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The weak gauge coupling expansion is derived in the lattice-regularized SU(2) Higgs model with a scalar doublet field at an 
arbitrary point of the parameter space boundary with vanishing gauge coupling. Consequences of the triviality of the ~b 4 
component on gauge invariant Green's functions are formulated. 

Quantum field theory is dealing with an infinite number of degrees of freedom. This implies that a mathemati- 
cally meaningful formulation can only be given by first introducing some regularization. There are, in principle, 
many different regularizations possible, but the most popular ones are, no doubt, dimensional regularization (DR) 
[1 ] and lattice regularization (LR) [2]. It is generally expected that the physical content of a theory is indepen- 
dent of the choice of the regularization procedure. In fact, for instance in quantum chromodynamics some part 
of the calculations (like jet-calculus etc.) are usually done by DR, some other part (like hadron mass calculations 
etc.) by LR. In the case of the standard SU(2) ® U(1)electro-weak theory the situation is somewhat different, 
because almost exclusively DR is considered. There are, at least, two facts which seem to speak against LR in this 
case: the apparent difficulty to put chiral fermions on the lattice [3] and the almost rigorously proven triviality 
of the ~4 model on the lattice [4] * t.  It is not known whether these difficulties are just consequences of the use 
of LR or they signal profound features independent of regularization. In view of this, the study of the lattice-regu- 
larized standard SU(2) ® U(1) model (and/or some other models with elementary scalar fields) is very important 
and interesting. 

The lattice regularization allows for a variety of different approaches: besides the powerful exact theorems it is 
also possible to perform approximate numerical calculations or different sorts of analytic expansions. The general 
strategy of the analytic expansions is to reduce the number of coupling parameters by sending some of them to 
the boundary of the coupling parameter space. The small parameter in the expansion is the distance from the 
boundary in some appropriately chosen metric. In the standard Higgs model (i.e. SU(2) gauge field coupled to a 
complex scalar doublet), which will be considered throughout this paper, there are three couplings: the scalar self- 
coupling X, the gauge coupling g (or ~ ~- 4g -2) and the hopping parameter g representing in LR the mass param- 
eter for the scalar field. A possible expansion in this model is the strong self-coupling expansion (SSCE)investigat- 
ed in refs. [6,7]. In SSCE expectation values at some point of the parameter space are expressed by a series con- 
taining expectation values at infinite self-coupling (~ = 0~). In the present paper a similar weak gauge coupling ex- 
pansion (WGCE) will be derived at an arbitrary point of the ~ = ~) plane. Since in this case the terms of the series 
depend on the expectation values in the four-component ~4 model, the consequences of the expected triviality of 
~4 can be easily imposed. 

The notations and conventions for the lattice description of the standard Higgs model will be in general the 
same here as in refs. [6-8]. Therefore, the SU(2) gauge link-variable will be denoted by U(x, la) E SU(2), the 

*l For a review see ref. [5]. 
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length of the Higgs field will be Px/> 0 and the angular Higgs variable a x ~ SU(2). x denotes lattice points,/a 
= +1, +2, +3, +4 are link directions and (x, ta) is the link from the point x to the neighbouring point (x + t~) in di- 
rection/a. For the Higgs field we shall also use 

~o x =- pxO~ x .  (1) 
The lattice action in these variables can be written like 

Sh,O,g = ~ ( 1  - ~ T r  U p ) + ~  [0 2 - 3 logoz +k(O 2 - 1) 2] - g  ~ Tr(tP~+~U(x,la)~Ox). 
p x (x u) 

(2) 

Here Zp stands for a summation over positively oriented plaquettes, and Z(xu) - Zx, u>0 is a sum over positive 
links. The integration measure in the path integral is dPxd3O~x d3 U(x, la) (where d3g denotes the Haar-measure in 
SU(2)). In the limit/~ ~ oo the gauge part of the action vanishes (the link-variables become gauge equivalent to 
unity), therefore the 13 ~ oo action is 

Sx,t3=o.,g= ~ [px 2 - 3 log Ox + k(O2x - 1) 2] - g ~ Tr(~0++~0x) • 
x (xu) 

This defmes a four-component ¢4.model with global SU(2) ® SU(2)- (or 0(4)-) symmetry. 
The derivation of the WGCE at the point 0,, fl = 0% K = K0) starts from the relation 

Sx,#, g = SX,¢=..,K o + Sg - (x~u) (K Tr{~Ox++~ [U(x, I~) - 1] 9x} + (K - gO) Tr(~°~+fi~°x))" 

Here Sg denotes the Wilson action for the SU(2) gauge field: 

(3) 

(4) 

Sg = O ~ (1-½T~ Vp). (s) 
P 

The relation in eq. (4) corresponds to eq. (7) of ref. [7] for the SSCE. We are interested in the generating function 
Z of the gauge-invariant connected correlation functions: 

Z[r,k]~.,O,~--log(exp(~x rxOx+r(~xu) krxuTr[rr~O~+?aU(x,la)~Ox]))x#g • (6) 

Here rr, (r = 1,2, 3) is a weak-isospin Pauli matrix. The derivatives of Z with respect to r give the connected cor- 
relation functions of the gauge-invariant Higgs-boson variable p (weak isospin zero), whereas derivatives with re- 
spect to k produce the connected correlation functions of the isospin 1 gauge-invariant W-boson variable 
Tr(r~0 + U~o). (Note that one could use, in principle, also other interpolating fields, for instance, in the Higgs-boson 
channel Tr(¢ + U~o) or in the W-boson channel Tr(rtz + Us), but this would not change anything essential.) 

The path integral needed in eq. (6) can be written as 

f [dp d3~ d3U] exp(---Sx,a=oo,Ko- Sg)exp ( x  ~ rxPx + (~xu) [krxuurxu+(r- rO)Sxu+axu]xu+ arxuJrxu])' (7) 

where an automatic summation over repeated isospin indices (!", s, t .... = 1,2, 3) is understood. The def'mitions of 
the quantities appearing in the exponent, and some similar ones needed later, are 
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~- _ _  + 

_ + + _,_ Tr(~Ox+~rr~Ox) ' Wrsxu =Tr(~Ox+~rr~Oxrs), Sxu = Tr(~0x+fi~0x), Orxu =- Tr(~Ox+~Oxrr) , Urx u 

U(x, la) - 1 - ---axu + lrrarxu, arxu - ~agArxu,  ]xu - -KSxu - krxuOrxu, ]rxu = itCUrxu + iksxuWrsxu" (8) 

The integration over the gauge variables cannot be performed explicitly (unlike the integration over the Higgs 
field length in the case of SSCE), but the integral can be expanded in powers o fg  2 in the same way as in ordinary 
lattice gauge perturbation theory [9,10]. Instead of the usual SU(N) gauge variables [9,10] we shall use here 
arx ~ (or Arxu)  as defined in eq. (8). This gives simpler four-point (and more-point) vertices. Writing the SU(2) 
Haar-measure in terms Ofarxu,  the necessary gauge integral is 

( " 
f[darxa]exp -Sg +---1 ~ ~ (arxuarxu)n + ~ (axufx . + arxufrx u . (9) 

2 (x#) n = 1 n (xu) 

The gaussian part of the integration can be performed, for instance, by imposing the lattice version of the covari- 
ant gauge condition [9,10], but we shall pursue here, for simplicity, a short-cut by splitting-up a piece - ~  b arxuarxu 
from axu/x u and adding it to the gauge action Sg. The parameter b is, for the moment, arbitrary (it will be fixed 
later by convenience). This makes the quadratic part of the action non-degenerate and the gauge fixing unneces- 
sary. The lattice gauge propagator has in this case a "unitary gauge" form: 

6rlr2 ~ exp[-i(k'Xl-X2)] 
A r l x l l t l ' r 2 x 2 1 ~ 2  -- N a  2 k ( aMw)2+(k* ,k ) [8u lua+k~lku2 / (aMw)2] '  

where N is the number of lattice points, a the lattice spacing, k denotes discrete lattice momenta and 

(10) 

k u - 1 - exp(-iku),  (aJ~W) 2 ~¼g2(b  - 1). (11) 

Besides the usual three-, four- and more-point vertices there are now also two-point insertions (and also additional 
four-, six- and more-point vertices) coming from the rest o f axu / x  u. Otherwise the perturbative expansion is 
straightforward. There are, of course, no Faddeev-Popov ghosts, since the gauge is not fixed. At the end we shall 
briefly comment on the differences which occur if a latticized covariant gauge condition is imposed. 

By using a relation like eq. (25) or eq. (33) in ref. [7], a formula for the gauge-invariant generating function Z 
can be derived. Before writing it down, let us introduce a shorthand notation reducing excessive repetitions: 

- ~ (12) (L)  n --L1L2 . . .L , ,  ~(~) ~,...~2 

In terms of this let us define 
lmn l m 

{ A ) l(rxu)mO, v)n(zh ) -- { A .)rxt~ { As .As . }  yv ( Ast  .As1 .As2 .As2 .) znh , (13) 

and 

{~almn ~Sl(rxu)mO~)n(zh) =- [ i l ( -1)m+n/2m+3nl[m!n!]  {t~u. + ks.ws.}~xa {Ks. + ks.O s. m n - b}y  u (rs.  + ks.vs.}z x. (14) 

Note that, for simplicity, unimportant higher order terms in the last factor of {A } were neglected. Using the trick 
in eq. (12) twice, the master formula for the generating function Z can be written as 
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{r'}L {k'}Mx~(K -- ~:o)N tel _,l*2m+4n,ra ~Imn\c ~K 
Z[r ,k]  x,~,~ = ~ ~ L~MtSVtK ~ ~t~u~s , ~ s . . .  /gSl(rxu)m(yv)n(zx) 

L(Z)M(RX~)N( Yn) K(l(rx#)m(yu)n(zh)) • • • 

(S , N  r rc~ImnlK ~c (15) X ({p .}L {u.}Mx~ !...r Yn ~" !. ~ . . . .  H(rxu)m(yv)n(zh),hK 0 • 

In the g-dependent connection expectation value of gauge variables (...)~ the quadratic (respectively quartic) 
terms in the second (respectively third) factor of  {A} lmn have to be considered as single entities for connected- 
ness, whereas in the connected expectation value ( '")~0 calculated at (X, ~ = 0% g = g0) every term {C} lmn 
counts as a single entity. Taking derivatives of eq. (15) it is also possible to obtain expressions for connected 
gauge invariant expectation values. The g-dependent connected expectation value (...)~ is, of course, given by a g2 
perturbation series in terms of the known gauge propagators and vertices. The connected expectation value ("')~Ko 
is dermed in the #4 model at/3 = ~o by the action in eq. (3). 

Up to now the expansion point (X,/~ = 0% K = g0) was kept general. Forgetting about questions of convergence, 
the master formula eq. (15) gives, in principle, the expectation values at any point (X,/~, K) in terms of  the expec- 
tation values at a ~ = oo point CA, K0) with arbitrary K 0- Since in the/3 = ~ plane there is a critical line (X, Kcr(X)) 
with diverging correlation lengths, the limit K 0 ~ gcr(X) defines a continuum limit of  the perturbation series for 
any 0 ~< X -<< oo. Moreover, the limit of the correlation functions at get(k) is expected to coincide with the correla. 
tion functions of a free theory. Therefore, in the case of gO ~ K crCA)only the two-point correlation functions sur- 
vive. In this way it is possible to impose the consequences of the triviality of #4 on the WGCE in eq. (15). The 
limits of the non-vanishing scalar propagators appearing in eq. (15) are: 

c ~ a2Z t-x~A(MH) c ~ a3M Z t~^(MH) 
(PxtPx2~X~o oov'J x t x 2 ,  (PxtSx2#2)hKO H OsV')'axtx2, 

S c .~ 4 2 (MH) 
( xtvtSx2~2)XKo a M~tZss(X)Axtx2 . (16) 

Here A(xtM)x2 denotes the scalar propagator with mass M, which we define as 

A(M) = 1 ~ e x p t - i ( k , X l - x 2 ) ]  (17) 

Na 2 (  t12 + (k*,k) 

This is the usual lattice form, which in the continuum limit is equal to the continuum propagator, apart from 
negligible a 2 corrections. Note that in eq. (16) the X-dependent normalization factors Z ... (k) are dimensionless 
and finite, corresponding to the assumed naive (canonical) dimensions of the fields p and s. 

In the following only the spontaneously broken symmetry phase K 0/> ~er(k) will be considered. In the two- 
point functions of the currents u, o, w the contributions of the zero-mass Goldstone-particles are: 

(Ur l x l lal Ur 2 x 21a2 ) ~K 0 "~ ( Or t x l P.l Or 2 x2 #2 )~r 0 

"* (Url Xl #t Or2x2 U2 )~ro ~ a4(afh/K 0)2 5rt r2 (~/a(ax 1)~t X~/a(ax2)/a,z ) A(x0/x2, 

(Wrl Sl Xl t~l Wr2 s2 x2 #2 )~KO ~ a2Zww (X)(afx)2 er1,1 'er2 s2 t A(OI)2 ' 

(Wrl sl x l #l Ur~ x2,2 }~Ko "~ (Wrl sl x t t~t Or~ x2 t~ )~Ko ~ a3Zw (X)(afh)2 err st r2 (ia/a(ax 2 )/a,z ) A (01) 2 . (1 8) 

Here again canonical dimensions were assumed for g0 ~ Kcr(X)" The quantity fx is the mass parameter characteriz- 
ing spontaneous symmetry breaking, which is usually denoted in QCD byrd.  Note that, apart from a normaliza- 
tion factor, the vector current is (u - o) and the axial-vector current is (u + o). 

In the continuum limit g0 -~ ~er(X) the usual divergencies appear in the individual terms of WGCE. It is impor- 
tant first to localize the most dangerous quadratic divergences and to try to define a resurnmation of the series in 
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C 

Fig. 1. Insertions in the gauge boson propagator. The wavy 
lines in the graphs represent the gauge propagator in eq. (10), 
solid lines are scalars (like 0 and s) and dashed lines are the 
currents (u, o and w). The blob in 1B stands for the sum of all 
graphs beginning with a scalar s-line. 

such a way that only logarithmic divergences are left over. In the gauge propagator quadratically divergent inser- 
tions come from (Ks.) and ( - b )  in the second factor o f  (C} lmn (see figs. la, lb). Summing up all multiple inser- 
tions o f  the type in figs. la, ib  gives a shift o f  (aMw) 2 in the gauge propagator. Taking now b = 1, which is the 
usual choice [9], and omitting o(a2g 2) pieces, instead o f  eq. (11) we obtain 

- l 2 K ( 1 9 )  (aMw) 2 = ~g2Kffr[~+;,U(x, U)~x] >x~K = ~g ~ x . > ~ K .  

This is a tree-level relation which corresponds in this gauge invariant formalism to the usual tree-level relation 
between vacuum expectation value o f  the scalar field and the W-mass. According to recent numerical Monte Carlo 
data [11] eq. (19) is well satisfied. For instance, the measured value (CSx,) = 1.0589(3) at (~ = 1.0, 3 = 8.0, K 
= 0.28) gives aM w = 0.19252(3), to be compared to the Monte Carlo result am w = 0.19(1). This shows that the 
loop corrections are in this point at most about 5%, in the same way as in conventional perturbation theory. 

The multiple insertions of  the current-current  correlation function (uu) in fig. lc  do not shift the mass, but 
alter the spin structure of ' the gauge propagator. Summing up multiple insertions with the limiting form of  (uu) in 
eq. (18) gives the gauge propagator 

6rlr~ e x p [ - i ( k ' X l  - x 2 ) ]  - t - ,  - 2 
-Artxlul,r2x2~2 - Na---- ~ ~k (aMw)2+(k* ,k )  [ S u l u 2 - ( 1  -~x)-lk~lku2/(k*'k)-~x(1-~x) kmkm/(aMw) ]' 

(20) 

The parameter ~x is defined by 

~x - (ZMwK/grx K 0) 2. (21) 

It seems tempting to assume that in the continuum limit ~x = 0, leaving us with a nice Landau-like gauge propaga- 
tor, but the limiting value o f f  x (or fx/Mi_l) in the 3 = ~ $4 model is unknown at present. This point clearly de- 
serves further investigation. 

Let us now briefly comment on the differences occurring if in the gauge integral the lattice version o f  the co- 
variant gauge condition is imposed. In this case there are additional graphs containing closed loops of  the 
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Faddeev-Popov  ghost. The gauge propagator is first the same as in pure gauge theory [9,10], but  summing up 
the insertions in fig. lb  one obtains the usual massive ' t  Hooft  gauge propagator [12], which depends on a gauge 
parameter a .  The simplest choice is a = 0 ( ' t  H o o f t - L a n d a u  gauge), because then the insertion in fig. lc  vanishes. 

The good high-momentum behaviour o f  these gauge propagators is certainly advantageous, nevertheless the prob- 
lem of  quadratically divergent multi-loop contributions to the gauge propagator still remains. 

A remarkable feature o f  the tree-level W-mass relation in eq. (19) is that ,  obviously, the right-hand side does 
not  decrease fast enough for g2 ~ 0, r ~ rer(X). This speaks against the existence o f  a non-trivial continuum limit 
of  the standard Higgs model  at (X, fl = ~ ,  rot(X)), in accordance with recent numerical investigations suggesting a 
first-order conf inement-Higgs phase transition for i'mite ft. In this case the lines of  constant physics in the X 
= const, planes would look like fig. lb  of  ref. [13]. Another  possibility is that  due to remaining (multi-loop) qua- 
dratic divergences in the perturbation series the relation (19) is no longer valid in the vicinity o f  the phase transi- 
t ion, where the scale is much different from M w . This could perhaps produce an exponential  decrease of  (aMw) 
allowing a large cut-off compared to the W-mass. 

In any case, the WGCE provides an analytic handle which can be used for a bet ter  understanding of  the proper- 
ties of  the fl = ~ critical line in the standard Higgs model  (and probably also in other models with elementary 
scalar fields). In a combination with SSCE it could also be useful for the study o f  X-dependence. 
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