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An algorithm is provided for integrating the Langevin equation which is second order. It introduces a term into the drift 
force which is a product of the gaussian noise and a second derivative of the action. The specific application presented here is 
for nonabelian gauge theories interacting with fermions, e.g. QCD, for which it requires less memory than the Runge-Kuna 
algorithm of the same order. The memory and computational requirements of Euler, Runge-Kutta, and the present algorithm 
are compared. 

Since the introduction of  stochastic quantization 
[1] there has been much interest in using the Langevin 
equation as a basis for numerical simulations of  quan- 
tum field theories. Especially interesting are applica- 
tions to QCD [2,3]. In stochastic quantization field 
variables evolve continuously in X, a parameter vari- 
ously called Langevin time or fifth time, via a Langevin 
equation. In Langevin simulations one discretizes ~; 
for example, one uses simple Euler or Runge-Kut ta  
schemes familiar from deterministic differential equa- 
tions. The alternative presented here attains O(AX 2) 
accuracy by introducing terms in the drift force with 
higher derivatives of  the action. It is, however, pecu- 
liar to stochastic differential equations because the 
new terms are proportional to noise. Avoiding the 
task of  evaluating higher derivatives was the original 
motivation for developing Runge-Kut ta  algorithms 
for stochastic differential equations [4]. However, 
when the action contains only local interactions be- 
tween the degrees of  freedom, as in the case of  QCD, 
the higher derivatives are not problematic. Indeed, 
when fermions are present, as in QCD, the new algo- 
rithm may be even more efficient. 

The simple Euler update rule [2] (hereafter re- 
ferred to as algorithm A) 

Ux h+l) ,u = e x p ( - f .  T)U (a) ( la)  X , , U  , 

f i  =V~if~] + ei][ajgg -- ~ C'l~(i*O] cff~c/,ff-l~)] , ( lb)  

generates a sequence of  configurations (U)(x) labelled 
by Langevin time ?~. The configurations are distribut- 
ed according to P = e x p ( - S ) ,  where the equilibrium 
action 

= Sg - Tr In c~  + O(e) .  (2) 

In eq. ( lb)  77 and ~ are gaussian noise: <r/) = 0 = ~) 
and <rm) = 2 = ~'~ ~); i,], etc., are multi-indices: i = 
(a ,x , / l ) ;  c-~ denotes the real part. Also, c~  is the 
fermion hopping matrix 75 ("D" 3' - m") ,  and Sg 
is the pure gauge action. The algebra generators T a 
and the "field derivatives" [5] a t obey 

tr(TaTb) = -- l~ab ' IT a, Tb]= - fabcTc ,  
L 

[~(a,x,v), a(b,y,v)] = --fabc~(e,x,u)~uv~xy , (3) 

where the fabc are the structure constants of  the 
group to which the U belong. 

Langevin updating, as in eqs. (1), has several ad- 
vantages. One is the efficient way in which the bi- 
linear noise term in eq. ( lb)  includes fermions. An- 
other is the possibility of  choosing eli nonlocal in 
space, which can mitigate critical slow down [2,6]. 
The main disadvantage is the presence of  the O(e) 
terms in the equilibrium action. This is not  a serious 
disadvantage when these terms do not effect the con- 
tinuum limit (/3 ~ 0% a ~ 0). However, when el/is 
nonlocal, the arguments that indicate that the O(e) 
corrections do not affect the continuum limit are 
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based on weak coupling perturbation theory; in 
strong coupling (~ ~ 0) they no longer apply. Since 
present simulations are far from the continuum limit, 
it is worthwhile to formulate alternatives to eq. (1) 
whose equilibrium action differs from the simulation 
action, Sg - Tr In c/~ for QCD, by terms of O(e2). 

Although eq. (lb) includes fermions most elegant- 
ly, the Wick contraction properties of ~ make diffi- 
cult the implementation of Runge-Kutta algorithms 
as in ref. [4]. Batrouni [7] has solved this problem 
by introducing a second fermionic noise, ~'. His 
Runge-Kutta process replaces the drift force of eq. 
(lb) by 

1-- 
fi = X/~i/'T/] + ½(l + g e C A ) e i j  

i # 
- i T ,  ~kX~k le i / cR(~  -~f l ~ t A / ~ ) ,  (4) 

where * 1 ~/_= c-~- 1 ajc~ 2 Q.~- 1, and ~ is the diago- 
nal component o f  eii = 6 abeu~,(x - y ) .  The'Casimir oper- 
ator of the adjoint representation C A appears because 
of the commutation relations of the a i. A tilde on 
Sg and ~1 implies evaluation using the "tentative 
update" U, which is obtained from U (x) by eqs. (1). 
This will be called algorithm B. 

The O(e 3/2) term in eq. (4) is required to remove 
a nonintegrable term from the Fokker-Planck equa- 
tion, which is used to determine the probability dis- 
tribution. Nonintegrable terms are annoying because 
they prevent one from defining the equilibrium ac- 
tion. For finite time steps the equilibrium Fokker-  
Planck equation is 

0 = ~  1 
n= 1 ~.I 0 i l  ""~i n [Q~i~ ""fin )P] • ( 5 )  

Expand the U dependent terms in eq. (4) to O(e 2) to 
obtain an effective drift force. Ignoring the O(e 3/2) 
term in eq. (4) one finds in ( f i f / )  the following term: 
1 
~eike/1 Tr(gt k ~  l ) ,  (6a) 

which when inserted into eq. (5) yields a contribution 
that is not integrable. However, the last term in eq. 
(4) contributes to ( f i l l ) :  

16 
--  x 2 aeike j l  Tr(~  k ~ l )  , (6b) 

,1 N.B. ~-~t~j~ = ~Q~t ajc~#~c~ -I ~. 

so it cancels the nonintegrable contribution ofeq. (6a). 
Batrouni's trick teaches us a lesson. If drift forces 

proportional to the gauge field noise can cancel non. 
integrable terms in the Fokker-Planck equation, per- 
haps they can cancel integrable ones as well. Study of 
the Fokker-Planck equation for Runge-Kutta pro- 
cesses then impels one to consider an update rule ,2 

tj:~(X+l) = e x p ( - f -  T) Ux(~, ) (7a) 

ft  = X/~O'r//+ (1 + a I e C A ) e i f  

X [ajSg - ~qe(,~t aj Q'~cffL-1 ~j)] 

-- a 3 71k N / ~ l  e i j 

X 9~ ~t (a] ~rr~grt-lal~gr~ -1 

+ c ~  _ l ajC,~ alcf~ c ~ - i  )~ . (Tb) 

The a 2 term in this drift force is (except for its co- 
efficient) identical to one of three terms that appear 
in the effective drift force for the Runge-Kutta al- 
gorithm. (The other two terms turn out to be ines- 
sential.) The O~ 3 term is essentially the same as the last 
term ofeq.  (4). With the assignments for the oti in eq. 
(10) (below), eqs. (7) define algorithm C, which is the 
main result of this letter. 

To determine the coefficients ot i in eq. (7b), one 
must use the Fokker-Planck equation. Define S -~ 
Sg - Tr in cF~. To O(e 2) the expressions for ( f i f l f k )  
and ( f i f / fk f l> in algorithm C are the same as for al- 
gorithm A. However <fi)C = (1 + a 1 CA)(f i )A,  and 

/,ft.6)C = ( f / 6 ) A  

-- 4ei le jk  [ot2akaiS  +2a 3 Tr(_~ l. .~k)] . (8) 

When the expressions are inserted into eq.(5) one 
find, using Oi P = - ( ~ i S ) P  + O(e) to simplify the O(e) 
terms, 

+2 Ref. [5] considers algorithms similar to eqs. (7) for sys- 
tems wi thout  fermions. 
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o = alP+ (1 + aa ~CA)(a iS)P 

1 1 - -  + zcai[ ~ e CAS + ejk(2ajOk S - ajS akS)]P 

+ ¼ a]e/k [Tr(~ i aCk)P ] 

-- oQoi[lg CA S +e/k ( 2 a / a x s  - a j s  akS)]P 

- 4a3a]ejk [Tr(sgiS4k)P ] + O(e2).  (9) 

To arrive at eq. (9) I have also performed one integral, 
set the associated integration constant to zero and, 
multiplied by e -1  . As expected, the O(e) terms can 
all be cancelled if  

1 1 1 ( 1 0 )  c~2 =~ ,  °¢3 =T-6, C~l =$-4 • 

With these choices it is easy to integrate the Fokke r -  
Planck equation and see that the equilibrium action is 
S = S + O(e2). In principle one could now evaluate 
the new leading corrections; however, this calculation 
is rather tedious, and the corrections are apparently 
neither simple nor instructive. 

Let us examine the extra work involved in com- 
puting the drift force of  eq. (7b). In general the pure 
gauge action Sg will be a sum of terms, and each term 
will be proportional to a Wilson loop W. The second 
derivative of  the Wilson loop, ala ! w, is nonvanishing 
only when l and/" describe links in the same loop. To 
discuss the fermion terms let ~ = c~  - 1 ~,c~ = 
7?kX/'~klalC~, and X = ~ - l c ~  4.  Then the new 
fermion terms are ~f(ajOlC'l~)~, t~~(O/c'l~ ~lC)~)ff, 
and ~tajc'~×. The last quantity appears in both the 
ot 2 and a 3 terms. Because ~ is local,C/'/ff is reason- 
ably simple and (a/af'-l~)t~ is very simple. The most 
serious price is that algorithm C requires two matrix 
inversions ff and X, whereas algorithm A requires only 
4- However, since ~- can be made substantially larger, 
this is a quite tolerable. 

Table 1 contains a summary of  the memory and 
fermionic matrix inversion requirements of  the three 
algorithms. Matrix inversions warrant emphasis be- 
cause they are the most time consuming part of  the 
computation. Algorithm A needs one fermionic 
matrix inversion per sweep, 4 ,  and one must store ,a 
U(X) ,F-~ f  • T, ~, and ~ before one can construct 

:~3 Of course, workspace (e.g. for the conjugate gradient) in- 
troduces additional memory requirements. 

Table 1 
Summary of memory and matrix inversion needs of 
algorithms A, B and C. 

Algorithm Gauge Fermion Matrix inversions 
fields fields 

A 2: U(h),F 
B 4: U(X),F, ff, n 
C 3: U(X),F,n 

2:~,¢ 1:,,0 =~-1~ 
4: ~,¢,~',¢ 3 : ¢,Q'~ -1 ~.,q~ .=c,/~l ~. 

3://, ¢,X 2: ¢,x=C~-1c~¢ 

U (x+l) .  Both second-order algorithms require more 
storage and computation per update than algorithm 
A, but they allow larger step sizes ~-. Since the num- 
ber of  updates needed to decorrelate a configuration 
is inversely proportional to ~-, they will therefore re- 
duce the total amount of  computer time needed to 
perform a simulation. Algorithm B needs three 
fermionic matrix inversions: 4,  ¢ - c~  - 1 ~-, and 
c~  -1  ~-; one must also store i f ,  r?, ~', and ¢. Algorithm 
C needs two matrix inversions, ff and X; one must 
also store X and 77. The latter is needed alone and in 
the computation of  the rl/.V~//a l terms. Thus, the 
elimination of  the tentative update reduces by one 
the number of  matrix inversions, gauge fields, and 
fermion fields. The price for algorithm C compared 
to algorithm B is the need for computing second 

derivatives of  the action, but as discussed above, this 
is not too difficult when the couplings are local. 

A potentially crucial point in determining the 
overall efficiency of  the algorithms is Fourier accelera- 
tion. The step size ei/has been written as a matrix 
with this possibility in mind ,4 .  To Fourier accelerate 
one inserts fast Fourier transforms into the updating, 
which is like changing the basis for the (i]) matrix 
multiplication. Then eij -~ e(p). As argued in ref. [2], 
e(p) can be adjusted to reduce the correlations in X 
of the long-wavelength components of  the gauge field 
configurations , s .  On the one hand, it is conceivable 
that algorithm A will be the easiest to Fourier accele- 
rate, because its drift force is the simplest; algorithms 
B and C will require more calls to a FFT routine be- 
cause ei/enters the drift force in a more baroque way. 

,4 And not because the author is fond of indices. 
'5  In gauge theories, like QCD, this can only work if the 

gauge is fixed. This entails some subtleties and will be dis- 
cussed elsewhere. 
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On the other hand, if  the O(e) terms in the equilib- 
rium action of  algorithm A turn out to be serious, 
one will be forced to use values o f e  that will defeat  
the acceleration. Then higher-order algorithms will 
be necessary. Furthermore,  it  is clear that without  
Fourier acceleration, or with Fourier acceleration in 
matrix inversion only,  the higher-order algorithms 
will provide more efficient simulations. 

All three algorithms are currently being tested, 
both  with and without  Fourier acceleration. Numer- 
ical comparisons will be published when available. I 
anticipate that for systems without  fermions R u n g e -  
Kutta algorithms are probably preferable, simply 
because the tentative update is easier to compute 
than the second derivative of the action. However, 
in QCD algorithm C is probably better ,  because it 
saves one matrix inversion per sweep. 
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