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Strong evidence is presented that the phase transition between the free-charge and the screening region of the four-dimen- 
sional Z 2 lattice gauge theory with Z 2 matter fields is second order with mean field exponents. The quantity best suited for the 
analysis is an order parameter that tests the existence of charged states. Both its scaling and finite-size scaling properties are 
determined by performing a Monte Carlo simulation. 

1. Introduction. The question of the existence of 
non-gaussian timed points in four-dimensional quan- 
tum field theories has motivated various investigations 
of phase diagrams of lattice gauge theories [ 1 ].  

The Z 2 theory with Z 2 Higgs fields is defined by 
the action [2] 

S = -~3g ~ 6r(p) - /3 h ~ 80(£)'r(~), (1.1) 
p 

where r(£) is the Z 2 gauge field at the link £, 0(x) is 
the Z 2 Higgs field at the point x,  6r(p) is the product 
of the ~'(£) around the plaquette p, 60(£) is the prod- 
uct of the two 0(x) at the endpoints of £, and ~3g and 
/3 h are couplings. The phase diagram in four dimen- 
sions (fig. 1) has been known from Monte Carlo [3] 
and mean field calculations [4,5]. The existence of 
charged states in the free-charge phase was proven in 
ref. [6]. 

The phase transition between the free-charge and 
the screening phase was predicted to be second order 
by mean field methods [5]. On the other hand, a field 
theoretical argument [7] predicts a first-order transi- 
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tion in the region close to the pure matter limit of 
gauge-matter theories with continuous groups. 

In order to investigate this transition in the Z 2 
model we used the order parameter introduced in refs. 
[6,8] which tests the existence of charged states. In 
the pictorial notation of refs. [8,9] we define Pn(r) in 
terms of expectation values of gauge invariant func- 
tions (x andy are points in the time-zero hyperplane 
and the vertical lines point in euclidean time direc- 
tion): 

x y 

The order parameter is p**(oo), with the limit taken 
such that n is proportional to r as,r -~ ¢~; Different 
choices of the proportionality constant represent dif- 
ferent energy regularizations. On a f'mite hypercubic 
lattice of size L with periodic boundary conditions the 
largest distance r isL/2 i fn  = r/2 and L/4 i fn = r. 

The pure-matter theory obtained for/3g + ~ is the 
Ising model. In this limit Pn(r) becomes the spin-spin 
correlation function. In section 2 we give a theoretical 
argument which suggests that the numerics of the 
screening-free-charge transition for a f'txed value of 13g 
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Fig. 1. The phase diagram of the four-dimensional Z2 theory; the lust-order line (with a second-order endpoint [4] ) was computed 
from thermal sweeps on a lattice of size L = 10; the second-order line (which continues up to/3g = oo) is eq. (2.3). 

is very similar to that of the 13g ~ oo case. This argu- 
ment predicts the critical coupling/3 h,c as a function 
of/3g and of the critical coupling of the Ising model. 

We checked the hypothesis that this transition is 
second order by performing a Monte Carlo simulation 
with fLxed/3g = 0.5 and variable Oh. L was chosen be- 
tween 4 and 16. The main result is that the order pa- 
rameter p**(oo) obeys the same scaling (section 3) and 
finite-size scaling (section 4) laws as the square of the 
magnetization in the Ising model. In section 5 we pre- 
sent the results for the second derivative of the free 
energy with respect to oh, which show that this quan- 
tity behaves in the same way as the specific heat in the 
Ising case. In section 6 we summarize our results. In 
particular we argue that the triple point is the only 
point in the phase diagram with a possible nongaussian 
continuum limit. 

2. Location of the screening-free-charge phas~ 
boundary. Let us consider the convergent expansion 
for On(r) in the free-charge region [6,10]. We denote 

b y M  a path connecting the points x andy such that it 
contains no link more than once, and by mq the coef- 
ficient in the exponent of the perimeter law for the ex- 
pectation value of a Wilson loop, 

<l-l> = e x p ( - m q P )  (2.1) 

(P is the perimeter of the rectangle), mq is the infimum 
of the energy spectrum in the presence of an external 
source (see the discussion in ref. [6] (p. 105) and in 
ref. [9] ). 

A good approximation for On (r) is the expansion in 
pathsM (IMI is the number of links inM): 

Pn(r) = ~ [tanh(/3h) exp(--mq)] IMI (2.2) 
M 

(see ref. [6] for details). Obviously in the Ising limit 
mq = 0. Even though in general the value o fmq de- 
pends on both/3q and Oh, the dependence on the latter 
is weak in both the free-charge and the screening phase. 
Close to the phase-transition line, mq can be accurate- 
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ly estimated using the Monte Carlo results for the 
Wilson loops• 

For fig fixed the expansion (2.2) breaks down at the 
phase-transition line. Let us denote by ~,c(fl~) and by 
mq,c(flg ) the values taken by fill and mq on this line, 
and by flI,c the critical coupling in the Ising limit. The 
sum in (2.2) becomes divergent for some critical value 
of the square bracket which does not depend on fig. 
Therefore 

tan(flh,c(flg)) exp[-mq,c(flg)] = tanh(~i,c). (2.3) 

A careful consideration of the convergent expansion 
in the free-charge phase shows that eq. (2.3) holds even 
if we improve the approximation (2.2) by taking into 
account more terms occurring in the full expansion of 
Pn(r) (see ref. [11] for a detailed discussion). 

The value of flI,c obtained from high temperature 
expansions [12] is 0.14965 -+ 0.00003. Our Monte 
Carlo result for mq,c(0.5 ) is 0.00753 + 0.00003. Eq. 
(2.3) now leads to flh,c (0.5) = 0.15081 -+ 0.00003. 
This is in perfect agreement with the results of section 
3 and 4. 

3. Scaling for the order parameter. In four dimen- 
sions the Ising model scaling laws have logarithmic cor- 
rections [12-16]. For a temperature T close to the 
critical point T the magnetization m obeys: 

m 2 = Ctlln tl 2/3, 

t= I - T / T  c, T < T  c, C=const. (3.1) 

This result was obtained using convergent-expansion 
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Fig. 2. Sealing plot for the order parameter. 
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[ 13,12], renormalization-group [ 14,15] and Monte 
Carlo [ 16] methods. The discussion in section 2 sug- 
gests that the order parameter po.(oo) might obey a 
similar law for a fixed value of/3g. In our Monte Carlo 
simulation for/~g = 0.5 we computed Pn(r) for two dif- 
ferent regularizations [8,9] : n = r/2 and n = r. The re- 
suits were independent of  the choice of  n (in general 
[9] one expects Pn(r) at fixed r to increase with n 
until an asymptotic value is reached). 

In fig. 2 we show a log- log plot of  Pn(L/2) against 
t = 1 - /3  h c(0.5)/~a. The dotted curve is the best fit 
using the tunction in eq. (3.1) (for the fit we used only 
the datapoints we expect to be in the thermodynamic 
limit). Our estimate for the fit parameters is ~ ,c(0 .5)  
= 0.15082 + 0.00003 and C = 2.35 + 0.01 (in ref. [16] 
the Ising model estimate for C is 2.38 + 0.05). 

4. Finite-size scaling. The correct way of  doing a fi- 
nite-size scaling analysis for spin systems in four di- 
mensions was recently discussed in ref. [ 17]. In the 
Ising model one expects the magnetization on a lat- 
tice of  size L to obey 

2 m L = [g(t)/L 2] f(tL2g(t)), 

g(t) = Iln tl 1/3, t = 1 - T/T,  (4.1) 

f is a universal scaling function. 
Again, we expect the order parameter to behave in 

a sirnflar way for a fixed value of/3m. For/3g = 0.5 we 
show in fig. 3 a plot of  Pn(L/2)L2Tg(t ) against tL2g(t) 
(t = 1 - ~h,c(0.5)/13h). The datapoints for L = 8 and L 
= 16 collapse on the same curve./'. F o r L  = 4 we ob- 
serve small deviations from the universal curve. The 
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Fig. 3. Finite-size scaling plot for the order parameter; (a) is the entire range considered, (b) is a smaller region around the critical 
point. 

408 



Volume 169B, number 4 PHYSICS LETTERS 3 April 1986 

3 
t ~  

¢N 
._J 

_ J  
(~. 

10.0 

9 . 0  ¸ 

8 . 0  ¸ 

7 . 0  ¸ 

6 . 0  

5 . 0 ~  

4 . 0  

3.0 

2.0i 

1.0~ 

O.Oi 

-1.0:  
• - 4 . 0  

L=4 

L=8 

L=16 

x 
x .~ o 

g . 

o 

4X 
x 

4- 

x o 
o 

o 
x 

x 

x 
÷ 

x 

g 
wl, 

4- 

4- 

o 

+ 

b 

, , ' ' ' ' ' ' , l , , , , , , , , , l l , l , , , , , , I , , , , , : , , , I , , , , , , , , l l , ' ' , l , : , l l , , , , , , ' ' ' l ' ' ' ' , ' ' , l  I 

- 3 . 0  - 2 . 0  - 1 . 0  0 .0  1.0 2 .0  3 .0  4 .0  
L 2 g(t) 

Fig. 3. (Continued). 

best finite-size scaling plots were obtained for/~h,c(0.5) 
chosen between 0.15081 and 0.15085. 

5. Generalized susceptibilities. The critical behav- 
iour of  the generalized susceptibilities (second deriva- 
tives of  the free energy) is in general a good indicator 
for the order of  a phase transition. For/~ = 0.5 we 
measured 

Xhh = a In Z/b~ 2, Xgg = a In Z/~[3 2, 

Xg h = a In Z/i~[3h~[Jg (5.1) 

(Z is the partition function) for lattice sizes L = 4, 6, 
8, 12 and 16. Fig. 4 shows that the peaks in Xhh be- 
come higher and sharper and approach/3h,c(0.5 ) as L 
increases. The whole picture suggests an application of  

finite-size scaling theory. However, we were not able 
to find for Xhh a relation similar to (4.1). This is not 
surprising since Xhh becomes the specific heat in the 
Ising limit for which the finite-size scaling properties 
have not been worked out. 

For the infinite lattice, the specific heat in the criti- 
cal region of the Ising model has been calculated in 
ref. [18]: 

c = h u n  tl 1/3(1 - ~ Ilnlln tll/lln tl + B/lln tt),  

t -- I1 - r / T j .  ( 5 . 2 )  

In fig. 5 we plotted those data for Xhh we expect to be 
in the thermodynamic limit (for/3 h < ¢1h,c(0.5) we did 
not have enough points in the thermodynamic limit). 
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Fig. 4. The peaks in the generalized susceptibility Xhh for finite L. 

The dotted line is the function (5.2) (here t 
= It - /3h,e(0.5)/~l) ,  with the fit parameters estimated 
to be/3h,c(0.5) = 0.1509 + 0.0002,A = 82 + 1.5 andB 
= -1  + 0.01. 

The behaviour of Xgh and Xgg will be discussed in 
ref. [ 11]. Here we only remark that they are much 
less sensitive to changes in/3 h than ×hh" 

6. Conclusions and discussion. We showed to a high 
degree of accuracy that the screening-free-charge 
phase transition in the four-dimensional Z 2 lattice 
gauge theory with Z 2 matter fields is second order 
with mean field exponents. From the Monte Carlo 
simulation for/3g = 0.5 we determined independently 3 
critical exponents: for the order parameter (in section 
3), the mass gap (in section 4) and the specific heat 
(in section 5). 

The order parameter p~(oo) [6,8,9] turned out to 

be very useful numerically. In particular the determi- 
nation of ~,c(0.5)  using the order parameter is one 
order of magnitude more accurate than using ×hh. 

We gave a theoretical argument relating critical 
properties of  the screening-free-charge phase transi- 
tion to those of the Ising transition. We expect this 
argument to hold in any dimension d > 2. 

Let us consider in the free-charge phase the "lines 
of constant physics" [ 19] defined as lines of constant 
ratio between the photon and the charged particle 
mass (the photon is massive because of the discrete 
gauge group). A rough estimate using the convergent 
expansion shows that these lines point in the direction 
of the triple point rather than of the Ising critical 
point. Therefore we expect block-spin transformations 
on the critical line to flow from the triple point to the 
Ising limit. In the region where we did our Monte Carlo 
simulation, the photon mass is much higher than twice 
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Fig. 5. Critical beha'ciour of the generalized susceptibility Xhh. 

the mass o f  the charged particle (in fact there most 
probably is no stable photon  in this region). This 
means that  the physics should be very similar to that  
of  the Ising l imit ,  which is in agreement with our nu- 
merical results. Thus the only possible continuum lim- 
it with different physics is at the triple point.  

We thank P. Hasenfratz, I. Montvay, J. MOiler and 
S. Samuel for useful discussions. The simulations have 
been performed on the CRAY 1/M at the Stuttgart  
University Computer  Center. 
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