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Models are considered which have no small Yukawa couplings unrelated to symmetry. This situation is generic in higher 
dimensional unification where Yukawa couplings are predicted to have a strength similar to the gauge couplings. Generations 
have then to be differentiated by symmetry properties and the structure of fermion mass matrices is given in terms of quantum 
numbers alone. Possible symmetries leading to realistic mass matrices are scanned. 

Most of the free parameters of the standard 
SU(3) x SU(2) × U(1) model are Yukawa cou- 
pling~ between quarks, leptons and the Higgs 
scalar. Ideas of further unification of all forces 
aim for an explanation of those Yukawa couplings 
and thereby a resolution of the old puzzle about 
the origin of the difference between muon and 
electron. In particular, unification in more than 
four dimensions relates the number of generations 
to topological properties of internal space [1]. As a 
consequence, the differentiations between genera- 
tions should also be explained by symmetries and 
topology of internal space (including ground state 
configurations of other bosonic fields) [2-4]. 

In this letter we describe a computerized search 
for realistic fermion mass matrices whose struc- 
ture is entirely explained by quantum numbers of 
quarks and leptons. Although motivated by higher 
dimensional theories the framework of our discus- 
sion is in four dimensions. Our central assumption 
is that all Yukawa couplings are of the same order 
as the gauge coupling g unless they are zero 
because of symmetry or topology (this is the 
generic situation resulting from higher dimen- 
sional unification). If generations are not dis- 
tinguished by the order of magnitude of their 
Yukawa couplings, they must be differentiated by 
some symmetry G larger than SU(3)× SU(2)x  
U(1). Such a symmetry G may consist of local or 
global continuous symmetries or be discrete. 

1 Ere aspirant, NFWO, Belgium. 

In the limit of unbroken G the top quark and 
the electron must couple to different scalar doub- 
lets d,, which are distinguished by their G trans- 
formation properties - otherwise our assumption 
implies that the electron couples with a Yukawa 
coupling of order g to the (VEV) responsible for 
the top quark mass m t and therefore m e = m t in 
contradiction to observation. The Higgs doublet q5 
responsible for weak symmetry breaking will in 
general not be in a definite representation of G, 
but rather consist of some linear combination of 
fields di, q~ = ~i Yi* d,. 

The basis of mass eigenstates (q~, heavy doub- 
lets) differs from the basis of fields d, with given 
G transformation properties. Re-expressed in the 
d r basis the VEV's are 

(dr) = T,(•) = T, × 174 GeV. (1) 

Masses of quarks and leptons are given by the 
product of a Yukawa coupling (of order g) and 
the VEV (d,)  which couples to them. The ap- 
parent small Yukawa coupling for the electron is 
caused by the small mixing coefficient y, for the 
corresponding doublet. 

In the limit of unbroken G the doublets d, 
cannot mix because of their different G quantum 
numbers and all y, vanish except one (To = 1). 
(This "leading" doublet should only couple to the 
heaviest fermion, i.e. the top quark in the three- 
generation case). Nonvanishing mixings Yi are in- 
duced by symmetry breaking of G. Let us denote 
by M the typical scale of mass terms for the 
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doublets d, in the limit of unbroken G and by M6 
the scale of symmetry breaking of G. The dimen- 
sionless y~ are then of order 

7, = ( M G / M  ) p' , (2) 

with P, some integer calculable from symmetry 
considerations [4]. A small ratio M r / M  should be 
responsible for all small quantities in the fermion 
mass matrices ,1 

There is a first necessary criterion for these 
ideas to work: the symmetry G must differentiate 
enough between the various quarks and leptons to 
allow for realistic structures of the mass matrices. 
There should be at least one choice of (di)  (the 
calculations of these VEV's (or y~) are not at- 
tempted at this stage) which produces correctly all 
orders of magnitude for the various elements of 
the quark and lepton mass matrices. This require- 
ment leads to many restrictions on possible quan- 
tum numbers of fermions with respect to G. For a 
given symmetry G and given representations un- 
d'er G for the quarks and leptons a computerized 
scan for acceptable mass matrices becomes pos- 
sible and useful in this context. For this we re- 
quire that all elements in the mass matrices that 
differ by an order of magnitude are produced by a 
different scale of VEV (d,) ,  which VEV produces 
a given element in a mass matrix being determined 
by the symmetry G. This concerns masses as well 
as mixing angles differing by orders of magnitude. 

Our scanning program is based on the observa- 
tion that for the three-generation case the struc- 
ture of fermion mass matrices is well described by 
four (or five) scales. These scales are separated by 

,1 For the purpose of this letter the choice of M is arbitrary. It 

could be a very high unification scale - the compactification 
scale in higher dimensional theories, the string tension for 

superstrings or the GUT scale for some extended version of 
grand unif icat ion/family unification. In this case the struc- 
ture of fermion mass matrices is related to a fine structure of 

scales around the unification scale [4] and only the "weak  
doublet" survives at low energies. The other extreme case is a 
low energy ( = TeV) scale M only somewhat above the weak 
scale and M c - M w. This scenario requires several doublets 

in the range below a few TeV. It may be realized in super- 
symmetric theories with M the gravitino mass. Between 
these two scenarios one can of course consider a scale M and 

M e in some intermediate range. 

about an order of magnitude. The highest scale is 
the top quark mass, which we assume to be several 
tens GeV. The second scale is a few GeV, where 
we find the bottom quark, the charm quark and 
the tau lepton. The strange quark and the muon 
constitute the third level of a few hundred MeV. 
The fourth level consists of the up and down 
quarks and the electron below a few tens MeV 
(one may argue that a fifth scale below a few MeV 
is needed for the electron mass) ,2. The only other 
information about the mass matrices comes from 
the measured mixing angles. We have (a fairly 
large) Cabibbo angle and a few percent of mixing 
between the second and third generation. The 
limit on mixing between the first and third genera- 
tion is somewhat less than one percent. No infor- 
mation about the lepton mass matrix besides its 
eigenvalues is available. We will denote these scales 
by n~, every scale being a few 10 n, MeV. So the n~ 
a r e  

ro t :4 ;  mb, rn c, m , : 3 ;  rn~,, ms:2 ;  

m u ,  m d ,  m e :1. (3) 

Upper bounds on the size of the elements of the 
mass matrices are given by 

(i' M U < 3 
3 

M L < 3 2 
3 2 

i ) '  M D  < 

2 or 2 
1 2 

3 2 1 
3 2 1 (4a,b) 
3 2 1 

2 2 ,  (4c) 
2 1 

The mass matrices (4a)-(4c) have been ordered 
here in the standard way. The bounds o n  M l l  

come from the maximal size of the mass eigenval- 
ues. An entry of this size is also required to 
produce the heaviest mass. The bounds on M12 
and M13 come from the observed small mixing 
with the third generation. The bounds on M2t and 
M31 are the same as for M H since they can always 

,2 We use a normalization for the quark and lepton mass 

matrices at the weak scale M w. If we assume that the size 
of couplings is generated at a very high scale (Mcu x, Me) 
the different renormalization of the quarks and leptons is a 
factor of 2.5-3. This does not change the relative orders of 
magnitude. 
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be removed by left multiplication with a unitary 
matrix which is unobservable. The bounds  on 3422 
and M33 come from the second and tl)ird genera- 
tion mass and the one on M23 from the smallness 
of the Cabibbo angle. In the lepton mass matrix 
bounds  only come from the eigenvalues. Hence, 
whenever M L is acceptable, ML r (transposed) is 
too. The second and third generation masses can 
also be generated by paired off-diagonal elements 
[5] and we have to impose additional "quadra t ic"  
constraints. In terms of n~ they read 

(Mu)13+ (Mu)31 ~< 5, 

(MD)23 -1- (MD)32 3, 

(ME)13 + (ML)31 4, 

(MU)23 + (Mu)32 ~< 4 ,  

(5a,b) 

(5c) 

(ML)2, + (ML),2 3. 
(5d,e) 

We can now describe our scanning procedure:  The 
fermion masses are generated level by level, start- 
ing with n~ = 4. At  each step we try all possible 
assignments of  the required scale n~ to various 
VEV's  ~di). F rom G symmetry  we then calculate 
the scale of elements of the fermion mass matrices. 
They are of  order n~ whenever the di chosen is 
allowed to couple to the corresponding fermion 
bilinear by G quan tum numbers  and zero other- 
wise. Consistency is then checked by compar ing 
the pat tern of scales thus generated with the 
bounds  (4a)-(5e). A model is rejected if no con- 
sistent assignment of  scales is found. We note that 
rows in the mass matrices and columns in M E can 
be permuted arbitrarily to reach the s tandard pat-  
tern in (4a)-(5e). For  the quark mass matrices, 
columns in M U and M D have to be permuted 
simultaneously in order to keep track of  mixing 
angles. 

First we look for a VEV only coupling to one 
column in M U and not to M E or M D. This defines 
the top mass with ns = 4. At the second level we 
first assign an n ~ = 3  VEV to produce m b. We 
veto if the label n~ = 3 then appears in more than 
one column in M D or M E and if it appears in 
more  than one column differing from the top 
column in M U. If  m r is not  produced by the same 
VEV as m b we try an additional n~ = 3 VEV in 
M E. The same procedure is then applied to m~ 
which can be generated either by diagonal or 

paired off-diagonal n s = 3 entries. The combined 
set of  all n~=  3 entries is subject to the con- 
sistency veto described for m b. At the third level 
we first generate m~, by an n, = 2 entry. We again 
allow for diagonal or paired off-diagonal entries. 
We veto if an n~ = 2 element appears in the last 
column of  M D or in (Mu)33 or (ML)33 or if one of 
the quadratic bounds  (5a)-(5e) is violated. If m,  is 
not  yet generated we assign additional ns = 2 en- 
tries in M D with the same veto. At the end of  this 
level all generation labels, t, c, u, etc. are assigned 
to the various rows and columns. It is now easy to 
check by inspection of the various n~ = 4, 3, 2 
entries in the mass matrices if sufficient mixings 
023 and 012 are already generated. If not, we have 
to assign an appropriate  n~ = 2 or 3 entry in M U 
or n~ = 2 or 1 in MD to generate 023. The same 
holds for 012 with an n~ = 2, 1 entry in M U, M D, 
respectively. Possible n ~ = 2 ,  3 entries are, of  
course, subject to the same consistency require- 
ments as earlier mentioned. Finally we check if all 
first generation masses can be generated by n~ = 1 
entries. This will always be the case unless " topo-  
logical" or other reasons enforce the absence of 
scalar doublets coupling to the first generation 
bilinears. 

As an example we discuss a simple higher di- 
mensional model, namely monopole  solutions of 
the six-dimensional SO(12) theory [2]. (This can 
be considered as a subgroup analysis for the E s × 
E 8 superstring for appropriate  deformation classes 
of  the ground state [4].) Monopole  solutions with 
SU(3) × SU(2) x U(1) symmetry are characterized 
by three integers n, m and p with n + p even. We 
list [2] the numbers  of chiral fermions with given 
charge q =  _+ ½ (corresponding to the abelian sub- 
group of SO(12) commut ing  with SO(10)): 

q e : [ 1 / 2 ( n  +P)11/2  + [ 1 / 2 ( n  - p ) ] _ , / 2 ,  

uy:[1/2(n - p  + 2m)],/2 

+ [ 1 / 2 ( n  + p - 2 rn ) ]_  ,/2, 

d ~ : [ 1 / 2 ( n  - p -  2m)]1/2 

+ [ 1 / 2 ( n  + p  + 2 m ) ] _ , / 2 ,  

L e : [ 1 / 2 ( n -  3p)]1/2 + [ 1 / 2 ( n  + 3 p ) ] _ , / 2 ,  

e ~ : [ 1 / 2 ( n  + 3 p -  2 m ) ] l / e  

+ [ 1 / 2 ( n  - 3p + 2m )] _ ,/2. (6) 
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Negative integers in the brackets correspond to 
the corresponding number of mirror particles 

.. with charge q opposite to the indi- qL, UL, ,- , 
cated index. Possible mirrors qL have therefore 
the same U(1)q charge as qL and mass terms 
between standard fermions and mirrors require 
breaking of U(1)q. 

Besides U(1)q and U(1)8 Lwithin SO(12) there 
is another possible abelian symmetry group U(1)G 
commuting with SU(3)~ × SU(2)L ' × U(1)y. This 
comes from an isometry of rotations on two-di- 
mensional internal space. The charge I with re- 
spect to U(1)G for ql. is given by (n + p  > 0, n - 
p > 0 )  

I = 1 / 4  (n + p )  - 1 /2 ,  1 / 4  (n + p )  - 3 /2  . . . . .  

-1/4(n+p)+1/2 (q = 1 /2) ,  

I = 1 / 4  ( n - p ) -  1 /2 ,  1 / 4  ( n - p )  - 3 / 2  . . . . .  

- 1 / 4 ( n - p ) + a / 2  ( q = - 1 / 2 ) ,  (7) 

Table  1 

N u m b e r  of solutions for various compact i f icat ions  of a six-di- 

mensional  model,  nso I is the n u m b e r  of solutions and n~o I is 

the n u m b e r  of solutions with m b and m .  generated by the 

same VEV 

m p n ~ol n ~ol 

- 3 1 4750 1386 

- 2  1 0 0 

- 1  1 0 0 

0 1 0 0 

1 1 0 0 

2 1 0 0 

3 1 72 72 

- 3 3 > 100000 0 

- 2 3 > 100000 58724 

- 1 3 26856 0 

0 3 0 0 

1 3 3132 1796 

2 3 22636 13324 

3 3 12840 8780 

and correspondingly for mirrors and the Other 
fermions. ( I  is the third component  of SU(2) G 
spin for SU(2)G representations with dimension 
given in the brackets in the list (6).) We want to 
know if the abelian charges q and I can differenti- 
ate sufficiently between various quarks and lep- 
tons to allow for realistic mass matrices. (This is 
the abelian part of a more complete non-abelian 
analysis as sketched in ref. [4].) We restrict our- 
selves to the three-generation case n = 3. 

In the first column of table 1 we give the 
number of acceptable solutions for various values 
of m and p for n = 3. We observe that no assign- 
ments of scales produce acceptable mass matrices 
for low values of m and p where we have no 
mirror particles. For high m and p the number of 
solutions increases rapidly. This is due to a large 
number of mirror particles. In fact, for this first 
investigation, we have treated the mechanism giv- 
ing masses to mirrors as independent from the 
mechanism mixing the various doublets coupling 
to the "surviving" chiral fermions. This means for 
rtq quarks and rtq - 3 mirror quarks we have ad- 
ded the number of possible scale assignments from 
all patterns picking arbitrarily three "surviving" 
quarks out of nq quarks and assuming that the 
remaining nq - 3 quarks from heavy masses with 

the r / q -  3 mirror quarks. (Of course, in a more 
detailed analysis the SU(3) x SU(2) × U(1) singlet 
operators responsible for the heavy masses of mir- 
ror quarks also lead to the mixing between differ- 
ent doublets by G symmetry breaking - in our 
case G = U(1)q × U(1)G - and additional restric- 
tions for acceptable models have to be imposed 
[4].) As an example we have found the following 
solution for m = 1, p = 3. 

M U  " 

(1, - 1 )  (1, 1) (1, 0) ] 

(0, - 1 / 2 )  (0, 3/2) (0, 1/2) ) , 
(0, - 3 / 2 )  (0, 1 /2)  (0, - 1 / 2 )  

3 
0 

(8a) 

Mr): 

(0, - 3/2) 
(0, 1 /2)  

(0, - 1 / 2 )  

(0, a / 2 )  
(0, 5/2) 
(0, 3/2) 

(0, - 1 / 2 )  

(0, 3/2) 
(0, 1/2) t , 

2 
1 

(8b) 
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M L : 

(0, - 3 / 2 )  ( 0 , 1 / 2 )  ( 0 , - 1 / 2 )  

(0, 1 / 2 )  (0, 5 / 2 )  (0, 3 / 2 )  , 

(0, -1 /2 )  (0, 3/2) (0, / /2) 

1 2 , (8c )  

0 1 

Here  the first mat r ix  exhibi ts  the quan tum num-  
bers  (q, I )  for the var ious  fermion bi l inears  in the 
mass  matr ices,  whereas  the second matr ix  gives 
the chosen ass ignment  of  n s. (Note  that  if di  is 
a l lowed to couple  to M u, only  d* can couple  to 

M D or  ML. ) 
In add i t ion  we have i l lus t ra ted impos ing  ad-  

d i t iona l  cons t ra in ts  by  requir ing that  m b and  r n  
are genera ted  by  the same VEV ( d i ) .  The num- 
bers  of solut ions with this extra  cons t ra in t  are 
given in the second co lumn of table  1. 

We  conclude  that  a compute r ized  scan for mass  
matr ices  whose s t ructure  is only  de te rmined  by  G 
q u a n t u m  numbers  is poss ible  - at  least for abe l ian  
G. This analysis  should cer ta in ly  be ex tended  to a 

more  comple te  connec t ion  between the mir ror  
masses  and the mass  matr ices  M U, M D and M L 
as well as to an inclusion of  the calculable  powers  
P, in eq. (2) [4]. Nevertheless ,  we f ind that  a l ready  
at  this stage of the scanning many  models  are 
excluded since the symmet ry  G does not  differen- 
t ia te  enough the genera t ions  to account  for realis-  
tic mass matrices.  
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