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It is shown tha t  a s ta te  carrying an "e lec t r ic"  charge  which can be de te rmined  with the help of Gauss '  law canno t  be an 

e igensta te  of the mass operator .  

1. There is ample evidence, both from the study 
of  exactly soluble models and from more abstract ar- 
guments, that particles carrying an electric charge are 
inevitably accompanied by clouds of  soft photons, 
and therefore cannot be described by eigenstates of  
the mass operator. (For a review of  this "infraparticle 
problem" cf. ref. [1] .) It is the aim of  the present 
letter to provide a general argument which traces back 
this fact to its very origin: Gauss' law. 

2. If  one wants to determine the electric charge of  
a physical state with the help of  Gauss' law one must 
be able to measure the spacelike asymptotic electro- 
magnetic field of  this state with sufficient precision. 
Let us first discuss how this requirement can be ex- 
pressed in terms of  a simple condition which must be 
satisfied by the vectors describing such states. To 
this end we consider the smoothed-out electromag- 
netic field operators 

I SO(x/R)F(x), (1) Fv(%) =fd4x ~ 

where SO is an arbitrary real test function which has 
compact support in the spacelike complement of  the 
origin of  Minkowski space, and R > 0 is a scaling pa- 
rameter. As R increases, the electromagnetic field in 
(1) is averaged over regions whose diameter and space- 
like distance from the origin grows like R,  and this 
average is rescaled by the factor R - 2  according to the 
engineering dimension of the field. 

The class of  vectors ~ describing physical states in 
which the asymptotic electromagnetic field can reli- 
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ably be determined, can now be characterized by the 
property that, firstly, the expectation values of  the 
operators Fuu(SOR ) converge for all abovementioned 
test functions so, 

lim (O,Fv(SOR)q 0 =fur(so), (2a) 
R --+~ 

and, secondly, the mean square deviations of  these 
quantities stay bounded, 

lira sup I] IF u(SOR ) -- fuu(so )" 1]~fl 2 <oo. (2b) 
R - - ~  

Mthough these conditions seem to be a minimal 
requirement if Gauss' law is to be verifiable in experi- 
ments, it is worthwhile to examine whether they are 
satisfied in models of  physical interest, such as quan- 
tum electrodynamics. There exist two theoretical ob- 
structions to these conditions [2]. Firstly, the state 
(I, may be packed with a multitude of  particles, giving 
rise to large absolute values of  the electromagnetic 
field. But since we are only interested in the elemen- 
tary systems of  the theory, we do not have to worry 
about this possibility here. 

The second theoretical obstruction to be discussed 
is the possibility that the quantum effect of the mea- 
suring process described by/;~u(SOR) gives rise to fluc- 
tuations of  the electromagnetic field which are in con- 
flict with condition (2b). In order to get an idea of  
the magnitude of  this effect let us consider the fluc- 
tuations of Fuv(SOR ) in the vacuum state g2. It follows 
from the first Maxwell equation 0vFuv = 0 that the 
Kfillen -Lehmann representation of  the two-point 
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Wightman function of  Fu~ has the form (~ :~ v and 
no summations involved) 

(Gv(x)a, F (~)a) 

r d3p 2 =fdu(m)J~ ° (-p.g~ - p2guu)ex p [ip(x - y ) l ,  

(3) 
where Po = (/)2 + rn2)l/2, and d/J(m) is some positive 
measure which has a discrete part 8(m)dm due to the 
intermediate one-photon states contributing to (3). 
Proceeding as in ref. [3] it is then straightforward to 
show that 

which is normalized in such a way that f d4x ×(x) 
× ~i (3)(x) = 1. A simple example of  such a function 
is X(x) = a(Xo)~(x), where ~,/3 are test functions 
with 13(x) = 1 for Ixl ~ 1,~(x o) = 0 for Ix0[ ~> 1/2, 
and f dxoa(X0) = 1. Actually, the expression (5) 
should not depend on the specific choice of X within 
the above limitations. This is the case i f f u v ( ~ ¢ )  = 0 
for all test functions ~ with support in (x : x 2 < 0}, 
i.e, if there are no sources of  the electromagnetic 
field in the state ~ at spacelike infinity. But we will 
make no use of this assumption here. What will be 
used, however, is the fact thatfu v must be different 
from 0 if q~ carries a non-zero electric charge. 

lim I IF  (~OR)g~l]2 

/"  d3p (_/~2g~v -/~2guu)l'~(fi)12 , 
=J 27pl (4) 

where we have put p = (Ipl,p). Thus the fluctuations 
of  Fuv(SOR) in the vacuum state stay bounded in the 
limit R -+ ~ .  Using the spacelike commutativity of  
observables, the same result can be established for a 
dense set of  vectors in the superselection sector of 
states carrying the charge quantum numbers of the 
vacuum (cf. the discussion below). But one finds in 
this sector locally already all possible configurations 
of  charged particles (the compensating charges sitting 
"behind the moon") ,  so this result provides evidence 
to the effect that the quantum fluctuations of F~v(S0R) 
stay bounded also in charged sectors. We therefore 
hold that condition (2) characterizes all states of  in- 
terest here. 

We note that the functional fur(- ) in (2a), being 
the scaling limit of  a distribution, is again a distribu- 
tion which is defined on the region (x : x 2 < 0} and 
which is homogeneous of  degree-2, corresponding to 
the scaling transformation in (1). Knowing this space- 
like asymptotic electromagnetic field of  a state ~ one 
can determine its electric charge by means of  Gauss' 
law Jr = ~vFv~' giving 

( , ,  Qo~) = Rlim f d4 x 1 ×(x/R) (q~,/o(X)q,) 

=/i0(a~x). (s) 

Here × is any test function whose spatial derivatives 
aix have support in the region {x : x 2 < 0) ,  and 

3. Let us now turn to the discusssion of  the im- 
plications of  condition (2). Of central importance for 
our argument is the notion of superselection sector 
[4] ,  whose various aspects are briefly recalled for la- 
ter reference: according to its basic definition, a su- 
perselection sector is a closed subspace ~s  of the phys- 
ical Hilbert space, which is stable under the action of 
the algebra ~[ generated by all local observables of 
the theory ,1, and in which the superposition prin- 
ciple holds unrestrictedly, i.e. every unit vector in ~C s 
induces a pure state on ~ .  Equivalently, one can char- 
acterize the superselection sectors J£s by the fact that 
for every non-zero vector ~ E ~s  the set of vectors 
~I@ is dense in J£s. Still another characterization of 
superselection sectors is based on Schur's lemma, say- 
ing that every hermitian (but not necessarily bounded) 
operator on ~s  commuting with all elements of ~)1 is 
necessarily a multiple of  the unit operator 1 s on Jfs. 
From the latter fact it is obvious that all vectors in 
~'s carry the same charge quantum numbers. It should 
also be noticed that the energy-momentum opera- 
tors Pu' being the limit of local observables [5] ,  leave 
each superselection sector invariant. 

Now let ~s  be any superselection sector and let 
E ~s  be any unit vector satisfying the conditions 

(2). It then follows that the sequence of vectors 
/:~v(~OR)e) E Jfs, ~ as in (1), converge weakly as R 
tends to infinity, and 

,1 In order to avoid discussions of domain questions we as- 
sume that ~ is a *-algebra of bounded operators, and that 
the unbounded local observables, such as Ft~v(~OR), are af- 
filiated with this algebra in the sense that their bounded 
functions are elements of 9.1. 
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w lira F v  (~R)  q) = f~av (~0) • q~. (6) 
R --+oo 

The proof  of  this statement is based on standard ar- 
guments and is given only for completeness: accord- 
ing to condition (2b) the norms IIF~(~0R)~ II are uni- 
formly bounded in R. Since the unit ball in a Hilbert 
space is weakly compact,  we nmst therefore only 
show that all weakly convergent subsequences of the 
sequence Fw,(S0R)~I~ have the same limit (6). So let 
F~,~(S0Ri)4o, i ~ I (I being some index set) be any such 
subsequence and let 

w - li m f ; , , ( ¢ R ; ) ~ ,  = % (7)  
I 

Because of the localization properties of the opera- 
tors F,w(~0R) and the spacelike commutativi ty of  ob- 
servables we have that for any given A ~ ~)l the com- 
mutator  [Fvv(S0R), A ] vanishes for sufficiently large 
R. Thus it follows from (7) that for all A E ~)1 

w -- li.m Fgu(~0R/) Ad, b -= Acp|.  (8) 
l 

But, as was discussed, the set of vectors ~l qb is dense 
in ~s ,  hence relation (8) shows that the sequence of 
hermitian operators Fuv(SORi ) converges weakly on 
the domain ~2I (I), the limit being again a hermitian 
operator. It is also clear from the previous remarks 
that this limit operator commutes with all elements 
of  ~)[. According to Schur's 1emma it must therefore 
be a multiple of  the identity ls,  and consequently 
(b I = Cl q), where c I is some constant. Taking scalar 
products of  the vectors in (7) with (P and making use 
of  condition (2a) it follows that c I = f~v(~o). This 
shows that the limit in (7) does not depend on the 
specific choice of  the subsequence Fu~(~0ai)q L and 
thereby proves the assertion (6). 

In the course of  this argument we have seen that 
all states in a superselection sector have the same 
asymptotic electromagnetic field f,v" This result is 
physically quite plausible since these states are obtain- 
ed from a fixed one by the effect of  local operations. 
But such operations cannot change the field at space- 
like infinity according to Einstein's principle of  causal- 
ity. 

In the final step of our argument we will show that 
a vector ~ satisfying relation (6) can only be an eigen- 
state of  the mass-operator PeP (r i f j ~  = 0. So let us 
assume that PoPe~ = m2cb, and therefore also PoP ° 

× D0 ' )  = m2q?(Y) where D0 ' )  = exp ( i y ' P ) ~ , y  c I! 4 . 
Starting from the trivial equation (in the sense of  dis- 
tributions) 

(45(V), [ p e  a, Fu (x ) ]  q5) = 0 (9) 

and taking into account that i[Po, F,u(x)] = 8a F,w(x), 
it is obvious that 

2i(P%I'0 ' ) ,  3 ° F v ( x ) e )  + (qs(y), [3 k~v(x)c~ ) = O. 
(10) 

We integrate this expression with test functions of  
the form (I/R)s0(x/R),  where ~ has the properties as- 
sumed in (1), giving 

2i(peqb(Y), Fv((ao~P)R)~) 

= O / R )  (~¢v), F( (E2  ~0)R)q, ) . (l 1) 

Proceeding in this equation to the limit of  large R and 
making use of  relation (6) we thus find that 

( P ~ @ ) ,  +)"j'~v(Oo~.0) = 0. (12) 

Now iffuv(Oo~0 ) would be different from 0 it would 
follow from (12) that the Fourier transform o f y  

(~(v),  cb) has support on the (at most) two-dimen- 
sional manifold 

(p :pOp e = m2,p°J*;sv(~)o~o ) = 0) .  (13) 

But this is impossible since the joint spectrum of the 
spatial momentum operators Pi, i -- 1 ,2,  3 is Lebesque. 
absolutely continuous on the orthogonal complement 
of the vacuum (as a consequence of the locality of  
observables) [5]. Hence f,v(ao~) -- 0, and bearing in 
mind that f ,  v is a homogeneous distribution of de- 
gree-2, we conclude tha t f ,~  = 0. 

We emphasize that one arrives at the same conclu- 
sion even if one relaxes the assumption that 4b is an 
element of  a particular superselection sector, i.e. if 
one allows for the possibility of  mixed states. The 
proof  is, however, slightly more involved: one must 
first decompose ~ into a direct sum (integral) of  vec- 
tors qgp inducing primary states on ~(. Since the ener- 
gy-momentum operator Pg is affiliated with ~1- [5],  
the components qbp appearing in this decomposition 
are again eigenstates of the mass operator, and they 
still satisfy condition (2b). The latter fact is sufficient 
to show (using the uniform boundedness principle 
for distributions) that all weak limit-points of  the 
"central" sequence F,~(~R) on ~)l (bp are c-number 
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distributionsf p (~). Arguing now as before one finds 
~zv 

that fPuv(8o~p) = 0, showing that Fuv((ba~)R)~ p con- 
verges weakly to 0. Since this holds true for all com- 
ponents ~p of ~ it then follows from condition (2a) 
that fu~(Oo¢) = 0, and hence fur = 0. This completes 
our proof of  the statement that particles carrying an 
electric charge cannot be described by eigenstates of  
the mass operator. 

4. It is noteworthy that by a similar reasoning one 
can also establish the spontaneous breakdown of the 
Lorentz symmetry in superselection sectors of  states 
carrying an electric charge [6]. (For a different argu- 
ment, which is based on the timelike asymptotics of 
the radiation field, cf. ref. [7] .) Namely, if there exist 
unitary operators U(A) on Jfs implementing the 
Lorentz-transformations A, i.e. 

U(A) 'Fv(x)  = a - luu 'a - l vV 'F ,u , (ax  ). U(A), (14) 

one finds, by taking matrix elements of  this equation 
with respect to the dense set of vectors s~lq~ C JC s and 
using eq. (6), that the spacelike asymptotic field fur 
of  the states in Jfs must satisfy 

: a-1 " 'a-1 (15) 

But in view of the antisymmetry offuu in/~ and v this 
is only possible if fu v = O. 

By the above discussion the well-known infrared 

problems in quantum electrodynamics have been 
traced back to the fact that the spacelike asymptotic 
electromagnetic field is a superselection rule of the 
theory. On the other hand it should be noticed that, 
due to the presence of this superselection rule, the 
physical state space of the theory splits into an abun- 
dance of  superselection sectors [6],  which brings its 
structure close to that of a classical theory. Some as- 
pects of this simplifying feature of quantum electro- 
dynamics, which is frequently ignored, well be dis- 
cussed elsewhere. 
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