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Lattice field theories are considered whose hamiltonians contain small nonlocal correction terms. It is proposed to do 
siumlations for an auxiliary polymer system with field-dependent activities. If a nonlocal correction term to the hamiltonian is 
small, it need be evaluated only rarely. 

In this note we would like to describe a Monte 
Carlo procedure that can cope with complicated non- 
local ,1 bosonic hamiltonians for lattice field theories 
as are expected to result from exact analytical or ac- 
curate numerical renormalization group calculations. 
I t  can be used to advantage when most of  the nonlo- 
ca1 correction terms are small. Let us initially suppose 
that the hamiltonian 9~(~) is given, as a function of  
some fields ~ = (~x} (spin or gauge fields, for instance) 
on a finite set A of  sites x (e.g. points or links of  a lat- 
tice). Let us assume that  9( can be split as 

9((~') = ~ 0 ( ~ )  + ~ 1 ( ¢ ) ,  (1) 

where 9( 0 has good locality properties so that it is 
suitable for t reatment  by standard Monte Carlo simu- 
lation techniques, and 9(1 is small in a suitable sense 
(cp. inequality (3) below). Expanding e x p ( -  9(1) in a 
Mayer series (high-temperature series) one may ob- 
tain a polymer representation of  the Boltzmann fac- 
tor of  the form [1,2] 

exp [ - 9 ( ( ~ ) ]  -- exp [-9(0(S0)] 

X ( 1 +  ~ I-[ A ( P , ¢ ) ) .  (2) 

Here ~ are collections of  mutually compatible non- 

1 Supported by Deutsche Forschungsgemeinschaft. 
*1 In this note, nonlocal shall mean with a range of several 

(rather than < 1) lattice spacings. 
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empty  subsets P of  A, called polymers. For the mo- 
ment,  two polymers P1 and P2 are to be regarded as 
compatible if they do not  overlap. We write P1 ~ P2 
in this ~ase. Later on we shall consider a generaliza- 
tion. The activities A(P,  ~p) will only depend on ~x 
for x c P. If the fields take their values in a compact 
space, inessential 9-independent terms can be added 
to the hamiltonian so that the activities are nonnega- 
tive (see below) 

A(P, t> o .  

We will assume that this is true. Generalization to si- 
tuations where the activities are negative with very 
small probabil i ty is possible. [One considers an auxil- 
iary polymer system with activities I A(P, ~)l and 
takes care of  the signs when computing averages.] It 
is required that there exists ~¢ < oo for every ~ such 
that for all x 

1+ ~ A ( P , ~ ) ~ < ~ .  (3) 
P:x~P 

This is a basic stability condition for polymer systems 

[21. 
We propose to do simulations for an auxiliary sta- 

tistical system whose states are pairs (9(, ~). The Monte 
Carlo procedure will generate a sequence of  pairs (9(, 
¢). One sweeps through all sites x of  A. For each x, 
updating "at x "  may change ~(x) and 9(. A change in 
9C may consist in adding or removing (or altering) a 
polyiner P that contains x.  Given x and 9(, the new Cx 
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is computed with probability distribution 

d prob(~0x) = c'~c~ exp[-~;g0(¢)]  

X l-I A (P, : )  d~x . (4) 
PE~:xEP 

9~9( is a normalization factor, and the right-hand side 
is to be considered as a function of ~x, for fixed 
{¢y}y~x" Given ~, the collections 9C are to be gener- 
ated with probability 

prob(gC) = 9~ -1 11 : p~ A ( P , : ) .  (5) 

The first 1 in the large brackets in eq. (2) is to be un- 
derstood as the contribution from the empty  collec- 
tion ~X= ~, and eq. (5) must also hold for ~X= 0. 
(Empty products are read as 1). To achieve this one 
performs updating "at  x "  with transition probabili- 
ties Wx(~--> 9(.') that satisfy the condition of detailed 
balance [3]. 

prob(gg)Wx(gC-+ 9C') = prob(9(')Wx(9(' ~9C) . (6) 

A possible choice of  transition probabilities W x (~X-+ 
9C') for 9Cv~ 9C' is as follows 

Wx(gC-~gC' ) 

= ~ 1  if 9C' = 9 ( -  {P) for some P D x  , 

= ~ - I A ( p ,  ¢) if 9(' = 9C + {P) and x C P ,  

= 0 otherwise . (7) 

The condition 9(' = 9C + {P} is to be understood as: 
9C' = ~X to {P) and P is compatible with all polymers 
in 9C. ~ is to be chosen so that inequality (3) holds 
(i.e. the total transition probability is ~<1). The com- 
puter remembers the state by storing for each x both 
~x and the polymers P E 9C with x E P. 

The general procedure outlined so far starts from 
a polymer representation (2) of  the Boltzmann factor. 
Given that, one does not actually need an expression 
for ~ itself (i.e. one avoids taking logarithms). This 
could be significant for the following reason. Rigorous 
analytical work on renormalization group transforma- 
tions [4] suggests that series representations (like eq. 
(8) below) for effective hamiltonians may be inap- 
propriate (badly nonlocal and divergent) when ~ is in 
the large field region where exp[ -~(~0) ]  becomes 
very small, but that a well-behaved polymer expan- 

sion (2) for the Boltzmann factor continues to hold 
there. 

In the following we will suppose, however, that 
9( 1 ( : )  is given as a series such as 

(~1(~0) = ~ VQ(~p). (8) 
Q 

The label Q will specify a subset supp Q of A such 
that VQ(~0) depends on ~x only for x @ supp Q. Con- 
sider for instance a lattice gauge theory with gauge 
group G and lattice gauge field U that specifies paral- 
lel transporters U(C) E G. Q might have the form 

Q= (C 1,rl;C 2,r2;...C n,rn), (9) 
where C i are closed paths and z i are characters of  ir- 
reducible representations of  G, and 

VQ(U) = p(Q) 11 ri(u(ci)  ) + c.c. (10) 
i=1 

with complex coefficients p(Q). 
We will derive a special polymer representation of 

the Boltzmann factor which appears be particularly 
convenient for computation. It involves the Q in eq. 
(8) as polymers. This amounts to a slight generaliza- 
tion of the notion of  polymers introduced after eq. 
(2), because different polymers Q may now occupy 
the same subset P = supp Q of A. We will write x E Q 
in place o f x  E supp Q. Two polymers Q will now be 
regarded as compatible if they are not identical. 

If necessary we add field-independent constants 
CQ to VQ(:) so that VQ(~) ~< 0. In the example (10), 
CQ = 21p(Q)I IIr  i (1) will do. We de fine activities A (Q, 
¢) >~ 0 by 

exp[-VQ(~0)] = 1 +A(Q,  ¢ ) .  

It  follows that 

exp [ - ~ 1  (~0) + const.] 

= I-I e x p [ - V Q ( : ) ]  = 11 [1 +A(Q,¢ ) ]  
Q Q 

= 1-I A ( O , : ) ,  
9C Q~gc 

and polymer representation (2) holds except for an 
inessential overall constant factor. This polymer sys- 
tem can be simulated as described before. 
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If  VQ is small, then also A(Q,  ") is small, and the 
probabil i ty of  finding Q ~ x  in the state 9C while at x 
is also small. Therefore VQ(~p) for any particular such 
Q needs to be computed only rarely. In contrast it 
would need to be computed at every updating step at 
x C Q in the standard Monte Carlo procedure. 
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