop)J~* (Born)) ] (4.5) 

where the symbol ( . . . )  stands for the spin 
summation as in Sect. 2. 

The contribution (jA(Born)jV*(1-1oop)) can be 
calculated without much difficulty using the vector 
current l-loop results of [14]. For  the axial vector 
current I-loop contribution to the hadron tensor (4.5) 
we postulate the ultraviolet chiral invariance relation 

(JV (Born)dA* (l- loop))  + (JA (1-100p)JV* (Born)) 

= ( j a (Born)  j v ,  ( l - loop))  

+ (jv(1-1oop) JA* (Born)). (4.6) 

The renormalization of the l-loop axial vector current 
contribution must include appropriate counter terms 
to cancel spurious ultraviolet anomalies such that the 
chiral relation (4.6) holds [18, 19]. 

For the real part of the IR singular contributions to 
H(u~)ev(1-1oop) we obtain 

H ~  )av (sing.) = ( Re NV(sing.))9 4 Tr 
V7 --A7 (r c.f r + 

= 2 g 4 ( Re NV(sing.) ) A~u~ )Pv (Born) (4.7) 

where A(u3~eV(Born) is the Born term amplitude 
squared given in (3.11). The colour and flavour space 
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summations are denoted by the symbol ( . . . ) .  Using 
the results of [14] one has* 

294 (Re  N~(sing.)) 

L Nc N 
= 94NcCv CvHC(sing.) + ~ - H ~  (sing.) 

+(N_y 11 \ f . -1 

where 

HC(sing.)=C(~+!(21nz,2-3)) 

HN(s ing . )  = C (  2 _21nZlZZ23)  
-- e~- + e z~ 2 / 

1 
H{(sing.) = C -  

g 
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(4.8) 

(4.9) 

and C defined in (3.10) (zi jq 2 = 2qlqfl. 
Comparing the virtual one-loop contributions in 

(4,9) with the real tree graph contributions in (3.19) we 
see that the IR singularities as well as the finite 
anomalous pieces cancel. 

What remains to be done is to list the nonsingular 
contributions of H~3)Pv(1-1oop). The real parts of the 
one-loop amplitude contribute only to the invariants 
H~ v and Hey v in the expansion (2.8). Writing 

(nonsing.) = g4 Nc Cv ICv HCi(nonsing.) HiP v 
/ 

Nc N 7 
+ ~-Hvi(nonsing.)J (4.10) 

one obtains [14]** 

C { - 8 ( 1  - z23)(9 + ln2 z12) 
Z13Z23 

HC6(nonsing.) = 

+ 4Z12(1 - -212)  2 + 2Z23[(1 --Z23)(1 q- Z12)--  Z12(1 - -Z12) ]  

( l  - - Z 2 3 ) ( 1 - - Z 1 2  ) 

Z 1 2 ( l - - z 1 3  ) - I - Z 2 3 - z 1 2  
+81nz12 (1_212)2 

3z13z23+2z12(1 - z 1 3 )  
+41n zi3 

1 - - 2 1 3  

Z13Z23(Z23 -- Z12 ) - -  2z~2 
+41nz23 

(l  - -  Z23) 2 

* 9 is the strong coupling constant in the MS scheme 
** There are several misprints in [14]. They are corrected by the 
following replacements 
i) B -B pv__, Pv H6-+4H 6 in (13) ii) H,~ 4H~, v in (16) iii) /~6--~--4/~6 in (17) 
iV) /~6 ~4/46 in (18) with the uncorrected/t6 n in the latter two cases 

+ 8r(z12, z13) z12(z12-zz3) 
Z23 

--Sr(z12,z23) 2Z13(l-Z23)-+-Z12(1-Z13)}Z13 

(4.11) 

H~v(nonsing.)= -H~6(nonsing.;l*--~2) (4.12) 

and 

N �9 C { 8212(1 - z12 ) -k -z23 (1  q - z l 2  ) 
Hv6 (nonsmg.) = z, 3 z23 - 1 - z, 2 

+ 8(1 - z23)(2 + In 2 z12 - In 2 z13 

_ In 2 z23 - 2r(z13 , zz3)) 

1 - -  Z13 
+ 8z131nz13-- 8z231nz231 -- z23 

--  8r(z12 ,Z13) Z12(Z12 Z23) 

Z23 

212(1 --  Z13 ) + Z23 - -  Z12 
- -  8 l n z 1 2  

(1 -z12)  2 

+8r(z12,z23) -2z13(t -- Z23) + ZI2(lz13 -- z13)} (4.13) 

H~7 (nonsing.) = - H~6 (nonsing.' 1 *-~2). (4.14) 

We used the abbreviation 

r(x,y) = In x In y - In x In (1 - x )  

- l n  yln(1 -y)-L2(x)-L2(y)+rt2/6 (4.15) 

where 

x In ( 1 Z) 
L 2 (x) = - -  j d z (4.16) 

0 Z 

Up to now we have only discussed the real part of the 
I-loop amplitude. This is in fact sufficient, since the 
imaginary part of the l-loop amplitude does not 
contribute to the O(~ 2) structure functions as can be 
shown as follows. The imaginary part of the l-loop 
amplitude can be shown to be proportional to the Born 
term 1-14, 15]. Since the Born term squared contributes 
only to the p ~ v  antisymmetric structure functions 
[see (3.11)], the invariants H~ v and H~ v which multiply 
(p ~v )  symmetric covariants remain unpopulated [see 
(2.8)3. 

5. Resul ts  

Adding up the real tree graph contributions from 
Sect. 3 and the virtual one-loop contributions from 
Sect. 4 we obtain our final O(e if) result. To this we add 
the O(~s) contribution and obtain 

1 - -  Z23 ~s He6V(ql, q2, q3, Y) = 64n2 C r N c - -  
z13z23 2n 
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.I1 cts/ c Nc N {Ny 11 \ f 'X) +tv-y.<c).6) 
t .  

where (5.1) 

H6 c = 7 - 2 1 n  2 y+41n  yln z12 - l n  2 z12 

�9 /Z 2 1 C 
- 3 m y + ~- + 8C  H~6 (nonsing.)-z13zz3 

1 - z 2 3  

N 4 2 H6 =~- - ln  Zla-lnZzz3+lnEz12-21nZy 
7~ 2 

+ 4 1 n y l n  zlaz23 + - -  
Z12 3 1.0 

1 N Z13Z23 
+ ~ Hv6 (n~ 1 -- z23 

Hf6 = - ] + In y (5.2) 

where the HCg N (nonsing.) are given in (4.11) and (4.13). 
H Pv can be obtained from (5.1) by the C-conjugation 0.1 

relation 
HP7 v = - HPV(1 ~-,2). (5.3) 

From H Pv and H Pv we obtain the PV cross sections 
~P and a A as given by (2.17) and (2.18). This is in 
complete analogy to what has been done in connection 0.~ 
with the O(cq) qglg cross section. Several possibilities 
have been considered in [13]. Experimentally the 
difficulty is that in order to measure the PV contri- 
butions the quark (or antiquark) jet has to be detected. 
This can be done in various ways and seems to be easier 
for heavy, i.e. charm and bottom, quarks than for light 0.s 
quarks. For  total energies around the Z mass neglect of 
the quark mass is certainly a good approximation for c 
quarks and presumably also for b quarks. Therefore 
our results should be applicable in this region. 

In order to get an idea about the corrections 
originating from the higher order terms we have 
considered the special case that the quark jet is detected 
and that the quark momentum determines the thrust 
axis. 

For  this case the lowest-order thrust distributions 1.0 
for the cos0-part  in (2.16) which is obtained by 
integrating over the remaining variable x2 (xl > 2/3; 
x 1 = T) is the following expression 

dtrP ,,tr(x, OqC 1 J'q T2 2 T : _ l  o.1 
d T - ~ 5  27r r l - T ~  ~ + )In i - - T  

4 }  
- ~ r 2 + 4 T - 8 +  f (5.4) 

This distribution is plotted in Fig. 1 as the curve 
labelled O(e~). The other two curves in Fig. 1 give o.~ 
deP/d T including the O(e~) corrections for cut-values 
y = 0 . 0 4  and y=0.01 .  We have taken N z =  5 and 
e~ = 0.16 which is a reasonable value obtained from 
analysis of experimental distribution of ~r v + cr L with 
O(e~) corrections included [5]. We see that for y = 0.04 

0.6 the O(c~) correction enlarge &re/dT by as much as 
50~. This differs from what was found for &rv/dT and 
d~L/dT at y = 0.04 where the corrections were fairly 
small, less than 20~ [16]. For y=0 .01  the O(~)  
corrections made d~e/d T smaller as to be expected 
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from the ln2y term in (5.2). Here the corrections are 
even larger. But y = 0.01 lies outside the perturbative 
region as was already observed in connection with 
d(~v + az)/d T. It is also generally agreed upon the cut- 
values as low as y=0 .01  are in a region where 

i i 
1 d ~  P 

gs~n) 

,: 0.01 

I 

I I I I 
0 . 7  0 . 8  0 . 9  1 .0  

T 

Fig. l. O(ct 2) three-jet cross section 1/gs a(l)d(rP/d T for y = 0.04 and 
0.01 together with the Born cross section (O(~s)) as a function of 
thrust  T. The thrust  axis is the quark  m o m e n t u m  

i 

'I dgA 

gs~n) (:IT 

J ~  

y=O.O4 / 

/ , ,  / -'-o(a~) 

I II I l 
0.7 0.8 0.9 |.0 

T 

Fig. 2. O(ct 2) thrust  cross section 1/gstT(ald6A/dT for y = 0.04 and 
0.01 together with the Born cross section (O(cq)) as a function of 
thrust  T. The thrust  axis is the quark  momentum.  The X axis is the in 
the direction of the ant iquark 
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gso "[~1 aT 

0.1 

0.01 

0.6 t.0 

/J 
/ / Z ~ "  

/ / 7  

,/,/ , , 
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T 

Fig.  3. O(~)  thrust cross section 1/gsa~ldaA/dT for y -  0.04 and 
0.01 together with the Born cross section (O(e~)) as a function of 
thrust T. The thrust axis is the quark momentum. The X axis is in the 
direction of the second most energetic jet 

fragmentation effects make a separation of jets impos- 
sible and therefore should not be used [26]. 

The situation is similar for the cross section daA/dT. 
Here the results are shown in Figs. 2 and 3. In Fig. 2 the 
coordinate system is chosen in such a way that the 
angle X is defined by the antiquark momentum. In this 
case the O(~) distribution is 

d a  A = _ gscr~l) O~s C 1 

dT 2n e 2 , , / 2 x / l _  T T 

-f(2- 3 T ) ~ ~ l  + �89 T) 
k 

�9 arc sin 3 T - 2 (5.5) 
J T 

We see that the y = 0.04 curve is again appreciably 
bigger than the lowest order curve. In Fig. 3 we have 
considered the case that the angle Z is defined by the 
second most energetic jet which may be the antiquark 
or the gluon. Here it is not necessary to tag also the 
antiquark as is necessary for the asymmetry in Fig. 3. 
The lowest order distribution is 

dr A 0.(1) 0~s C 1 l / 2 / 3  I ~ - T )  
dT  - 9 5  2~  v ~  V ~-T-1  "(5.6) 

This is smaller than the O(~) distribution in Fig. 3. 
Concerning the O(cd) corrections the result is as 
follows. The y = 0.04 distribution lies again appreci- 
ably higher than the O(c~) distribution. The y = 0.01 
curve almost coincides with the O(~) result. 
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In total we observe that the O(~)  corrections for 
y=0.04  for daP/dT and the two cases of daa/dT are 
somewhat larger than those obtained for dav/dT and 
daL/dT. Since the O(cq z) terms involved in the IR 
cancellation procedure are rather universal, i.e. do not 
depend on the kind of cross section considered, we 
trace back this difference to a difference in the contri- 
bution of the virtual corrections to the O(~ 2) terms. 

Of course our results could have been presented as 
forward-backward asymmetries as was done earlier for 
the O(c~) result [13]. We have not done so since we are 
interested to see the higher order corrections in the PV 
contributions without the influence of O(c~) correc- 
tions of the PC contributions which are present in the 
denominator if asymmetries are formed. The order of 
magnitude of such asymmetries can be obtained from 
O(c~) results in [-13]. 

Instead of thrust distributions also other single- 
variable distributions could be considered as for 
example xa distributions with respect to the thrust axis 
or simply xa distributions. 

The results presented in this paper are valid only as 
long as terms O(y) and higher can be neglected. So to be 
sure that this is the case one must choose y small 
enough. Then our formulas should be valid. The 
results for a larger y value Ya where our approximation 
might be questionable can be obtained by choosing 
first a small Yo, below y = 0.001 say and by using our 
analytical formulae there. The contributions to the y- 
region between Yo and y~ can then be treated numeri- 
cally by adding the appropriate 4-jet contribution in 
the desired y bin with two partons lying in this bin 
averaged over. From more general considerations it is 
clear that such corrections, say for y=0.04,  are 
important only for thrust values above 0.8. Below these 
thrust values the y = 0.04 distributions presented in 
Figs. 2-4 could be in error by several percent. Of course 
this can always be checked by calculating the correc- 
tion terms numerically. 

Acknowledgement. J.G.K. and G.S. would like to thank R. Peccei for 
his hospitality at the DESY Theory Group where part of this work 
was done. 

Appendix A: The Breitenlohner-Maison (BM) 
75-Scheme 

It is well known that an anticommuting 75 is 
not compatible with dimensional continuation [-17, 
20, 24]. As an example consider the trace 
Tr (757~Yu,Tu27,37,47us) with an anticommuting 75. Anti- 
commute ?~ once around the trace to obtain 

eulu2u3u, gu~ + cycl .(#l , . . . ,  #5) = 0 (A1) 

where we introduce the totally antisymmetric tensor 
via Tr (757, 7a 7~ 7~) = 4ie,o~6. Contracting (A 1) with g'"~ 
gives 

(n - 4)eu,u2u3u, = 0 (A2) 
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which shows that  e.pr~ or Tr(757.TpTrTo) cannot  be 
analytically cont inued from n = 4 to n 4 = 4 with an 
an t i commut ing  75. 

A related p rob lem is that  an an t icommut ing  75 leads 
to a nonunique  result in the evaluat ion of traces of type 
Tr(7~?~7~7~7~7~7~) at the O ( n -  4) level [24,25]. 

A cure to the above  problems has been suggested by 
't Hoof t  and Vel tman [24] and worked into a consist- 
ent scheme by Breitenlohner and Maison  [20]. Split up 
a n-dimensional  a .  into its 4-dimensional  componen t  
a ,  and the remaining componen t  ~,. Thus  ?,  = 7, + ~, 
and a consistent ~/5-scheme is arrived at by postulat ing 

7u75 + 757u = 0 
7.7~ - 75 ~. = 0. (A3) 

The  correct version of (A1) can now be obta ined by 
considering the trace Tr(75~Tm?u~7u~Tu~?.~). One 
obtains  

gU,t~e,U3U4g#s ~ + cycl.(#a . . . . .  /~5) = 0 (A4) 

where we have used * ~ ~ and ~ " the 4- 7u7~ + 7~7. = 2g.~ gu~ is 
dimensional  metric tensor. Equat ion  (A4) will be 
referred to as the Schouten identity. 

A suitable representat ion for 7~ is [20] 

i 
?5 = ~, e~,~?~7~7~7 ~. (A5) ~M 

Using the identity 

t ~ e.,.:.~.. ~,  ....... = - de (g.o) 

one can prove  that  

e~p~0 ~ = 0 

c~ = #x ""#4 (A6) 
f l = Y l  "' 'Y4 

(A7) 

and 

a~ ~ (A8) g~gt~ = g~" 

Equat ion  (A7) shows that  the e-tensor projects out the 
4-dimensional  componen t s  of any n-dimensional  ten- 
sor it acts on. F r o m  (A7) it is clear that  the Schouten 
identity (A4) must  involve the 4-dimensional  metric 
tensor  g. ,  when compar ing  the different tensor compo-  
nents in (A4). 

The appearance  of the 4-dimensional  tensor  ~.~ on 
the RHS of(A6) can also be appreciated by considering 
the identity 

12(?.ys +757.)  = ie~o7.7~7~?'~7 ~ + 4ie.aruT'Tt37Y (A9) 

which can be derived using the representat ion (A5). 
Cont rac t ing  (A8) with e r and using (A6) with the 
wrong n-dimensional  generahzat lon g~p ~ g~  leads to a 
vanishing RHS of (A8) and thereby to an an t i commut -  
ing 7s which was shown to be inconsistent in (A2). 
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Appendix B: n-Dimensional Integral 
of the Four Dimensional Scalar/~2 

Consider  the explicit representat ion of the n- 
dimensional  m o m e n t a  in the (3 4) C M S  system. One 
has 

P l  - s 1 3 4 -  $34(1 ,  0, sinfl, cosfl) (B1) / ~ -  . . . ,  
2 x/s3a 

$234 - -  $34~1 D . . .  Pz . . . .  , - ,~,  ,0, 1) (B2) 2 3, 
P~ = �89  x/~34(1, + s i n  O sinO1 . . .s in 0 , - 3  . . . . .  

4 
+ sin O sin O~ cos 02 ,  

sin O cos O1, + c o s  O)  (B3) 

where the dots in (B1) and (B2) denote  (n - 4) zeros and 
in (B3) (n - 5) equal and opposi te  angular  factors. 

F r o m  (B3) one has 

s 3 4  = ~ ( 1  -- sin 2 0  sin 2 O1 cos 2 O 2  

- sin 2 0  cos 2 0 t  - cos 2 O)  

_ s3,  s i n 2 0  sin 2 O1 sin 2 02 
4 

= s34v(1 - v)sin 2 01 sin z 02  (B4) 

where we have set v = �89 (1 - cos O). 
C o m p a r e d  to the case where n-dimensional  scalars 

have to be " ~2 �9 integrated, P4 introduces an addit ional  O z- 
dependence in the integrand. This can be taken into 
account  by the replacement  

1 ~  1 i d O z s i n _ l _ z ~ 0 2  (B5) 
No 2 0 

in the integrand where N o~= x ~ F ( - e ) / F ( ~ ( 1 -  2e)). 

The  O2-integrat ion on/~2 gives 

1 i d O 2 s i n _ l _ 2 E 0 2 # 2  
No~ o 

- 2e 
= s34v(1 - v)sin 2 O11 - 2e (B6) 

which can be used in (3.12) and (3.16) to show that  the 
nonfactor izing IR parts  in the in tegra ted  4-par ton  
cross sections do indeed vanish. 

~2 The complete  angular  integrat ion of P4 can of course 
be obta ined more  directly. Consider  the integral 

S d.O,a41P 4~P 4t~ 
1 

- 4(1 - n) (s34 g~p-  n(pa + P4),(P3 + P4)p) (B7) 

where the R H S  is easily obta ined  remember ing  that  
" 1 2  ~ d , O " - l =  1 (see Sect. 3). Then not ing that  P4 = 

g~PP4,P4t~ one obtains  
= -  e 

2(3 -- 2e) $34 (B8) 
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Appendix C: The O(~Q Parity-Violating Two-Parton 

Cross Section e + e-  ~ ,  q~ 

It is the purpose of this Appendix to give a brief 
presentation of the calculation of the O (~) corrections 
to the two-parton process e + e---+q~. As in the main 
text we employ an invariant mass cut s~j < yq2 and 
work to O (yO). We emphasize that the latter approxim- 
ation is implicit in many steps of the following 
discussion. 

(0 Real O(es) Contributions(Tree Graph Contributions) 
The two contributing Feyman diagrams are shown in 
Fig. 4. As in the main text we denote the momenta 
occurring in the (3-parton)--+ (2-parton) reduction by 
(P l ,  P2, P3)"*  (qa, q2), where the Pi are n-dimensional 
and the q~ are 4-dimensional. 

The 2-parton hadron tensor H ~2) (real) is obtained --/tV 
from the 3-parton hadron tensor H (3) (P~,P2,P3) by --/2V 

integration, cif. 

H~2~)(real)= ~6--~( ~ z  z ' ] ~ i d y 2 3 y ~  
\ q / l ~ J  - O0  

�9 {~dv}v-~(1 -v)-~H~u3)(p~,p2,P3 ) (CI) 

where Y23 = 2p2P3/q 2 and v = Y13/(1 - Y23) = 
�89 - cos O), where O is the polar angle between the 
g l u o n  (P3) and the quark (P0- The integration symbol 
{~dv} stands for 

1 y[(l -y23) 
{Idv} - 2 ~ d v -  i dv. (C2) 

0 0 

In (C2) one adds up the contributions from the two 
symmetric singular regions s23 --+ 0 and sl 3 --+ 0 with the 
appropriate proviso concerning double counting. 

Inserting the appropriate PC and PV tree graph 
contributions in the integrand in (C1) one then obtains 
the desired singular O(e~) PC and PV real contri- 
butions to the 2-parton cross sections after integration. 
Here we concentrate on the PV case, since the PC case 
is known from the work of [26]. 

For  the PV tree graph contribution Fig. 4 one 
obtains 

H/3)Pv: uv ~.Pl, P2, P3) = ~2 CvNc(A~3)PV(Born) + eR~,~,) 
(C3) 

where (3)Pv Au~ (Born) is given in (3.tl) (with qi--*Pi) and 

8i 
Ruv = [2P3ue(vPIpzP3)-- 2p3v~(#PlP2P3) 

S13S23 

+ ($13 "~ S23)/3(# VPl P2) -k S 23 e(#vqpl) 
- s13e(#vqp2) ]. (C4) 

Since R,~ = 0 in 4 dimensions by use of the Schouten 
identity (A4) one recovers (3.11) which was in fact 
derived for 4-dimensional outer momenta. 

For  the purpose of this calculation this assumption 
can no longer be maintained a priori, since the p~ are to 
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Fig. 4. O(~/2) tree diagrams for e+e - -*qclg 

be taken as n-dimensional integration momenta. How- 
ever, the error in using the Schouten identity for (C4) 
will be proportional to /~ .  From Appendix B it is clear 
that therefore the contribution of R,,  can be at most 
O(e) after infrared integration. Thus R,~ can be safely 
dropped. 

In order to avoid having to do tensor integrations we 
again make an ansatz for the angular integral in (CI) 

{~dv} v-~(1 - v) - ~ H{u3v)pv = HPVe(#vqql). (C5) 

Note that on the RHS there appears only one 
covariant and thereby one invariant. The covariant is 
necessarily conserved. Thus one has 

{Idv} v-~(1 - -,"~-~a-,u --u~Ht3)PV = O. (C6) 

Although the integrand in (C6) is nonzero since H r 
is nonconserved, the integral vanishes. This means that 
the anomalous pieces (or the gauge dependence) of 
H~3)Pv vanish after integration. /Jr 

Contracting both sides of (C5) with e(pvqqx) we 
finally arrive at 

2 1 
/~PV = 492 CvNc{~dv } v-~(1 _ v)-~q2 

Y2~ 

" I ( 1 -  e)v + 2 ~ 1 .  (C7) 

Repeating the same steps as in (C5)-(C7) for the PC 
case one arrives at the same integrand as in (C7). 
Finally, after doing the integrations (C1) we obtain 

PC PC (2)pv - -  (2)pV 2 Huv (real)-Au~ (Born)g NcCvC 

�9 (2+3+7-21n2y--31ny+~---~) (C8) 

where the 2-parton Born term contributions are given 
by 

�9 d(2)PC'~/vBorn ~- 4 qluq2v + q2uqlv -- ~-guv (C9) 

and 

At2)pv  u~ = 4e(#vqqx) (C10) 

and C is given in (3.10). 
Note that the IR factor in (C8) is the same as the 

QED-type IR factor in (3.19) for z 12 --+ 1. Vice versa the 
QED-type IR factor in (3.19) can be obtained from (C8) 
by the substitution q2 = s12. 

(ii) Virtual O(~s) Contributions (Loop Graph Contri- 
butions) 
The three contributing loop diagrams are drawn in 
Fig. 5. The vector and axial vector current contri- 
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Fig. 5. 0(~,) one-loop diagrams for e +e- ~ q 

b u t i o n s  to the respect ive a m p l i t u d e s  are g iven  by 
Cva(qx)yuv(q2) a n d  CAa(ql)yuysv(q2). T h e  vector  cur-  
ren t  c o n t r i b u t i o n  Cv can  be eva lua ted  by  us ing  
s t a n d a r d  n - d i m e n s i o n a l  l oop  in tegra ls  as e.g. in  [27].  
T o  o b t a i n  the axial  vec tor  c o n t r i b u t i o n  CA we impose  
the chiral  i n v a r i a n c e  re la t ion  Cv = CA. 

O n e  f inal ly ob t a i n s  

m(2)PC ~c ( 2 3 )  
(2)pv 2 - -  8 . __~ =Au~  ( B o r n ) C g  NcC v ~ e (Cll) 

Fina l ly ,  a d d i n g  up  the two (real p lus  vi r tual)  con t r i -  
b u t i o n s  (C8) a n d  ( C l l ) ,  we o b t a i n  the S t e r m a n -  

W e i n b e r g  type  O(y ~ co r rec t ion  to the 2 - p a r t o n  h a d r o n  

t enso r  

PC PC ~ $  
(2)pv ~NcCv o-,vH(2)pv = A~,v (Born)  

�9 - 1 - 2 1 n E y - 3 1 n y + ~  - +O(y) (C12) 

The  P C  case agrees wi th  the  result  g iven  in [26].  
If  we in tegra te  the PV q@ c o n t r i b u t i o n  over  the 3-jet 

r eg ion  (Yla,Y23 > Y) we o b t a i n  

ae=a~-~2~Cv l + 2 1 n E y + 3 1 n y - ~  - +O(y) (C13) 

Here  ae  deno tes  the cross sect ion d~ e of  (2.10) 
in tegra ted  over  x l  a n d  x2 up  to the b o u n d a r y  Yx3, 
Y23 > Y. ag is the c o r r e s p o n d i n g  cross sect ion for the q~  
final  state�9 W e  see tha t  the  s u m  of  2- a n d  3-jet 
c o n t r i b u t i o n  to ~r e vanishes*.  This  agrees wi th  the  too-*0 
resul t  in [28]  where  ~e was ca lcu la ted  as a f unc t i on  of  
the q u a r k  mass�9 

* This result is of course independent of the O(y ~ approximation 
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