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Abstract. The low-lying energy values associated to energy eigenstates 
describing two stable particles enclosed in a (space-like) box of size L are shown 
to be expandable in an asymptotic power series of I/L. The coefficients in these 
expansions are related to the appropriate elastic scattering amplitude in a 
simple and apparently universal manner. At low energies, the scattering 
amplitude can thus be determined, if an accurate calculation of two-particle 
energy values is possible (by numerical simulation, for example). 

1. Introduction 

This paper is a continuation of [1], where I have determined the size depen- 
dence of the stable particle masses in quantum field theories enclosed in an 
L x L x L box with periodic boundary conditions. The objective here is, to find out 
how the energy eigenstates describing two (unbound) stable particles behave in 
finite volume and in particular how the associated energy values vary with L. The 
motivation for this investigation is at least two-fold. First, in numerical simul- 
ations of lattice theories, it is helpful to have some a priori knowledge about the 
distribution of the low-lying energy values to perform the spectral analysis of 
correlation functions and to correctly interpret the energy spectrum so deter- 
mined. Secondly, the formulae established in this paper relate the size dependence 
of the two-particle energies to the corresponding elastic scattering amplitudes and 
thus make the latter accessible for calculational schemes, which need a finite 
volume for technical reasons and which are hence unable to deals with scattering 
processes directly. To compute low-energy scattering amplitudes via the energy 
spectrum in finite volume appears to be a rather complicated way to proceed, but 
in the context of numerical simulations of lattice gauge theories, for example, no 
other practical method is presently available. 

In finite volume, the particle momenta are quantized and the spectrum of 
energies of two-particle states with zero totN momentum is therefore discrete. As 
L~oe ,  the spacing between these levels goes to zero and their density grows 
proportionally to the volume. An important point to note is that the level spacing 
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is often not so small in practice. Consider for exampte a numerical simulation of 
QCD on a large lattice with L >  3 fermi. As will be shown later, the low-lying 
energies W of the zero total momentum nn-states are then approximately equal to 
the free field values 

w =  + p  2 , (1.1) 

where m. denotes the physical pion mass and the (relative) pion momentum p is 
given by 

2n 
p = ~ -  n,  n ~ •3.  (1.2) 

Thus, as shown by Fig. 1, the level spacing is sizeable up to very large volumes, in 
particular, the lowest energy value is welt separated from the higher ones below 
(say) L =  10 fermi. These energy values are therefore well-defined in a practical 
sense and their calculation in numerical simulations should be no more difficult 
than the calculation of the pion mass, for example. 

Consider now an arbitrary massive quantum field theory describing the 
physics of particles ("mesons") with spin 0 and mass m. As already mentioned, the 
possible energy values of two-particle states in finite volume are given by the free 
field expression W=2(m z +p2)1/2 plus a small correction, which is due to the 
meson interactions. There are two different physical processes, which contribute to 
this finite size energy shift. First, there are the polarization effects discussed in 
detail in refs. [1, 2], which involve virtual particle exchange "around the world." 
Secondly, the two mesons enclosed in the box interact directly, i.e. they are really in 
a stationary scattering state. For large L, the energy shift due to polarization effects 
decreases exponentially whereas the second process gives rise to corrections, which 
decay only as a power of 1/L. This basic fact can easily be understood heuristically 
by noting that the interactions in massive quantum field theories are short ranged. 
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Fig. 1. Energy values of nn-states with zero total momentum as a function of the box size L 
neglecting pion interactions. The dashed line indicates the 4-pion threshold. The multiplicity of 
the levels shown is 1 in the channel with zero spin and isospin 
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Since the wave functions of the mesons are spread throughout the box, the 
probability for the particles to be within interaction distance is inversely 
proportional to the volume and the resulting energy shift is hence expected to be 
proportional to L -  3. Thus, the leading corrections to the free field energy spectrum 
in the two-particle sector arise from real (as opposed to virtual) scattering 
processes and the situation is therefore entirely different from the one considered in 
ref. [I],  in particular, new mathematical tools will be required to prove relations 
such as Eq. (1.3) below. 

In this paper it is shown that the individual two-particle energy values can be 
expanded in a power series of 1/L with calculable coefficients, which are simply 
related to the elastic meson scattering amplitude. For example, for the lowest level 
(p = 0), the first few terms in the expansion are given by 

4 a0{ O }o 
W=2m-~-~3  l + c ~ + c z ~  +O(L-6) ,  (1.3) 

cl = -2.837297,  (1.4) 

c2= 6.375183, (1.5) 

where ao denotes the S-wave scattering length, i. e. in terms of the S-wave scattering 
phase shift 60, we have 

1 2i6o ao = l!m ~ (e - 1) (1.6) 
p o Alp 

(p: magnitude of the meson momentum in the centre of mass system). Thus, as 
anticipated above, the leading finite size correction to the two-particle energy W is 
inversely proportional to the volume. The subleading terms arise from multiple 
scattering processes and involve the coefficients cl and c2, which are related to the 
zeta-function of the Laplacian on a 3-dimensional torus [cl and c2 are constants of 
the momentum lattice (1.2) in other words]. The higher terms in Eq. (1.3) depend 
on successively higher derivatives of the scattering amplitude at zero momentum 
and can be obtained quite easily if desired. 

For  the levels with p + 0 and in more complicated situations involving particles 
with different masses and particles with spin, the large L expansions look similar to 
Eq. (1.3), in particular, the leading non-trivial term is always proportional to L -  3 
A remarkable aspect of these expansions is that the coefficients are determined 
solely by the scattering phase shifts 6t (and their derivatives) at momentum p, i.e. 
there is no reference to the particle interactions at other energies. 

In their work on the non-ideal Bose gas almost 30 years ago, Huang and Yang 
[3] have already derived Eq. (1.3) in the special case of two (non-relativistic) hard 
spheres enclosed in a periodic box 1. More recently, the existence of the first non- 
trivial term in Eq. (1.3) has also been mentioned in ref. [4] in the course of a 
discussion of statistical errors in quenched hadron mass calculations. The proof of 

1 1 am indebted to N. Rivier for drawing my attention to this work. A small numerical discrepancy 
between the constants q, c z as calculated in ref. [3] and the values quoted here is due to an 
approximation made by Huang and Yang 
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Eq. (1.3) given by Huang and Yang is based on a pseudo-potential approximation 
to the Schr6dinger equation, which is exact to the order of ao/L considered. 
Although this method can probably be generalized to arbitrary short range 
potentials, I would not know how to carry it over to quantum field theory, because 
a local two-particle wave equation is not available in this case. 

The large L expansions of the two-particle energy values are established here to 
all orders of perturbation theory in arbitrary massive quantum field theories, the 
philosophy concerning universality and the applicability of this method of proof 
being the same as in ref. [1]. Apart from Subsect. 2.7, where we shall briefly discuss 
the two-dimensional case, the dimensionality of space-time is always assumed to 
be 4. While the methods employed could easily be generalized to higher 
dimensions, they do not apply in dimensions 2 and 3, because the dynamical finite 
size energy shifts are not small compared to the free particle level splitting in these 
cases. 

The organization of the paper is as follows. In Sect. 2, the quantum mechanical 
case of two (non-relativistic) bosons interacting through a potential of finite range 
is discussed in great detail. The basic techniques to control the volume dependence 
of two-particle energy values to all orders of perturbation theory are developed 
here and the results are illustrated by a simple numerically soluble model. It is only 
in Sect. 3, where the quantum field theory case is treated, that the reader is assumed 
to be familiar with the results and techniques of ref. Ill .  As an application of the 
general formulae, the pion-pion and pion-nucleon system is considered in Subsect. 
3.6. The paper ends with a few concluding remarks in Sect. 4 and two appendices, 
one discussing the zeta-function of the momentum lattice (1.2) alluded to above 
and the other containing the proof of a general summation formula for singular 
3-dimensional momentum sums. 

2. Volume Dependence of Energy Values in Quantum Mechanics 

2.1. Summary of Notations 

In the following subsections, details are only worked out for the case of two non- 
relativistic bosons ("mesons") of mass m and spin 0, which interact through a 
potential V of finite range. The methods used are however more generally 
applicable and it is not difficult to extend the results in various directions. 

In infinite volume, the two-particle states are thus described by scalar wave 
functions ~(x, y), where x, y ~ ~3  are the position space coordinates of the mesons. 
Bose statistics requires 

~v(x, y )=  ~v (y, x), (2.1) 

and the scalar product is accordingly defined by 

Qpl~p) = ½5 daxdayq)(x, y)*~p(x, y). (2.2) 

The Hamilton operator ~-I of the system is assumed to be of the form 

l-I = ll-I0 + ¥  , (2.3) 
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where the action of ~0  and V on wave functions ~p is given by 

~I°~p(x' Y) = -- 2~  (Ax + Ar)~P(x' y)' (2.4) 

V~v(x, y) = V ( x -  y) ~v(x, y) (2.5) 

(Ax, Ar denote the Laplace operators with respect to x and y). The potential V(z) is 
required to be square integrable, rotationally symmetric and of finite range, i.e. 

V(z)=0 for Izl>R. (2.6) 

This last assumption is made for convenience, but in what follows, a weaker 
condition, for example that V(z) decays exponentially, would do just as well. 

The eigenfunctions of the free Hamiltonian l[-I o are the symmetrized plane 
waves 

tpp, q(X, y) = e i~r'' + qy) "1- e i(py +'Ix)  (2.7) 

which will be written as IP, q> in Dirac's notation. Thus, we have 

~olP, q)  = (e(p) + e(q))IP, @ ,  (2.8) 
p2 

e(P) = 2--m' (2.9) 

(p', q'lp, @ = (27z)6 {~(p'-- p) 6(q'-- q) + 6(p'-- q) 6(q'-- p)}. (2.10) 

Defining in-going and out-going scattering states as usual through the Moller 
operators, the meson scattering amplitude Tnr 2 is given by 

(p',q' out IP, q i n )=(P ' ,q ' lP ,  q ) - i ( 2 ~ ) 4 6 ( E ' - E ) 6 ( P ' - P ) T , r ( P ' , q ' [ P , q ) ,  

where E = e(p) + e(q) is the total energy and P = p + q the total momentum of the 
in-going particles 3. 

With these conventions, the partial wave expansion of the scattering amplitude 
in the center of mass system (P = 0) reads 

Tnr_ 8~ ~ (21+l)Pt(cosO)tl  ' (2.12) 
m I=0 

t ~ = ~ ( e  - 1 ) ,  p=lpl, (2.13) 

(Pt:/'th Legendre polynomial, 0: scattering angle, 6t: scattering phase shift). Note 
that fi vanishes for I odd due to Bose symmetry. The threshold parameters a~ and b~ 
are defined by 

Re t z = p21 { a z + p2 bl + O(p4)} ,  (2.14) 

which agrees with the definition (1.6) of the S-wave scattering length ao. 

2 The subscript "nr" means "non-relativistic" and is written to distinguish T.r from the relativistic 
amplitude T, which is normalized differently 
3 The letter W, which is used in Sect. i to denote the total two-particle energy, is reserved for 
relativistic systems 
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As already mentioned in the introduction, the large L expansions of the finite 
volume energy levels will be proved to all orders in perturbation theory, i.e. to all 
orders of an expansion in powers of the potential V. For the scattering amplitude 
Tnr in the centre of mass system, this expansion coincides with the Born series 

t T n r = V ( p , p ) - I -  k ( - -1 )n  d3kt d3k" 
,=1 2" 5 (2=)3 "" (2=) 3 

x V(p', kl)Rr(kl) V(kl, k2)RE(k2)... 9(k,, p), (2.15) 

fl (k', k) = S d 3z {e-i(k'-k)z + e- i(k'+ k)z} V(z) ,  (2.16) 

R~(k) = {2 e(k)-  E - ie} -~ (2.17) 

In particular, for the S-wave scattering length ao, we have 

d3kl dak, 
8r~m ao = V(O, O) + ,=2k f (2~)3 ... (2~)3 

m m.. .  l?(k,, O) (2.18) x ~(0, k,) k~ V(kl, k2) k-~ 

This concludes the discussion of the meson system in infinite volume and we now 
proceed to list the basic properties of the finite volume system. 

The quantum mechanical states of two mesons confined to a periodic L x L x L 
box are also described by wave functions ~(x,y)=~(y,x)  with x,y~lR 3. The 
boundary conditions are taken into account by requiring 

~v(x+nL, y)=tv(x,y) for all n~2g 3, (2.19) 

and the scalar product of wave functions is given by Eq. (2.2), but with integrations 
running over one periodicity cell only. The action of the Hamilton operator ~I on 
finite volume wave functions is defined as before [Eqs. (2.3)-(2.5)], where in (2.5) 
the potential V(z) should be replaced by 

VL(z) = ~ V(z + nL) (2.20) 
n~Z 3 

to preserve periodicity. 
The plane waves (2.7) are the eigenfunctions of the free Hamiltonian IH o in 

finite volume, too, provided the momenta p and q are restricted to the discrete 
values (1.2). For the normalization of these states, one finds 

(p', q'[p, q)  = L 6 {Op,, p~q,, q Jr" Op,, qOq,, p} (2.21) 

and the matrix elements of V in this basis are given by 

1 * t 1 (P', q'l¥1P, q> =L36p,,P (~(P - q ) , g ( P - q ) ) ,  (2.22) 

where V is defined as before [Eq. (2.16)]. 
In the absence of interactions (V=0) and for zero total momentum, the 

possible energy values of the system are 

4r~2 2 
E = 2e(p) = ~L)--n (n s 293). (2.23) 
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For weakly interacting particles, ordinary perturbation theory can be applied and 
the spectrum is hence given by Eq. (2.23) plus small corrections. For example, using 
Eqs. (2.21) and (2.22), one finds for the lowest level 

= ~--~ re(O, O) + O(V2). (2.24) E 

Combining this result with the Born series (2.18), we have 

4rCao E= ~ u  +O(V2), (2.25) 

which already proves the large L expansion (1.3) to first order in V. 
In what follows, the strategy is to write down the complete perturbation 

expansion of the energy levels in a tractable form and to analyze the L dependence 
of each term separately. As a result, one obtains a double expansion in powers of V 
and L- 1, which is not hard to regroup in the form of the desired large L expansions 
with coefficients expressed through the scattering amplitude. 

2.2. Perturbation Theory to All Orders 

High order perturbation theory can be formulated in many different ways. The aim 
here is to present one such possibility in a compact notation, which makes the 
essential structure transparent. Moreover, many of the formulae derived below 
will be useful in quantum field theory, too. 

Using the cubic rotation symmetry, the degeneracy of the low-lying energy 
levels (2.23) can be lifted, and it is therefore sufficient for our purposes to consider 
the case of non-degenerate perturbation theory. Thus, let E o be an eigenvalue of 
No and [lp0 ) the corresponding eigenstate normalized to unity. For small V, one 
then expects that the full Hamiltonian ~I has an isolated eigenvalue E with 
E = Eo + O(V). Define 

F(z) = (~Po [(z - ~ ) -  l l~v o). (2.26) 

This is a meromorphic function of z with simple poles at the eigenvalues of IH, in 
particular, there is a pole at z = E. Expanding in powers of V, we have 

e ( z ) = ( z - E o ) - l  + ( z - E o ) - 2  (~o l¥  ~ [(z-lHo)-lYJ"l~po). (2.27) 
n = O  

In this form, the perturbation expansion is however not very useful, because as z 
gets close to E (and hence close to Eo), ( z -N0) -1  has a pole and the series 
explodes. 

To obtain a representation, which is smooth near E, we first separate the pole 
at z = E  o from the free propagator: 

(z_~_io)-l_ Po Qo Po--IWo><~pol Q o = l - P o  (2.28) 
z _ E o  + z_g_i~ ° , , • 

Then, using the operator identity 
O9 o C  0 0  

A Z [(B+ C)A]"=A' Z (BA')", A'= A Z (CA)", (2.29) 
n = O  n = O  n = 0  
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with A = V ,  B=Po/ ( z - -Eo)  and C= Qo/(Z-~Io), one gets 

F(z) = ( z -  E o -  r(z))-  1, (2.30) 

r(z) = <~volV V I~Po> • (2.31) 
n 

Note that the projector Qo excludes the eigenvalue Eo and r(z) is hence smooth in a 
neighborhood of Eo. It follows that (2.30) is a valid representation of F(z) around 
Eo and the eigenvalue E is thus determined by the implicit equation 

E = E o + r(E) (2.32) 

(and the condition that E--Eo is small). 
In principle, Eq.(2.32) can be solved straightforwardly by inserting the 

perturbation series for E, expanding all entries in powers of V and equating 
coefficients of the same order. A more elegant way to proceed is to first expand E in 
powers of the function r(z). To this end, it is helpful to introduce an auxiliary 
parameter e as a bookkeeping device. Thus, Eq. (2.32) and the desired expansion of 
E are written as 

E = Eo + ~r(E), (2.33) 

E =  ~. ~E~, (2.34) 
v=O  

with ~ set equal to 1 at the end of the derivation. In this way one generates the 
solution E of Eq. (2.32) as a power series of r(z). 

To determine the coefficients E~, we now insert (2.34) into (2.33), expand in 
powers of e and obtain the recursion 

E l = r  0 , 

j = i  l l = l  

where rj is given by 

(2.35) 

... ~ 6zl+t2+...+~j,~EllEt2...Elj, 
lj=l 

rj = ~. ~z ~ r(z)]~ =,~o. (2.36) 

For example, for the next to lowest coefficients E ,  one finds 

E2 = rora, E z = ror ~ + r~r z , (2.37) 

and it would not be difficult to continue this list. Setting e= 1, the resulting 
expansion of the energy value E thus becomes 

E = E o +  ~ E~, 
V = I  

E~,= ~ ... ~ C(], . . . . .  j~)rjlr~2...rjv, (2.38) 
j t=O j~=O 

where C(/1, ...,j~) are some integer coefficients satisfying 

C(jl .... ,j~)=0 if j l + j z + . . . + j , # v - 1  (2.39) 

(an explicit expression for these coefficients exists but is not needed here). 
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Because r(z) is of order V, only a finite number of terms in the expansion (2.38) 
contribute at a fixed order of V and, inserting (2.31), it would now not be difficult to 
write down the exact n'th order expression for the energy. For our purposes, 
Eq. (2.38) will however turn out to be sufficiently explicit and this last step is 
therefore not worked out here. 

In the present approach to perturbation theory, the function r(z) defined by 
Eq. (2.31) plays a central r61e. For the ground state level already discussed at the 
end of the preceding subsection, we have for example 

r ( z ) = + { 1 7 ( 0 , 0 ) +  ~. (-1)nL-3n E . . . Z  
n = l  kl :~O kn4:O 

x V(0, k,)Rz(kl) ~'(kl, k2)R~(k2)... V(k,, 0)}, (2.40) 

where the momenta k i are summed over the lattice (1.2) and 17 and R~ are given by 
(2.16) and (2.17) (omitting ie). Evidently, the Born series (2.15) and the series above 
are very similar, the main difference being that the momentum integrals are here 
replaced by sums. 

To second order, Eq. (2.40) leads to 

E = ~ ~'(0, 0 ) -  I7(0, k) ~ V(k, 0) + . . . .  (2.41) 

Now, at large L the momentum sum on the right-hand side may be replaced by an 
integral plus an error term of order L-* and, recalling (2.18), the formula 

E = 4ZCao --}- O(V2L_4) + O(V3 ) (2.25') 
mL 3 

is obtained. This example shows that for the derivation of the large L expansion of 
E to all orders of V and L-  1, a complete and explicit asymptotic formula is needed 
expressing the momentum sums encountered as a sum of divergent terms (in 
singular cases), integrals and corrections. Such a formula is presented in the 
following subsection and proved in Appendix B. 

2.3. Summation Formulae for 3-Dimensional Momentum Sums 

With the help of Poisson's summation formula (e.g. ref. [5, p. 31]), it is easy to 
prove the well-known result that 

d3k 
L-3 ~k h(k)= (2~5 h(k) + O(L- N) (2.42) 

for any continuous function h, which is integrable and which has integrabte 
derivatives up to the N'th order (N > 1). In this subsection, Eq. (2.42) is generalized 
to a larger class of momentum sums, involving singular functions h, such as they 
occur in the perturbation expansion of the finite volume energy values. Explicitly, 
the sums considered are of the form 

" -  L- 3 y,, f(k) (2.43) 
Sq(f, q ) -  u (k ~ ~pZ)q, 
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27~ 
where p = -~- n, n s Z 3, is a fixed external momentum, q > I some integer power and 

the summation symbol ~ '  implies a sum over the lattice (1.2) excluding the points k 
with k 2 =p2. The function f is assumed to be square integrable and smooth with 
square integrable partial derivatives of arbitrary order. It is easy to show that these 
properties guarantee the absolute convergence of the sum (2.43). 

Due to the singularity, the large L expansion of Sq(f, p) does not only involve an 
integral over all k as in Eq. (2.42), but also other terms, which are proportional to 
the function f (k)  and its derivatives evaluated along the sphere k 2 =pZ. These 
latter terms are multiplied by geometrical numbers, analogous to the Bernoulli 
numbers in Euler's sum formula, which are related to the (generalized) zeta 
function Zi,,(s, n 2) of the momentum lattice defined below. 

To write down the large L expansion of Sq(f, p), some further preparation is 
needed. First, let Yzm(O, q~) be the spherical harmonics with the usual normaliza- 
tion 4 and define Q~,, through 

V Q,.,(k) = 25-+q- k'~.,(0, ~o), 

where 0, (p are the polar angles ofk  and k = Ikl. Q..  is a homogeneous polynomial of 
k of degree I. The expansion of f (k)  into spherical harmonics can then be written as 

l 

f ( k ) =  ~ Z ft,,(k)Qtm(k) 
/ = 0  m=-I 

with coefficients f~m(k), which are smooth for k > 0. In particular, for all l, m and 
arbitrary p =  IPl >0,  the Taylor coefficients f~Zr,(P) defined by 

09 

j__Z0 fJ'-(P) (k2 - p2)j 

are also smooth and could themselves be expanded, for p ~ 0 ,  in an asymptotic 
power series of p2. 

The zeta function Zzm alluded to above is defined by 

Ztm(s, n2)  = ~ :  Qlm(V) ( r2  _ n  2 ) - s  (2.47) 
v~Z 3 

1 2 for all n ~ ;g 3 and complex s with Res>  7(I+ 3). As before, the points v with v = n  2 
are omitted in the sum and for v 2 < n 2, the convention arg(v 2 - n  2) = r~ is adopted. 
Note that Zl,, vanishes if I is odd, because Qzm(-v)= -Qlm(r) in this case. Some 
properties of Ztm are derived in Appendix A, in particular, it is shown there that Ztm 
extends to a meromorphic function of s defined in the whole complex plane with 
simple poles at 

s =  3 _ j ,  j = 0 ,  1 ,2 , . . . ,  (2.48) 

4 In particular, Yto(0, = V-4~-Pt(cos0), where Pl denotes the /'th Legendre polynomial 

normalized such that Pz(1) = 1 
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Table 1. Values of the zeta function Zz,.. The 
method of calculation used is explained in 
Appendix A 

j ZOOO, ~ ZooO, 1) 

1 -- 8.91363292 -- 1.21133568 
2 16.53231596 23.24322188 
3 8.40192397 13.05937675 
4 6.94580793 13.73121437 

for I = 0 and no poles for 1~ 0. Zz,, is therefore well-defined for integer s and it is 
found that 

Ztm (-j, n 2) = 0 for j = 1,2, 3, . . . ,  (2.49) 

Z,,,(0,n2) = -  Z Q,,,(v). (2.50) 
V2 =112 

For positive integers j, Z~,,(j, n 2) m u s t  be calculated numerically, a few values being 
listed in Table 1 for later use. 

With all the definitions ready, we now proceed to discuss the large L expansion 

j=o t=0 m=-t L fjtm(p)Ztm(q-j, n2), (2.51) 

which is proved in Appendix B. For notational convenience, odd l's are included in 
the sum although they do not contribute (Z~,, vanishes). The integral Iq(f, p) is 
given by 

d3k 2 2 
Iq(f, p) = ~im I ~ Re {(k - p - ie) -q} f (k) (2.52) 

for p + 0 and by 

1 dSk 1 
Iq(f, O) - ( 2 q -  2)! ~ (2~z) ~ k 2 (Ak)q- 1 f (k )  (2.53) 

for p = 0, where Ak denotes the Laplacian with respect to k. It can be shown [5] that 
for the class of functions f considered here, I~(f, p) is well-defined and smooth for 
p e ~3, in particular, the Taylor expansion 

holds as expected naively. 
The large L expansion (2.51) is an expansion in powers of 1/L with weakly 

L-dependent coefficients (if p #= 0). It is possible to convert the expansion in a pure 
power series by also expanding the integral Iq(f, p) and the coefficients f~l,,(P) for 
small p. The reason this is not done here is that the convergence properties of this 
power series would be rather poor, especially when n is not small. 
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Formally, the series (2.51) can be derived by inserting the expansions (2.45) and 
(2.46) in the sum Sq(f, p). In each term, a power of 2~/L can then be factored out 
and, taking (2.49) into account, the series (2.51) is obtained [without Iq(f, p)]. This 
"proof '  involves unregularized divergent expressions and is therefore invalid, but 
since it gives the right result, it is useful as a mnemonic. 

2.4. Laroe L Expansion of the Lowest Energy Value 
As discussed in Subsect. 2.2, the ground state energy E of the finite volume system 
is given by Eq. (2.38), where rj are the Taylor coefficients at z = 0 of the function r(z) 
defined by Eq. (2.40). In particular, we have 

r 0 = ~  1~(0,0)+ L-3" Z ... E 
n = l  k£:~O k n ~ O  

m ~ m ~ ) 
× V(0, kl) ~ V(kl, k2) ~22... V(k,, 0)~. (2.55) 

The momentum sums occurring here are multiple sums of the type Sq(f, p) with 
q = I, p =0  and 

f ( k l ,  ..., k,) = V(0, kl) V(kl, kz)... ~(k,, 0). 

It follows from the assumed properties of the potential V that f is square integrable 
and smooth with square integrable derivatives. For such well-behaved functions f, 
it is not difficult to show that the large L expansion of multiple sums is obtained 
simply by applying Eq. (2.51) to each sum individually. Thus, r o can be expanded in 
a power series of 1/L and, recalling the Born series (2.18), the first few terms are 
found to be 

4zm° {1 a° I a°]2~ +O(L-6) (2.56) ro = mL 3 +Z0o(l ,0)~--~+ Z00(l ,0)rcLj  J 

(to all orders of V). Similarly, one shows that 

r, = -- Zoo(2, O) ( a ° )  2 + O(L- 3) 
\ x L /  

and more generally 

(2.57) 

rj = O(L 2j- 4) (2.57') 

forj>=l. 
From the large L expansion of the coefficients r j, we can now easily deduce the 

expansion of the energy value E [cf. Eqs. (2.38), (2.39)]. Noting 

rjfj2...rjv=O(L-V-3) if j l + j z + . . . + j v = v - l > l ,  (2.58) 

it follows that at a given order of L-  1, only a finite number of terms contribute to 
the series (2.38), in particular, we have 

E = r o + r0r 1 + O(L- 6). (2.59) 
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Thus, we have shown that E can be expanded in an asymptotic power series of 1/L. 
Moreover, combining Eqs. (2.56)-(2.59), one obtains 

E =  4~aOmL 3 1+cl a°--~ + cz ~a° +O(L_6), (2.60) 

1 
cl = ~ Zoo(1, 0)= -2.837297, (2.61) 

1 
cz = ~ {Z0o(l, 0) 2 - Zoo(2, 0)} = 6.375183. (2.62) 

In the ground state, the mesons are moving slowly and it is therefore not surprising 
that the result (2.60) coincides with the relativistic formula quoted in Sect. 1 
(relativistic corrections would however show up at order L-6). Using the 
machinery developed above, the series (2.60) could easily be extended by a few 
more terms. Besides the scattering length ao, these terms involve derivatives of the 
scattering amplitude at zero momentum such as, for example, the threshold 
parameter bo. 

At this point, the reader may wonder why it is that the coefficients in the large L 
expansion of E are expressible through the scattering amplitude and apparently do 
not depend on the local properties of the interaction potential, i.e. on "off-shell" 
quantities. The reason for this remarkable fact is that the boundary conditions are 
only felt when the particles are far apart. Now, within a periodicity cell, the meson 
wave function can be represented by a superposition of infinite volume scattering 
waves with energy E. Since the amplitude of these waves at large distances is 
proportional to the scattering amplitude, the requirement of periodicity leads to an 
(implicit) eigenvalue equation for E in which the dynamics of the system is only 
represented through the scattering amplitude at energy E. Except for the case of 
l + 1-d imens ional  quantum mechanics, which will be discussed later, this equation 
is complicated and is therefore not very useful, but it does explain why E is a 
function of the scattering amplitude at large L (cf. ref. [3] and Subsect. 2.7). 

2.5. Volume Dependence of Higher Energy Values 
The analysis which led to the large L expansion (2.60) of the ground state energy 
also applies to the higher lying energy values. For simplicity, the discussion is here 
restricted to states, which have zero total momentum and which are invariant 
under the action of the full cubic rotation group (9 C 0(3). The subspace of all these 
states, later referred to as the A~ sector, is spanned by the vectors 

Ip, A ? ) =  E ]Rp , -Rp) ,  (2.63) 
REO 

2rc 
where p= ~ - n  and n runs over all integer vectors with nl > n 2 ~ n 3 ~ 0 .  The 

normalization of these states is given by 

(p', A~-[p, A? ) = 96~/-(p)L6 Op,p, (2.64) 
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where X(p) denotes the number of elements of •, which leave p fixed. For example, 
if na > 0, nz = n3 = 0, we have Y(p) = 8. 

Because the potential V is rotationally invariant, the Hamiltonian ~I can be 
considered an operator acting in the A + sector. For V= 0, the eigenstates of]H in 
this sector are the basis vectors [p, A +) and the corresponding energy values are 
equal to 2e(p). From the above, it is easy to show that these energy levels are not 
degenerate for nZ< 8 (and also for many higher values of n2). 

2zc 
We now choose a fixed p=  ~ - n  such that the basis vector lp, A + ) is a non- 

degenerate eigenvector of ~I 0 in the A~- sector. The associated eigenvalue E of the 
full Hamiltonian can then be calculated in perturbation theory using the 
formalism developed in Subsect. 2.2. With jp, A +) as the unperturbed state, the 
function r(z) defined there is given by 

r(z) = (ZA/'(p)L 3)- t Z II?(RP, P) + ~ ( -  1)" L- 3, Z' . . .  E '  
R ~ e _  n = l  2 n k~ kn 

x fZ(Rp, kl)R~(kl) 17(kl, k2)R~(k2).., l~(k,, P)I' (2.65) 

where the momenta k are summed over the lattice (1.2) omitting the points with 
k 2 = p 2 .  

As for the ground state, the large L expansion of the energy E is obtained by 
first expanding the Taylor coefficients r~ of r(z) defined by Eq. (2.36). According to 
the summation formula (2.51), the leading contribution to the coefficient ro at large 
L is simply given by replacing the momentum sums by integrals and using an 
ie-prescription to integrate over the singularities at kZ=p2. Thus, we have 

r0 = (ZAr(P)L3) -1 Z J/f(Rp, p) + O(L-4), (2.66) 
Re6 

d3kl d3k. 
( P '  P) = ( P '  P)- t -n= 1 2 n ~ (2g) 3" ' "  (2~z) 3 

{°} {o} 
x (p,kl)Re k~_pZ ie IT(k~,k2)Re k2 p2_ie ... I~(k,, p) (2.67) 

(here and below, we assume tP'l = [Pl)- It is possible to express the matrix element 
JC/(p', p) through the scattering amplitude T,r at energy 2e(p). To this end, one 
substitutes 

Re(k 2 _ p 2  _ i e )  - ~ = ( k  2 - p 2  _ i s )  1 _ ire c5 (k z - p Z )  ( 2 . 6 8 )  

and uses the rearrangement identity (2.29) to sum up those terms in the 
perturbation series (2.67), which combine to the scattering amplitude. After that 
one is left with a series, which can easily be summed by inserting the partial wave 
expansion (2.12), and the result then is 

jC/(p,, p)= _ 8re ~ (2l+ l)Pt(cos0) tg6~, (2.69) 
m ~=o p 

where p = [p[ and 0 is the angle between p and p'. 
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With the matrix .////(p', p) at our disposal, it is not hard to calculate a few more 
terms in the large L expansion of the coefficients rj. For the energy E, this leads to 
the expansion 

E = 2e(p) + r o + ror ~ + O(L- 6), (2.70) 

where ro and rl are given by 

4n ~ (2l+ 1) (P~) tg6~ 
r°= mL 3 l=o p 

[ ' 7rpL + Z°°(l 'n2)rcpLJ J +O(L-6) '  (2.71) 

2 

r x = -  ~ (21+l) (P, )Zoo(2 ,n  2) +O(L-3) .  (2.72) 
/=0 

The quantities (Pt)  appearing in these equations are defined through 

1 
Z Pt(cOSOR), (2.73) (Pz) = W(p) a~e 

O R being the angle between p and Rp. In particular, (Po)  = 48/;V~(P) and (P2)  = 0 
for all p. 

Equation (2.70) together with (2.71), (2.72) is the final result for general p. It 
shows that away from resonances (where tg6~ blows up), the corrections to the free 
particle energy spectrum are small and calculable for large L, provided the phase 
shifts are known at the energy 2e(p)~-E considered. Conversely, if some finite 
volume energy values have been computed by independent means (by a numerical 
simulation, for example), the relation allows us to determine the phase shifts at 
these energies or at least some combinations of them. 

For small p, the partial wave expansions (2.71) and (2.72) are dominated by the 
S-wave contribution so that the large L expansion of the associated energy values 
assumes a simple form. For example, for n =(1, 0, 0), one obtains 

4722 12tg60 {l+c'atg6o+C'ztgZbo}+O(L-6), (2.74) 
E = mL 2 mL 2 

, 1 
cl = 2 ~  Z°°(l '  1)= -0.061367, (2.75) 

1 
c~ = ~ {Zoo(l, 1) 2 - 6Zoo(2, 1)} = - 0.354156 (2.76) 

(the phase shift rio is to be evaluated at p = 2re~L). 

2.6. Numerical Study of a Simple Model 

The purpose of the present subsection is to test the large L expansions (2.60) and 
(2.74) in a concrete case. An important result will be that these formulae are 
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apparently also valid in the presence of bound states, although they have only been 
proved in perturbation theory. 

The model considered is defined by 

V(z) = {Vo if [z ,<R,  (2.77) 
otherwise, 

where Vo is a constant. For this potential, the scattering phase shifts are known 
exactly, in particular, 6o is determined through 

tg(pR + rio) = p tg(qR), qZ =pZ _ mVo (2.78) 

(p: meson momentum in the centre of mass system). The S-wave scattering length 
is thus given by 

ao=R(~tgv-1 ) (v~O), ao=R(l tghv- l )  (v>=O), (2.79) 

where we have introduced the dimensionless parameter 

v = sign (Vo) R m ~ 0  ] . (2.80) 

In what follows, m and R are assumed to be fixed whereas the parameter v is 
considered a variable characterizing the strength of the meson interaction. 

If v is negative, the potential is attractive and bound states may occur. From 
Eq. (2.79), one sees that the scattering length diverges every time v passes through a 
negative odd multiple of ~/2. The number of S-wave bound states is therefore equal 
to n if v is in the interval - n -  1 < v/~ < - n + ½. This observation also shows that 
the meson interactions should be considered strong unless (say)[v[ < 1. 

In finite volume, the scaled energy values 

mE z 
E = ~ -  E (2.81) 

only depend on v and L/R. For small and moderate values of v, an accurate 
variational calculation of the low-lying levels in the A + sector is possible by 
truncating the basis (2.63) after the first NB elements and diagonalizing the 
Hamiltonian I-I numerically in the subspace spanned by these vectors. I have 
performed such a calculation with NB= 100, which is sufficient to obtain results 
accurate to several decimal places. 

In Fig. 2 the 3 lowest energy values are plotted versus v at L/R = 8, i.e. for a box 
size which is reasonably large compared to the interaction radius. For  v > 0, the 
force between the mesons is repulsive and the energy values/~ are therefore slightly 
larger than the free particle values/~o, which are equal to 0, 1 and 2 respectively. 
The smallness of the deviations A/~ = /~- /~o  indicates that at this value of the box 
size, the asymptotic scaling law Aff~oc 1/L has already set in. For small negative v, 
the situation is similar, although, of course, the energy values are now lowered by 
the interaction. As v passes through - ½re, the ground state turns into a bound state 
and the first two excited levels drop by essentially one unit. These latter states thus 
become the lowest finite volume scattering states in the interval - ~rc < v < - ½re. 
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I I I 

2 -  

-3T~/2 -~  -Ttl2 

f f  
J 

I 

0 ~12 

Fig. 2. Numerically calculated energy values/~ as a function of the parameter v for a fixed box size 
L= 8R. Only the 3 lowest levels are shown 

When v is further decreased, a second bound state forms at v = - ~ n  and the 
picture repeats itself. 

In a larger volume, the curves in Fig. 2 change in two respects. First, the 
plateaus away from the transition points get even more pronounced and move 
closer to the integer values /~=0, 1,2. Secondly, the transition regions near 
v = - ½r~, - ~r~ . . . .  shrink, i.e. for very large L/R, the curves essentially become step 
functions. 

The plateaus in Fig. 2 can be understood by noting that ao/L and tg6o/pL (for 
small p) are small unless v is close to the transition points. The large L expansions 
established in the preceding subsections therefore apply and the calculated energy 
shifts A/~ come out to be small thus explaining the plateaus. On the other hand, in 
the transition regions the energy shifts are of order 1 and the large L expansions 
diverge. Further analysis would therefore be required, if a quantitative under- 
standing of the energy levels in such a resonant situation is to be achieved, too. 

In places where they apply, the large L expansions (2.60) and (2.74) fit the 
numerically calculated energy values exceedingly well. This is shown in Fig. 3 for 
v = re, i.e. for a strongly repulsive potential. For  smaller values of v, the agreement is 
even better and extends to lower values of L/R. In the presence of bound states, the 
expansions are apparently also valid, if one applies them to the lowest finite 
volume scattering states as explained above. For example, at v = - re, where there 
is one bound state, the quality of the fit obtained is about the same as at v = re. This 
confirms the expectation that the large L expansions established in this paper are 
universally valid, even though they have only been proved to all orders of 
perturbation theory. 

2.7. One-Dimensional Quantum Mechanics 

In a one-dimensional box of size L, the probability for the particles to meet is 
proportional to 1/L and the finite size energy shifts are therefore not small 
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0.2 • b ~  

0.1 a ~ _  

,I I i I i I i [,,,,,,,L, 
2 /~ 6 8 10 12 

LIR 
Fig. 3, Comparison of  the large L expansions (2.60) (curve a) and (2.74) (curve b) with numerically 
calculated energy values (dots) for v =~ .  The energy shift d/~ is equal to /~ - /~o ,  where/~o = 0  for 
the ground state and 8 o = 1 for the first excited state 

compared to the free particle level splitting. For this kinematical reason, the 
perturbative techniques developed in the preceding subsections do not apply in 
one dimension. The situation is however so simple that an exact relation between 
finite volume energy values and the scattering amplitude can be established with 
little effort. 

The basic observation is that for zero total momentum and fixed energy E, the 
Schr6dinger equation in infinite volume has only one solution ~v~ (respecting Bose 
statistics). Outside the interaction range R, this solution is given by 

~pe(x, y) oc e- iplx - Yl + e2i~o eiPlx - yl, (2.82) 

where p = ~mE is the meson momentum and 6o(p) the scattering phase shift. Since 
~vg is unique, any finite volume eigenfunction of the Hamiltonian with energy E 
and zero total momentum must be proportional to ~v E for i x -  y[ < ½L. For large L, 
the wave function near the boundary of this region is thus given by Eq. (2.82) and 
the requirement of periodicity hence leads to the beautiful formula 

e 2i~°(p) e ipL = 1, (2.83) 

which relates the finite volume energy value E = p Z / r a  t o  the scattering phase shift 
8 o at this energy. 

Although no proof will be given in this paper, Eq. (2.83) is probably also true in 
1 + 1-dimensional quantum field theories up to polarization terms, which decrease 
exponentially as Lincreases. A numerical lattice calculation of the scattering phase 
shift at low energies should therefore be possible in these theories simply by 
evaluating the lowest two-particle energies for a few lattices with variable size (and 
fixed couplings). In particular, it would be interesting to see whether the known 
exact S-matrices of some "integrable" theories such as the non-linear a-model can 
be reproduced in this way. 
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3. Volume Dependence of Two-Particle Energies in Quantum Field Theory 

In quantum field theories, large L expansions of the two-particle energy values 
exist as in quantum mechanics, but their proof is slightly more complicated 
because of polarization effects. To keep the presentation as simple as possible, we 
here again restrict the discussion to the class of scalar quantum field theories 
defined at the beginning of Sect. 2 of ref. [1]. The reader is thus assumed to have 
read these introductory paragraphs and the notation used there is completely 
taken over without further reference. 

For the derivation of the large L expansions, we shall make two further 
assumptions to avoid unnecessary technical complications, which would only 
obscure the essential parts of the argumentation. The first one is that the theory is 
invariant under the reflection ~b(x)-. -~b(x) so that correlation functions of an odd 
number of fields vanish. The second requirement is that the theory has a fixed 
ultra-violet cutoff, which is relativisticatly invariant and which guarantees the 
convergence of unsubtracted Feynman diagrams. These assumptions are not 
really necessary and, with some effort, the large L expansions could also be proved 
without them. 

In what follows, the strategy is to derive a representation of the elastic 
scattering amplitude and of the perturbation series for finite volume energy values, 
which has the quantum mechanical form with a modified Bethe-Salpeter kernel in 
place of the potential l~(k', k). The techniques developed in Sect. 2 can then be 
carried over and the large L expansions are obtained as before. 

3.1. Definition and Properties of the Bethe-Salpeter Kernel 

The dynamics oftwo-partMe states in the scalar quantum field theories considered 
here is governed by the Bethe-Salpeter (or two-particle irreducible) kernel, which 
will be denoted by BS(pl, P2, P3, P4) in infinite volume (Pl .....  P4 are external 
euclidean 4-momenta). In perturbation theory, BS(pl, P2, Pa, P4) is equal to the 
sum of all those Feynman diagrams contributing to G(Pl, P2, P3, P4), which are 
two-particle irreducible in the (Pl, P2) -channel, i.e. diagrams with a skeleton as in 
Fig. 4 are excluded. 

The full connected 4-point function G(p~, P2, P3, P4) can be expressed through 
the Bethe-Salpeter kernel by iterating the integral equation graphically rep- 
resented by Fig. 5. To write down the resulting geometric series in a compact 
form, we introduce the following notation. First, define P, p', and p such that 

1 p~=-~P +p , P2=½P-p ", (3.1) 

p3 = -(½P+p), p4= - (½P-p) .  (3.2) 

PJ2 I  
Fig. 4. Skeleton of a Feynman diagram, which is two-particle reducible in the (Pl, P2) -channel 
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Fig. 5. Integral equation relating the Bethe-Salpeter kernel to the full connected 4-point function 

Because of momentum conservation, the total momentum P flowing through the 
Bethe-Salpeter kernels and the two-particle propagators is always the same so that 
in what follows, the dependence on P is not explicitly indicated. Accordingly, we 
set 

K(p', p) = BS(pl, P2, P3, P4), (3.3) 

GZ(k) = O(½P + k) G(½P- k), (3.4) 

and the series alluded to above then reads 

G(Pl, P2, P3, P4) = K(p', p) 
~_~ 1 dgkl dgkn 

,= 1 2 ~ ~ (2~z) 4"'" (2~) 4 K(p', kl)G2(k~)K(kl, k2)G2(k2)...K(k,, p). (3.5) + 

This equation resembles the Born series (2.15) for the non-relativistic scattering 
amplitude, but there are some important differences, in particular, the relative 
energies k ° of the intermediate two-particle states are not restricted to the mass 
shell. 

As a function of the total energy Po, the 4-point function G(p~,..., 1)4) has a cut 
in the complex plane, which stems from the real two-particle intermediate states in 
Eq. (3.5). To exhibit this singular structure more clearly, we shall later deform the 
k ° integration contours to pick up the contributions of the meson poles in the two- 
particle propagators. That there are no other singularities below the 4-particle 
threshold is guaranteed by 

Theorem 3.1. To all orders of perturbation theory and for arbitrary real P, p', and p, 
the Bethe-Salpeter kernel K (p', p) extends to an analytic function of P o, P'o, and Po in 
the domain 

iImPol <4m,  tImp~l < m ,  IImpol < m. (3.6) 

Proof 5. Let ~ be a Feynman diagram contributing to BS(p~, p> P3, P4) and let ~ be 
the associated abstract graph (cf. Subsect. 2.3 of ref. [1 ]). f# has 4 external vertices, 
denoted a 1, a2, a3, and a4, where the external momenta Pi leave the diagram. It is 
possible that some of these vertices coincide. 

As in the proof of Theorem 2.3 of ref. [1], we now proceed to construct 
optimally distributed flows of external momentum through (#. To this end, add 2 
extra vertices u, v and 8 extra lines to f# as shown in Fig. 6. This augmented graph is 

5 The analyticity properties of the Bethe-Salpeter kernel are of course well-known from axiomatic 
quantum field theory (e.g. ref. [12]). AproofofTheorem 3.1 is given here for completeness and as a 
preparation for the proof of Theorem 3.2 
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al a 3 

a 2 a~ 

Fig. 6. Arrangement of extra vertices and lines added to the graph N. The paths ~1 .. . . .  ~4 start at u 
and pass through a3 or a4 via the extra lines connecting these vertices with u. After traversing (#, 
they arrive at a 1 or a2 and end at v 

3-particle irreducible between u and v, and, in view of Theorem 2.2 of ref. [1], there 
are therefore 4 disjoint paths N1 ..... N4 connecting u and v. The orientation of 
these paths is fixed by declaring u to be the initial and v the final point. For every 
line I in N, define 

[ ~ i . / ] = { + _ I  0 if I s ~ ,  
otherwise, 

where the sign is + 1, if the orientations of I and Ni coincide, and - 1, if they are 
opposite. With the help of these orientation numbers, an integer valued flow f l  (/) 
can be defined through 

4 

f l ( / )  - E [ ~ i  : I ] .  
i = l  

By construction, f l  is conserved at every internal vertex and the outflowing units at 
al, a2, a3, and a4 are 3, 1, - 3, and - 1 respectively. Furthermore, because the paths 
~i are disjoint, we have I/a(/)l < 1 for all lines I in f#. 

By permuting al with az and a 3 with a4 in Fig. 6, further integer flows f2, fa, 
and f4 can be constructed analogously. Consider now the momentum flow 

4 
k(/)= Z f~(l)qr, 

i = l  

where q~,..., q4 are arbitrary constant 4-momenta. At every internal vertex, this 
flow is conserved, and at the vertices al . . . . .  a 4 the outflowing momenta px . . . . .  P4 
are given by Eqs. (3.1), (3.2) with 

¼P=ql +q2 +q3 +q4, 

P'=ql +qa-q3 -q4,  (3.7) 
P= - q l  +qz-q3 -t-q4. 

Moreover, we have 
4 

IImk(/)l= E [Imq/I for all I, 
i=1 

so that the singularities of the Feynman integrand of the diagram are avoided if the 
bound 4 

Z [Imqi[ < m  (3.8) 
i=1 

is satisfied. 
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For given P, p', and p, the momenta ql are not uniquely determined by the 
linear system (3.7). We may thus impose a further constraint, for example qa = 0. 
The solution of (3.7) then reads 

1 1 __1 t , q2 = ~P + ½P', q3 = ~ P -  xP, q4 - 5 P -  ~P , (3.9) 

and the flow k(/) is thus completely determined by the external momenta. The 
relations (3.9) and the bound (3.8) define an open complex domain E)~ in the space 
of complex momenta P, p', and p. This domain contains the real momentum 
configurations and is convex. Moreover, by the above, E) a is a domain of 
analyticity of the Feynman integral associated to the diagram 9 .  

Instead of choosing ql =0, we may just as well set qi =0  for some i = 2, 3, 4 and 
one then obtains a domain ID~ of analyticity for each choice. Now we note that ]Di 
~ D j  is a convex domain containing the real momentum configurations and the 
analytic continuations of the Feynman integral associated to ~ in the domains ]D~ 
and D i therefore coincide on the overlap E)ic~lDj. It follows that the Feynman 
integral extends to a single valued analytic function in the total domain 

4 

DBs= U Di, 
i = 1  

which contains all momenta satisfying the bound 

I¼ImP+s'Imp'l + l¼ ImP + s Impl + Is'Imp'+sImpl <2m 

for some choice of signs s', s = _+ 1. With this explicit characterization, it is now not 
difficult to verify that IDBs includes the domain (3.6). [] 

In finite volume, the Bethe-Salpeter kernel KL(p', p) is defined in exactly the 
same way as in infinite volume, i.e. every Feynman diagram contributing to 
K(p', p) also contributes to KL(p', p) with all integrals over the space components 
of the loop momenta being replaced by sums over the lattice (1.2). It is obvious that 
Theorem 3.1 also applies in finite volume, and at large L the behaviour of KL(p', p) 
is described by 

Theorem 3.2. Suppose P o, P'o, and Po are complex and satisfy the bounds (3.6). Then, 
to all orders of perturbation theory and for arbitrary (real) P, p', and p, we have 

K ' K ' L(p,p)L~ ® (p ,p)+O(L -u) (3.10) 
for all N >_ 1. 

Proof. Let @ be a Feynman diagram contributing to the Bethe-Salpeter kernel and 
let k(/) be the flow of external momentum constructed in the proof of Theorem 3.1. 
With this choice of momentum flow, the Feynman integrand associated to ~ is a 
C ~ function of the loop momenta and the regular summation theorem (2.42) hence 
implies (3.10). [] 

Actually, using the techniques of ref. [1], it is possible to show that the 
difference KL--K decays exponentially for large L, but for the present purposes, 
the weaker statement (3.10) is quite sufficient. In what follows, terms which vanish 
more rapidly than any power of 1/L are neglected, in particular, KL is set equal to K 
without further notice. 
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3.2. Singularities of the Two-Particle Propagator 

The elastic meson scattering amplitude is obtained from the euclidean 4-point 
function G(pl, P2, P3, P4) by analytic continuation to purely imaginary energy 
components pO (cf. Subsect. 2.1 of ref. [1]). In view of Theorem 3.1, this analytic 
continuation presents no problem for the first term in the expansion (3.5) of the 
4-point function, but the higher terms involve the two-particle propagator G2(k), 
which gives rise to singularities in the elastic region 2m__< Im Po < 4m. We are thus 
led to study the analyticity properties of integrals of the form 

= I @ f (ko) G2 (k), (3.11) J 

where f(ko) is a testfunction analytic in the strip [Imkol < m and k is real. 

Lemma 3.3. In the centre of mass system (P--0), the integral J extends to an 
analytic function of P o in the region 0 < ImP o < 4m with a simple pole at Po = i2co(k) 
(/f co(k)< 2m)6. The residue of the pole is given by 

f(0) (2co(k)+iPo)_ 1 +O(1). (3.12) 
J =  (2co(k))2 

Pro@ It is a well-known consequence of the Kall6n-Lehmann representation that 
the single particle propagator G(q) can be written as 

G(q) = (m z + q2)- 1 + d(q), 

where G(q) is analytic for q2 > _ (3m)2. It follows from this representation that in 
the centre of mass system and for 0____ ImPo< 4m, the only singularities of G2(k) in 
the strip IImko[ <m are simple poles at 

ko = +-- (½Po -/co(k)). (3.13) 

If co(k)__> 2m, these poles keep away from the real line and the integral J is therefore 
analytic in the whole strip 0 <ImPo < 4m. On the other hand, if co(k) < 2m, the 
poles approach the real axis from above and below as Im Po grows towards 2co(k) 
and the integral develops a singularity. 

To work out the singularity, we first note that (3.11) is a valid representation of 
J in the region 0__< ImP o < co(k). Next, for ImP o = co(k), we shift the k o integration 
contour to the line Imko = m', where m' is some mass in the interval leo(k) < m' < m. 
Along the way one picks up a contribution from the pole at k o = -½Po + ico(k), 
and the integral J thus becomes 

f(/~o) G(½P-fO+ S d~k-~° f(ko)G2(k) (3.14) 
J = 2-g )  mko= , ' 

where/~ is given by 

/~-- (/co(k)- ½Po, k). (3.15) 

As long as co(k)~ ImP o < 2(m + mr), the poles (3.13) do not cross the integration 
path Ira ko = m' and the representation (3.14) hence defines an analytic function in 

6 Recall oJ(k) = ]/~2 +k ~ 
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this domain with a simple pole at Po = i2o9(k) coming from the first term. Since m' 
can be arbitrarily close to m, we have thus shown that J is analytic in the total 
domain 0 < ImP  o < 4m with a pole as described by Eq. (3.12). D 

If we consider G2(k) a distribution on the space of test functions f (ko)  which 
are analytic for [Imko[ < m, the statement of the lemma may be summarized by 

G2(k) = [(2¢o(k)) 2 (2o~(k) + iPo) 3 -12rc6(ko) + G2(k), (3.16) 

where G~2(k) is a distribution analytic in the domain 0=<IMP o < 4m. An explicit 
representation of G2(k) could easily be extracted from the proof of Lemma 3.3 but 
is not needed in what follows. We only note that G~2(k) is also a smooth function of 
k ~ R  3. 

In finite volume, Lemma 3.3 holds literally, if we neglect corrections vanishing 
exponentially at large L. This follows from the observation, already made in ref. 
[1], that the meson self-energy ~L(q) differs from the infinite volume self-energy 
Z(q) by exponentially small terms only, provided q is real and [Imqol < 3m 7. For 
the derivation of the large L expansion of the low-lying two-particle energies, the 
finite volume two-particle propagator G2L(k) may therefore be replaced by G2(k) 
and Eq. (3.16) may be applied as long as 0 <  I m P  o < 4m. 

3.3. Two-Particle Singularities of the 4-Point Function 

We now use the results established in the preceding subsections to rearrange the 
series (3.5) in such a way that the two-particle singularities are clearly exhibited. In 
the end, we shall only be interested in states with zero total momentum and total 
energy below the 4-particle threshold. For the rest of this section, we therefore set 

P=( iW,0 ,  0, 0), (3.17) 

and assume 0 < Re W <  4m. 
According to Eq. (3.16), the two-particle propagator can be split into a singular 

and a regular piece as follows: 

G2(k) = [(2o9(k))2 (2o9(k) - W)] -  12rcb(ko)h(k) + R2(k). (3.18) 

Here, h(k)> 0 denotes a smooth rotationally symmetric cutoff function satisfying 

f10 if co(k)<2rn, 
h(k) = ~_ if ~o(k) > 3m. (3.19) 

This auxiliary function is introduced for technical reasons to avoid a superficial 
ultra-violet divergence in Eqs. (3.20), (3.21) below. 

If we now insert the decomposition (3.18) into Eq.(3.5) and apply the 
rearrangement identity (2.29), the geometric series 

G(Pl, P2, P3, P4) 

1 d3k ~ , h(k) / ( (k ,p )+ . . .  (3.20) 
= / ( (P"  P) + 2 ko~O ~ K(p ,  k) (2co(k))2 (2co(k) - W) 

7 Strictly speaking, the proofofref. [1 ] only applies for IImqo[N m, but by distributing the external 
momentum flowing through the diagram considered to 3 disjoint paths instead of only one, the 
argument can easily be extended 
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is obtained, where the new kerne l / (  is given by 

/£ ' K ' ~ 2gJ (~)~)4 "'" (27Z)4 
(p ,p )= (p ,p)+ ,= 1 . d4kl d4k, 

1 

x K(p', k l )R2(k l )K(k l ,  k2)R2(kz).. .K(k,,  p). (3.21) 

The point of this reformulation is t h a t / (  is an analytic function of W with no 
singularities in the strip 0__< Re W < 4m. The two-particle cut of the 4-point function 
is therefore entirely due to the explicit energy denominators in Eq. (3.20). 
Moreover, the relative energies k ° of the intermediate two-particle states have 
disappeared and the series (3.20) has a form, which is very similar to the non- 
relativistic Born series (2.15). 

This similarity becomes even more pronounced, if we consider the scattering 
amplitude T(p', - p'lp, - p), which is obtained from the 4-point function by setting 

W = 2co(p) + i~, (3.22) 

and p; = Po = 0 (cf. Subsect. 2.1 of ref. [1 ]). Equation (3.20) then assumes the form 

T = 0 ' (--21.)~ d3kl d3kn 
2roW e(P'  p) q- n=l ~' ~ (2~z) 3"'" (2rc) 3 

x 0E(p', k0R~(k0  t.?~(k~, k2)RE(k2)... 0~(k,,, p), (3.23) 

where Re(k) is the non-relativistic resolvent (2.17) and E is defined through 

p2 
E = - -  = (W 2 - 4m z)/4m. (3.24) 

m 

In contrast to the non-relativistic case, the "potential" UE(k', k) appearing in 
Eq. (3.23) is energy dependent. It is related to the ke rne l / (  by 

0E(k', k) = - ¢(k)Q(k)g (k', k) lk~=ko=O, 
(3.25) 

¢(k) = 42(k) ]/h(k) (2o9(k) + W)/m.  

From the properties o f / £  established above, we thus infer that 0e(k',  k) is an 
analytic function of E and a C ~ function of k' and k with compact support. 

We finally note that if one neglects terms vanishing more rapidly than any 
power of L-  a, Eq. (3.20) is also valid in finite volume provided the integrals over 
the relative momenta k of the intermediate two-particle states are replaced by sums 
over the lattice (1.2). All other entries in Eq. (3.20), in particular the kernel/( ,  are 
the same as in infinite volume. 

3.4. Perturbation Expansion of  Two-Particle Energies in Finite Volume 

The two-particle energy values in finite volume can be extracted from the 
exponential decay of correlation functions of even composite fields. A convenient 
choice of such operators, suitable for the calculation of energy values in the A~- 
sector, is 

Op(xo)= Z L-3 ~ d3xd3ye-ip(x-r)¢(xo, Rx)~(xo, RY), (3.26) 
R~O 
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where the notation concerning R, (9 and p is as in Subsect. 2.5. Note that in the 
presence of interactions, the relative momentum of the mesons is not conserved 
and Op therefore couples to all two-particle states in the A~ sector. 

Now let Cp(xo) be the (euclidean) two-point correlation function of Op in fi- 
nite volume and consider the Fourier transform 

Cp(Po) = ~ dxo e -,Poxo Cp(xo)" (3.27) 

In the complex Po-plane, Cp(P0) is expected to have a series of poles on the 
imaginary axis, which correspond to the energy values we are looking for. 

To locate these poles in perturbation theory, we first note that in terms of the 
finite volume 4-point function, we have 

Cp(Po) = 96~#(p) ~ d2~ G2L(p) 

~a-~I48 dp'o dpo G2L(p, ) GL(Pl, p> P3, P4) G2L(P) (3.28) 
+L~ Ygo - 2= 2re 

where p '=  (p{), Rp) and p,, . . . ,  P4 are given by Eqs. (3.1), (3.2). As already mentioned 
earlier, G2L can be replaced by G2 and the 4-point function can be represented by 
the geometric series 

GL(Pl, P2, P3, P4-) 
g , 1 {K(p', k) h(k) 

= (p,p)+ 5 U 2  + (2co(k)) / (Zoo(k) + iPo) P)Jko = o ""'  (3.29) 

if one neglects contributions vanishing more rapidly than any power of L-  ~. It 
follows from this relation and Eq. (3.16) that at any finite order of perturbation 
theory, Cp(P0) has (multiple) poles at P0 = i2a)(k) where k runs through the lattice 
(1.2). The situation is in fact exactly the same as in the non-relativistic perturbation 
theory discussed in Subsect. 2.2 with Cp(P0) playing the r61e of the function F(z). 
The steps needed to extract the true pole positions to all orders of perturbation 
theory can thus be copied from Subsect. 2.2, in particular, for each state in the A~ 
sector, which is non-degenerate in the absence of interactions, the energy value 
Po = iW is determined by an implicit equation of the type (2.32). Explicitly, for the 
state with W= 2co(p) in lowest order, one finds 

where E is the solution of 

W = 2 I / ~  +mE,  (3.30) 

E=2e(9)+r(E) ,  (3.31) 

r(z) = (2JV'(p)L3)- 1 R~O ~ { U~(Rp, p)+ .~= 1 ~ L-3n ~''k~ "'" ~'k~ 

x [?~(Rp, kl)R~(kl) ~ ( k l ,  k2) R~(k2)... U~(k,, P)t (3.32) 

(the notation is as in Subsect. 2.5). 
The similarity of the result (3.31), (3.32) with the corresponding non-relativistic 

formulae (2.32) and (2.65) is striking, the only difference being that the potential 
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here is energy dependent and that the parameter E is not the total energy [which is 
given by Eq. (3.30)]. To solve the implicit Eq. (3.31), one proceeds in exactly the 
same way as in Subsect. 2.2 so that these steps need not be repeated here. We have 
thus obtained the complete perturbation expansion of the non-degenerate levels in 
the A~- sector and it is clear that the method would work just as well in other 
symmetry sectors. 

3.5. Large L Expansion 

The partial wave expansion of the relativistic scattering amplitude T in the centre 
of mass system reads 

T= 16nW ~ (2/+ 1)Pt(cosO)h, (3.33) 
/ = 0  

where t~ is again given by Eq.(2.13) and W=2o)(p) is the total energy. The 
combination 

T 
7"- (3.34) 

2roW 

thus has a partial wave expansion which coincides with the expansion (2.12) of the 
non-relativistic amplitude Tnr. Moreover, the perturbation expansion (3.23) of i" 
has exactly the same form as the Born series (2.15) with l~ replaced by Ue. Finally, if 
one takes into account that the energy values in finite volume are determined by 
Eqs. (3.30)-(3.32), one realizes that a complete matching between the relativistic 
and non-relativistic formulae has been achieved. In particular, the whole large L 
analysis presented in Sect. 2 carries over literally and the following remarkably 
simple result is obtained. 

Theorem 3.4. Suppose W is a non-degenerate energy value in the A + sector. Then, 
up to terms of order L -6, the large L expansion of W is obtained by setting 
W = 2 ]/~m z + mE and substituting the corresponding non-relativistic large L expan- 
sion for E. 

In particular, noting 

W= 2m + E  + O(EZ), (3.35) 

and recalling Eq. (2.60), one obtains the large L expansion (1.3) of the relativistic 
ground state energy announced in Sect. 1. Similarly, the expansion of the next to 
lowest lying energy value derives from Eq. (2.74) and for the higher levels one refers 
to Eqs. (2.70)-(2.72). Up to the order of L-  1 stated, the proof of Theorem 3.4 is 
trivial, because it makes no difference whether or not the potential which 
determines the function r(z) is energy dependent. At higher orders, the situation is 
however more complicated and it is not immediately clear that the theorem still 
holds, although this is indicated by an explicit calculation of the order L -6 
contribution to the ground state energy. 

3.6. Application to the rczc- and teN-System 

As an illustration we here consider the case of two pions or a pion and a nucleon 
enclosed in a box of size L. Isospin breaking effects are neglected and the masses m~ 
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and mN of the pion and the nucleon are assumed to have their physical values (i. e. 
m,~=139MeV, mn=938 MeV). In ref. [-2], the finite size mass shifts of these 
particles due to polarization effects were estimated to be less than 1% and 
exponentially decreasing for L_-__ 3 fermi. For the large L expansions of the two- 
particle states to apply, the box size should therefore be at least this big. 

Two-pion states have isospin I = 0, 1, or 2. For even isospin, the lowest state is 
the ground state in the A[ sector and the large L expansion of the corresponding 
energy values W thus reads 

W = 2 ]//'m~ + rn~E, (3.36) 

E =  4naX° {1 +c I do (aIo)2~ 
m~L 3 -L- +c2 L 2 J +O(L-6) '  (3.37) 

where a~ denotes the S-wave scattering length in the channel with isospin I and the 
coefficients cl, c2 are given by Eqs. (2.61), (2.62). On the other hand, for I = 1 the 
lowest state transforms as a vector under the cubic rotation group (9 with the pions 
carrying one quantum of relative momentum (because of Bose statistics, two pions 
in an I = 1 state cannot be both at rest). The energy W of this state is again given by 
Eq. (3.36) with 

4~z z 12tg6~ { l+c ,  tg6~+c,2tgZ6~}+O(L_6) ' (3.38) 
E = rn~L 2 m~L2 

where 61 denotes the scattering phase shift in the I ( J e )= l (1 - )  channel at 
momentum p = 2nL and the coefficients c], c~ are the same as in Eq. (2.74). 

The values of the scattering lengths a~ suggested by experiment [7] and chiral 
perturbation theory [8] are 

a°=0.3 fermi, a2= -0 .06  fermi, (3.39) 

and for the phase shift 61, the phenomenological formula 

(V3~1/2  1 
tgS~ =0.04 \ l ~ v ]  I -v/vQ' v=p2/m2' %= 6.56, (3.40) 

appears to provide a good fit of the experimental data (cf. ref. [7, p. 960). With 
these values as input, the volume dependence of the ground state energies for I = 0, 
1, and 2 is as shown in Fig. 7. The dynamical finite size effects on the nn-system are 
thus rather small which is no surprise in view of the small scattering lengths (3.39). 

The weakness of the pion interactions at low energies is usually attributed to 
the Goldstone nature of these particles and a calculation of two-particle energies in 
lattice QCD could therefore provide a check on this aspect of the theory. To 
actually reproduce the curves of Fig. 7 would require a calculation of energy values 
on large lattices with an accuracy of about 1%, which is probably impossible to 
achieve in the near future. However, one does not know a priori whether the lattice 
pions interact weakly indeed, and to obtain at least an upper bound on the 
scattering lengths, a less precise computation may therefore be worthwhile. 
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Fig. 7. Plot of the lowest nn-energy values for isospin I = 0, 1, and 2 according to Eqs. (3.36)-(3.40). 
The energy shift AE is defined by AE=E-2e(p), where p=21r/L for I=1 and p=0 otherwise 

The large L expansions (3.37) and (3.38) have only been proved for asymptoti- 
cally large L and they do therefore not obviously apply in volumes where there are 
but a few two-pion levels below the 4-pion threshold (cf. Fig. 1). However, it is quite 
clear that for L >  3 fermi the physics of slow pions in the box should not be greatly 
influenced by virtual many-particle states. Moreover, from experience with the 
simple quantum mechanical system studied in Subsect. 2.6, one concludes that the 
large L expansions are apparently valid, if the dynamical finite size energy shift A E 
is small compared to the free particle level splitting and if the higher order terms in 
the expansion are small corrections to the leading term. Both of these criteria are 
satisfied for all curves in Fig. 7 over the whole range of L displayed and one may 
therefore be confident that they are close to the true curves [if Eqs. (3.39) and (3.40) 
are approximately correct]. 

The lowest lying pion-nucleon states in the isospin I = ½, 3 sectors have positive 
parity and transform according to the fundamental ("spin 1/2") representation of 
the spin covering of the cubic group. Their energies W are given by 

W = / m  2 + 2#E + / ~  + 2#E, (3.41) 

E =  2~za{~+ { l + c  I a~+ c (a~+)2~ #L 3 _ ~ - -  + 2 ~ j  +O(L-6) ,  (3.42) 

where # is the reduced mass of the system and a*o + denotes the scattering length in 
the channel with isospin I, orbital angular momentum 0 and positive parity. The 
experimental values are [9] 

al /2-0.24 fermi, ,~3/z_ -0 .15  fermi, (3.43) 
O +  - -  ~ 0 +  - -  

so that a plot of E versus L would look similar to Fig. 7. 
We finally note that in all eases considered so far, the low-lying energy values 

are well separated from resonances or bound states in the same channel. For 
nucleon-nucleon states, the situation would be rather different, because of the 
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existence of the deuteron which goes along with large scattering lengths [10]. 
Thus, in this case one is dealing with a resonance situation and finite size effects are 
expected to be large as was observed in the simple model of Subsect. 2.6. 

4. Concluding Remarks 

The relations established in this paper show that the volume dependence of the 
two-particle energy values is determined by the elastic scattering amplitude at 
these energies. An independent calculation of such energy values (by numerical 
simulation, for example) may therefore be expected to provide interesting 
qualitative information on the structure and strength of the particle interactions in 
the quantum field theory considered. If a very accurate calculation is feasible, one 
may even be able to extract the scattering phase shifts in this way. Note that one 
directly gets the physical scattering amplitude, in particular, no analytic continu- 
ation is required. 

A study of finite size effects in a simple model such as the lattice ~b4-theory 
would of course be very useful at this stage. In doing so, the following points should 
be taken into account. 

(a) If the basic correlation length is not much bigger than the lattice spacing 
"a", the large L expansions assume a form, which is slightly different from the one 
obtained here, because the lattice theory in infinite volume is not Lorentz 
invariant. In particular, one must distinguish between the rest and inertial masses 
of the particles. It is however not difficult to deduce the lattice large L expansions 
by adapting the arguments of Sect. 3 (see also ref. [-11]). 

(b) As long as the parameters in the Lagrangian are kept fixed and only the 
lattice size is varied, one need not worry about the effects of the finite ultra-violet 
cutoff, because these are exactly taken into account by the lattice large L 
expansions. However, if data from different points on the same renormalization 
group trajectory (points of equal low energy physics in other words) are included in 
the analysis, one must make sure that finite size effects are not confused with O(a 2) 
corrections [13]. 

(c) As discussed in Subsect. 3.4, the two-particle energies can be determined 
from the exponential decay of the two-point correlation functions of the operators 
Op at large times. It is not advisable to uselocal operators such as ~(x) z instead of 
Op, because the amplitude for such operators to create a two-particle state from the 
vacuum is proportional to L-3 and is hence small in general. 

An interesting feature of the large L expansions (2.70)-(2.73) of the higher 
energy levels is that they break down for energies near a resonance, because the 
coefficients in the expansion diverge. Thus, in the neighborhood of a resonance, 
finite size effects are strong and an energy level, which passes through a resonance 
as L increases, is expected to show some unusual behaviour. Eventually, this 
observation may lead to a practical and conceptually satisfactory characterization 
of resonance states in finite volume (as would be required for a meaningful 
calculation of the masses of unstable particles in lattice QCD, for example). 

The proof of the large L expansions given in this paper does not apply in the 
presence of bound states, although it is quite clear from the model solved in 
Subsect. 2.6 that the expansions are valid in this case, too. It is difficult to dispense 
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with the framework of Feynman diagrams in quantum field theory, but as in Sect. 3 
of ref. [1], bound states may be incorporated by introducing independent 
interpolating fields for them. With some modifications, the proof of the large L 
expansions then goes through as before. In quantum mechanics, it is perhaps also 
possible to design a truly non-perturbative proof on the basis of a more direct 
analysis of the Schr6dinger equation in position space as in the 1-dimensional case 
(el. ref. [3]). 

Appendix A: Properties of the zeta function Z~m 

S 3 - We first show that Z~,,(s, n 2) is a meromorphic function of s with poles at = ~ - j ,  
j = 0, 1, 2 . . . . .  for l = 0 and no singularities for 14 = 0. Starting from the definition 
(2.47), valid for Res>½(l+3) ,  we have 

oo 

1 ! dtt~-lF~,.(t, n2), (A.1) Zz~(s, n 2 ) = v2<.2Z Q~m(V) (v 2 - n 2 ) -" + 

where Fzm is given by 

Fire(t, n 2) = Y', Q,m(V) e-"'2 ,2). (A.2) 
*¢2 > n2 

Obviously, Fire(t, n 2) is smooth for t > 0 and exponentially decaying for t ~  ~ .  At 
small t, we use Poisson's summation formula to show that 

Fire(t, n 2) = -- y '  Qtm(v) e t(n2- ~) 
¥2 ~112 

3/2 e t"2 ~. ~t + Qtm(iV~) e (A.3) 
V X = 0  

which implies the asymptotic expansion 

,,~ ~ (AjtJ + B/j-  3/2), (A.4) Flm(t' n2) r-,o j=o 

1 Aj-  j! ~2<=,~Z Qu.(v)(n2-v2) J, (A.5) 

3/2 1 
Bj = 6W3m0~ ft. (n2) j. (A.6) 

It follows that 

N 

F~m(t, n 2) = Fl,~(t, n 2) -- E (Aj tj + Bjt j- 3/2) (A.7) 
j = 0  

is of order t N- 1/2 for small t and the representation 

z ~ ( s ,  n2) = X Q ~ ( v ) ( v 2 - n ~ )  -" 
v 2 < n  2 

+~-S) dtP-'F~m+ ~ dttS-lF'm+ ~" Aj Bj a j :0  ~ + s 4 J - ~  (A.8) 
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is hence valid for Res > ½--N. Since N can be chosen arbitrarily large, we have 
thus proved that Z~,, extends to a meromorphic function in the whole s-plane with 
poles as described above [the poles at s = - j  are cancelled by the zeros of 1/F(s)]. 

For integer s < 0, the integrals in Eq. (A.8) do not contribute and Z~m(s, n 2) can 
therefore be evaluated algebraically, the result being quoted in Eqs. (2.49) and 
(2.50). 

For s __> 1, Zz,,(s, n 2) can be determined numerically by computing the integrals 
in Eq.(A.8) for N = I  using any ordinary integration subroutine [rapidly 
convergent series representations for the integrands of the first and the second 
integral are provided by Eqs. (A.3) and (A.2), respectively]. 

Appendix B: Proof of the Large LExpansion (2.51) 

The proof of Eq. (2.51) is rather lengthy and is therefore divided into several steps. 
In general, the strategy is to first consider simple special cases and then to 
gradually proceed to the more complicated cases using the results already 
established. 

(1) We first set p = 0  and choose 

f (k) = (k 2 ) j Q ~,,(k) e - kS. (B. 1) 

Then, it is easy to work out the right-hand side of Eq. (2.51) and the expansion to be 
proved thus reads 

4nF(q'-(- l)q'- 1~) ~" t .__: (--1)i Sq(f, O)~ 61O6mO + i~=o i ~  Z,m(q'- i, 0), (B.2) 

where q '=  q - j  (the sum is void if q '<  0). 
To establish (B.2), we first rewrite the sum Sq(f, 0) in the form 

1 ~d t : -*L  3 Z (kZ)aQtm(k)e-~'+l)k2. (B.3) s (f, o)  = o k , o  

Next, recalling the definition (A.2) of the function Fire, setting x = (2~z/L) 2 and 
performing a simple substitution, one arrives at 

xl/z-q' co . ~j 
Sq(f, O) = L~F~ ) ! dt(t-  x)"- *(- 1) a ~ Ft,,(t, 0). (B.4) 

If j > q, partial integration now leads to 

Sq(f, O) = ~-5 xt/2-q'(- 1) j-q 
aj-,~ 

F,,,(t, 0)l,=x (B.5) 

and, using the small t expansion (cf. Appendix A) 

Ftm(t,O)=atoa,no{(t)3/2--1}+O(e-~---~), (B.6) 

one recovers (B.2). 
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On the other hand, i f j<q ,  one has 

xl/2 -q '  c~ 

Sq(f, O) = L3r(q3 ! dr(t- X) q ' -  I Fire(t, 0), (B.7) 

and from (B.6) one then infers that 

,.~ Xl /2-q"  {b/Ohm 0 1 dr(t-x) ¢-1 

i } + dt(t-x)¢-lF°m(t,O)+ f dt(t-x)¢-iF~m(t,O) (B.8) 
0 i 

up to terms, which vanish more rapidly than any power of 1/L for large L. Using 
the representation (A.8) of the zeta function Z~m, it is now a trivial exercise to 
evaluate all terms in Eq. (B.8) exactly. As a result, one obtains Eq. (B.2), which 
proves that the large L expansion (2.51) is valid in the special case considered. 

(2) In this step, we again set p = 0 and assume that all partial derivatives of f(k)  
up to the N'th order vanish at k = 0  for some even N>2q. One then has 

f~m(0)=0 for 2j+I<N, (B.9) 

and, up to terms of order L 2q-N-3, the large L expansion (2.51) reads 

1 d3k 1 
Sq(f, 0)= (2q_2)~ S (2n) 3 k2 (dk)q-lf(k)+O(L2~-N-3). (a.10) 

In order to prove this relation, we note that the function 

h(k) = (k 2)-qf(k) (B.11) 

is integrable and has integrable derivatives up to the order N -  2q + 3. Thus, the 
ordinary summation theorem (2.42) applies and it follows that 

dak k2 Sq(f,0)= S (2zc)3 ( )4 f (k )+O(L2q-N-3 ) .  (B.12) 

By using the identity 

Ak(k2)-q+l=(2q-2)(2q-3)(k2)-q (k~0) ,  (B.13) 

and partial integration, Eq. (B.12) can be matched with (B.10), and we have thus 
shown that the large L expansion (2.51) is also valid in the present case up to the 
order of L -1 stated. That there are no boundary terms from the partial 
integrations is easy to prove taking (B.9) and the square integrability off(k)  and its 
derivatives into account. For example, if q = 2, there is one partial integration 
needed and the contribution of the boundary at large k is proportional to 

lim ~ df2Rk.{f(k)Vk(k2)-l-(k2)-lVkf(k)}, (B.14) 
R--', o~ ikl=R 

where f2 denotes the solid angle of k. Now, using the Cauchy-Schwarz inequality 
for square integrable functions, we have 

ikl~=RdOf(k) = R  - a  k2~R 2 dak{3f(k)+k . Vkf(k)} <=C/I//R (B.15) 
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for some constant C. Similarly, one shows that 

iklS R df2k" Vkf (k ) ~ C'I/~, (B.16) 

and the boundary term (B.14) is thus seen to vanish. 
(3) We now combine the results of step (1) and (2) to show that the large L 

expansion (2.51) holds for p = 0  and arbitrary functions f(k). 
Let N_= 2q be some even integer. Then, up to order k N, the Taylor expansion 

around k = 0 of f(k) can be rearranged in the form 
N/2 N -  2j l 

f ( k ) =  Y. E Y. cjl,(k2)iQz,~(k)e-k2+fN(k), (B.17) 
j = 0  l=O m = - l  

where the remainder fN(k) is smooth and has vanishing derivatives at k = 0 up to 
the N'th order, i.e. fN is a function of the type considered in step (2). Now we note 
that the large L expansion of Sq(f, O) is an operation linear in f. Since we have 
already shown in step (1) and (2) that (2.51) applies to the functions on the right- 
hand side of Eq. (B.17) up to terms of order L 2q-N-3, it follows that (2.51) is also 
valid for f (k)  up to this order. Because N can be chosen arbitrarily large, (2.51) is 
thus completely proved for p = 0. 

(4) We now proceed to consider the case p ~ 0. In this step, the power series 
expansion 

+ ~_, fi,m(O) Zj,,~(q, n 2) (B. 18) 
j=O /=0  m = - l  \ / -~/  

is established and in the following step, parts of this series will be resummed to 
obtain (2.51). The zeta function Zj~,~ is defined as Z~m, but with an extra factor (v2) ~ 
multiplying Qtm(v). In other words, using the binomial expansion, we have 

ZJz'(q'n2)= i=o ~" G)(n2)J-iZ'm(q-i 'n2)" (B.19) 

To prove (B.18), we choose an integer N >  1 and decompose the sum Sq(f, p) as 
follows: 

Sq( f~  p ) :  s 1 -t- s 2 -~ s 3 -~ $4 ,  (B.20) 

1 
s, = -73 2 ~  f(k) (k 2-p2)-q, (B.21) 

J-, k <p 

, 
s2 =-L-y E f ( k ) ( - 1 )  ~2 q (-p2)"(k2)-q-",  (B.22) 

0<k2_<p g /z=0 

s3=Tx ~2 f (k)~2 q (-pZ)~(k2)-q-~, (B.23) 
/-, O<k / ~ = 0 \  

s4=~-yp2Z<k2f(k){(k2-pZ)-~- =~o(~q)(-p2)~'(k2,-q-~' } . (B.24) 
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In all these sums, k runs over the momentum lattice (1.2) subject to the restrictions 
indicated below the summation symbol. Since sl and Sz are finite sums, they are 
trivial to expand and one obtains 

j = O  / = 0  m = - l  

Ci~z = Z (v2)JQlm(v) ( v 2 -  n2)-q, (B.26) 
v 2 < !! 2 

cjz,. - -- 12 (vZ) 3 Qz,.(v) ( - n2)" (v 2) - q - u (B.27) 
O < v 2 ~ n  2 / 1 = 0  

(here and below, v runs over Za). Next, we note that 

s3= 12 q (-p2)uSq+,(f ,0).  (B.28) 
# = 0  

Because we have already proved (2.51) for p = 0, it follows that 

s3"~ ~=o (-;)(-P2)Ulq+~(f ,O) 

+j=o ,=o m=-, 
~,~(O)~m, (B.29) 

c)~,~ =,2o ( -  n2)"z~,.(q + ~-j ,  0). (a.30) 

Finally, to expand s4 we observe that a power L 2q can be factored out from the 
bracket {...} in Eq. (B.24), the remainder being independent of L and of order 

( v2 ) -~ -N- l fo r largev (k=~v) .Thesumis thuswe l l convergen tand i t i s easy to  

show (e.g. ref. [6, Sect. 8.6.3]) that the large L expansion up to terms of order 
L2q-2N-4 can be obtained simply by expanding f (k)  around k = 0. Thus, we have 

s4 = 12 12 fjt~(O)Cj~m+O(L2q-2N-4), (B.31) 
i=0 ~=o , = - t L  

cj~,.- I2 0'~)JQ~m(v) (v~-n~) - ~ -  q (-n~)"(v~) - ' - "  (B.32) 
112<¥ 2 ~U=0 

where C~r~ is only defined for 2j + 1 < 2N. 
If we now collect the expansions of the four sums s~, Eq. (B.18) is obtained up to 

terms of order L 2~-2N-4, provided we can show that 

4 

~,, C~l m = Z izm(q , n2). (B.33) 
i = 1  

From the explicit expressions given for the coefficients c~,,,, this relation is however 
1 3 easy to prove for complex q with Req > j  + f l  + ~, and hence, by analyticity, for all 

q. We finally remark that N can be chosen arbitrarily large so that in fact we have 
established (B.18) to all orders of I/L. 
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(5) We finally note that (B.18) can be obtained from (2.51) by expanding Iq(f, p) 
and f~t,,(P) for small p. Indeed, the first sum in (B.18) is just the Taylor expansion 
(2.54) of the integral Iq(f, p) and the second sum is easily derived from the series in 
(2.51) by substituting 

fj, m(p)~ ~. (p2). (J + #~ fj+.,,.,(O), (B.34) 
u=o \ # /  

and using the identities (2.49) and (B.19). It follows that the large L expansion (2.51) 
is equivalent to (B.18) to all orders of 1/L. Since (B.I 8) has already been established 
in step (4), we have thus proved Eq. (2.5I) for arbitrary f and p. 
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