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Abstract. The l- loop renormalization of the SU(2) 
x U(1) electroweak gauge theory with two Higgs 

doublets is performed in the on-shell scheme with 
finite self energies and vertices. Assuming different 
vacuum expectation values for the scalar doublets, 
which yield enhanced Yukawa couplings to fer- 
mions, we calculate the effects of the additional 
l-li,,(,~ h,~,~n~ h~ the ~,,~;,t;,,e o,,~o,~,,,,~ ~,, th~ l~p_ 
tonic processes: g-decay, v, e-scattering, and 
e + e -  ~ g +  g - ,  z + z -  with longitudinal polarization 
at PETRA and LEP/SLC energies. It is found that 
large effects occur in the M w - M  z mass relation, the 
determination of sin 2 0 w from a(v,  e)/a(9-, e) and the 
e § e -  forward-backward and polarization asymmet- 
ries, if either the charged Higgs or the additional 
neutral scalar/pseudoscalar are heavy. Enhancement 
effects and effects of light neutral bosons can better 
be observed in the e + e - ~ z + ~  - integrated cross 
section. 

1. Introduction 

The standard model of the electroweak interaction 
based on the gauge group SU(2) x U(1) describes 
successfully charged and neutral current reactions at 
low energies. It has achieved further strong support  
by the discovery of the predicted vector bosons in 
the correct mass range [1]. F rom the standard point 
of view the only missing object is the Higgs particle. 
In the standard model the Higgs appears as a funda- 
mental field which describes neutral scalar particles 
without a substructure. The r61e of the standard 
Higgs is twofold: Through its non-vanishing vacuum 
expectation value v + 0 it is responsible for 

- the masses of the weak gauge bosons, induced by 
the gauge-Higgs field couplings 
- the masses of the charged fermions, induced by 
Yukawa couplings. 

Thus the masses of vector bosons and fermions 
are set by the same scale v~250  GeV. In order to 
obtain light fermions the Yukawa coupling con- 
stants gf must be sufficiently small. Typically the 
couplings of the Higgs to fermions are suppressed by 
a factor m j M  w compared to the gauge coupling. As 
a consequence, Higgs effects in fermionic processes 
are very o ~ . 1 1  . . ~ 1 ~ o o  1.. . . . . . .  ,e : ~  1 ;1~  + L ~  * ~  

quark would be involved. 
In SU(2) x U ( 1 )  the left-handed fermions are 

doublets and the right-handed singlets. Therefore 
Higgs doublets can couple to fermions and give 
them their masses. The minimal standard version 
with a single Higgs doublet predicts the ratio 

P--  2 
M z cos 2 0 w 

to be unity. But the converse is not true: p = l  
remains valid for an arbitrary number  of Higgs 
doublets automatically. Higher dimensional repre- 
sentations give in general p 4:1 if no additional re- 
strictions are imposed. Experimental data for p are 
close to 1, which favours the doublet character of 
the Higgs field (s). 

Models with more than one doublet have at- 
tained interest e.g. in the context of CP symmetry 
breaking [2], the Peccei-Quinn solution of the 
strong CP problem [3], and supersymmetric exten- 
sions of the standard model [4], which need at least 
two scalar doublets. 

The minimal extension of the standard model is 
a conventional SU(2)x U(1) gauge theory with two 
scalar complex doublets ~b 1, ~2 [5-9]. Three of their 
eight degrees of freedom form the longitudinal po- 
larization states of the W e and Z and five remain as 
physical particles. These consist of two charged q~-+ 
and three neutral states H 0, H 1, H a as mass eigen- 
states of the Higgs potential. One of the neutral 
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scalars (e.g. H0) behaves similarly to that of the 
standard model, whereas the additional ones may 
yield effects which are different from those of the 
conventional Higgs. F rom e+e  experiments at 
PETRA a lower limit for the charged Higgs mass 
can be deduced [10] 

M e >  18 GeV 

and for the scalar/pseudoscalar pair H 1, H 2 the mass 
range can be excluded (95 ~o c.1.) where one of them 
is below 0.2 GeV and the other one between 1 and 
21 GeV [11]. 

In two-doublet models two vacuum expectation 
values 

( 4 ) l }  = v l  /)2 

are available to generate the vector boson and fer- 
mion masses. Their very different mass scales could 
be traced back to different Higgs vacuum expec- 
tation values /)1 >> va if only 4) 2 would have Yukawa 
couplings to fermions. The masses of W and Z are 
then essentially determined by/)1 

1 - 2  
M w ~ � 8 9  M z ~ s l / g l  +g2 z/)1 

(g2 is the SU(2), gl the U([,) gauge coupling con- 
stant), whereas fermion masses arise as 

m f  ~ g f / )  2 . 

An attractive phenomenological consequence in 
models with different vacuum expectation values is 
the enhancement of the Yukawa coupling constants 
by a factor /)1//)2 compared to the minimal model, 
which can (partly) compensate the small mf /M w ra- 
tios. 

In order to have flavor conservation in the neu- 
tral current sector the quark couplings have to be 
arranged in the way that 4)1 couples t o / 3  =�89 and q~2 
to 13= _ 1  quarks only. /)2>/)1 enhances the u-like 
and v l> / )  z the d-like coupling constants. Existing 
constraints to /)1//)2 are not yet very stringent:* In 
the first case [8] 

( v2 t2 <-2Mr ~- 109 for M o ~ - M  w 
/)1 ! mc 

and for the second case [9] 

/ )1 -<4M~-72  for M e ~ - M  w. 
V2 m b 

* More restrictive bounds from heavy quark systems have been 
obtained recently in [-23] 

If leptons couple to 4)2 with 1) 2 </)1 then a restriction 
resulting from the anomalous magnetic moment  of 
the muon would be [6] 

Vz/V 1 >0.015"* (for M 1 = 6 GeV). 

In this paper we extend the on-shell renormaliza- 
tion scheme of the standard model in [12] to the 
SU(2) x U(1) theory with two Higgs doublets and 
different vacuum expectation values /)1 >>/)2. In par- 
ticular we discuss the effects of the additional Higgs 
bosons in the H o o p  radiative corrections to the 
leptonic low energy processes 

(i) /~ decay 

(ii) ~-' v ~ e-scattering 

and to the leptonic e + e -  processes 

(iii) e + e---+p+ # - ,  z + ~- for PETRA energies 
and on the Z ~ 

A combined analysis of leptonic processes and direct 
M w, M z mass measurements give the cleanest tests 
of electroweak theories, avoiding hadronic uncer- 
tainties as far as possible. The basic assumption that 
only 4)2 with Vz<V 1 couples to leptons yields en- 
hanced couplings between charged leptons and the 
additional neutral scalar/pseudoscalar as well as be- 
tween l - v t  and 4) -+. The natural continuation of this 
picture to the quark sector would lead to ge>gu, but 
this is by no means necessary. As far as we restrict 
our discussion to leptons only we can renounce to 
assumptions about the hadronic sector. The ob- 
tained results therefore would give independent 
possibilities to explore the validity range of two- 
doublet models. In practice, the enhancement factor 

/~ = v , / v 2  

will be considered as an additional parameter, which 
besides the Higgs masses enters the radiative cor- 
rections. According to the leptonic constraints from 
[6], which we will use as a guide, the Higgs cou- 
plings to e and/~ still remain small, but they can get 
the normal gauge coupling strength for v leptons. 
Technically this leads to scalar exchange contri- 
butions in the electromagnetic and neutral current 
vertex corrections, which are negligible in the stand- 
ard model. Additional scalars with enhanced cou- 
plings could therefore be observed in terms of differ- 
ences between # and �9 final states in e + e -  annihi- 
lation. 

The paper is organized as follows: Section 2 con- 
tains the basic Lagrangian and its renormalization, 
from which the Feynman rules and the counter 

** For mass degenerate H 1 and H 2 this limit can be significantly 
lowered [-6] 
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terms are deduced. The unrenormalized 2- and 3- 
point functions of vector bosons ad fermions are 
presented in Sect. 3. In Sect. 4 we perform the renor- 
realization, which yields the renormalized propa- 
gators and vertices, listed in Sect. 5. Section 6 con- 
tains the discussion of the leptonic processes speci- 
fied above. 

2. Lagrangian, Feynman Rules, and Counter Terms 

We write for the two scalar doublets, splitting off the 
vacuum expectation values v I and v2: 

C~1= l+t/1-'}-iZt-I ~2= /)2q-t/2-l-iz2_ . (2.1) .r 

The Higgs part of the Lagrangian is 

5an = s + 5av~ - V(q~, e2). (2.2) 

It contains the Higgs-gauge field couplings: 

~ = ID. ~ l  ~ + ID. ~212 (2.3) 

with 

.g2 �9 gl Du=~u- , -~a  Wu + i T  B,, (2.4) 

the fermion-Higgs couplings, where we consider only 
the case of leptons, coupling to ~2: 

& , , = -  Z g ~ ( ~ G  +-~ + @R ~2 ~/f) (2.5) 
f=e,,u,T 

with 

~bR = ea, #a, ZR 

and 

tPr: (v ' t  (~)L' \Z/L ( G t '  (2.6) 

and the Higgs potential with quadratic and quartic 
couplings. These can be chosen (assuming CP sym- 
metry) that v a and v 2 are real [7]: 

2 + 2 e~- 1~2 _}_/~1(~ ]k el)2 _[_ ~2 ((ib~- ~2)2 V= - # a  ~bl ~bl - # 2  

~2~[(~ + nt- ( ~  " ~1)2]. q- ~ 1 q)+~22~ 

The charged eigenstates following from V are 

(~ • ~-- (/)2 (]) ; -- Vl (]~2)//) (2.7) 

with 

+4, +- 

and the neutral mass eigenstates are 

( H I ) = (  cOs~ s i n ~  ( t/l ) (2.8) 
H o - s i n (  COS~/ t/2 

H2 = (v2)G - vl )~2)/v (2.9) 

( is a function of the paramctcrs in V 

tan 2 ( =  vl/)2(23 +24 +2s) 
/~2 2 (2.10) v2-&v~ 

The orthogonal combinations 6 +, Z to (2.7, 9) form 
the unphysical components, which enter the gauge 
fixing and Faddeev-Popov Lagrangian. These are 
specified in a 't Hooft gauge in the same way as in 
[12] and we do not repeat them here. 

The calculation of radiative corrections to fer- 
mionic processes where at least one fermion pair is 
light (e § e- ,  v e . . . .  ) the Higgs exchange is suppressed 
already at the tree level (otherwise enhancement 
>103 has to be assumed). Hence also loop cor- 
rections to Higgs propagators can be neglected, 
which means that we do not need the details of the 
Higgs self couplings in V(4~> 4~2). Only the masses 
~v14, tcnalgcu ntggs) aim M 0, 1v/a, M e (neutra U and 
the couplings to fermions and gauge bosons enter 
the loop diagrams for W,, Z propagators and vertices 
with internal Higgs lines. 

The situation of enhanced Yukawa couplings 
/)1//)2 =fl>~ 1 leads to 

r177 ~ _r +/)2 r ~_ -~L /)a 
(2.11) 

/)2 
H2 ~- -X2 +7[ Zl ~- -Z2. 

The mixing angle ( for the scalar fields in (2.8) 
makes in general the couplings of the neutral scalars 
different from the charged Higgs couplings. If the 
quartic couplings 2~ in V are all of the same order, 
tan~ is of the order va/v 2 for v a,>v 2 according to 
(2.10). In this situation we have equal enhancement 
for 4) i ,  H 2 and H 1 and a minimum set of additional 
parameters beyond the standard model. For  a first 
view on the effects caused by a second Higgs doub- 
let we choose tan~=/)j/) e for concrete calculations 
in order to keep the number of further parameters 
as low as possible. In this case we get from (2.8): 

Ho-~ - t /a ,  H1 ~t/2" (2.12) 

The masses of the weak bosons are essentially de- 
termined by/)~: 

2 , Mz=Mw Ilgwu+g2 (2.13) 
g2 
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whereas my=gyv 2 causes enhanced couplings for q5 +, 
H1, H2; H 2 has a pseudoscalar 7s coupling to the 
fermions. 

With the definition of the weak mixing angle 

Mw 
cos 0 w - (2.14) 

Mz 

the Feynman rules for the interaction between the 
Higgs and gauge bosons/leptons can be derived from 
(2.2). They are listed in Appendix D for the model 
with vz >> v 2 as specified above. 

The neutral scalar H 0 has the same couplings as 
the standard model Higgs. Also the behaviour of the 
unphysical Higgs and ghosts is that of the minimal 
version. Consequently, the only place where they 
become relevant in radiative corrections are the 2- 
point functions of the vector bosons. 

Renormalization 

The formal procedure of multiplicative renormaliza- 
tion is similar to that of [12]: each multiplet of 
fields achieves a renormalization constant Z 2 via 

The coupling constants get renormalization con- 
stants Z~ : 

g2---* zW (zW)- 3/2 g2 

g, ~ Z~ (Z~)- 3/2 g, (2.16) 

g f_,  Z{(Ze ) -  ~/2 gl" 

Here we drop further details of the Higgs renormal- 
ization concerned with V(~,O2) since we do not 
need loop corrections to Higgs propagators and ver- 
tices. 

Expanding Z~= 1 +6Z~ yields the renormalized 
Lagrangian L, ~ which can now be re-written in terms 
of the physical fields W -+, Z, A, qb +-, H0, L2 and the 
parameter set 

c~; Mw, Mz; Me, Mo, Mt, M2; fl 

(c~=1/137.036 is the usual fine structure constant) 
and the counter term Lagrangian &~e, which can 
also be expressed by the same fields and parameters. 
The counter terms which we need for our calcu- 
lation are put together in Appendix C. 

3. Unrenormalized Self Energies and Vertices 

The masses of the additional scalar and pseudo- 
scalar neutral Higgs H~, 2 are denoted by Ma and M2; 

M e denotes the mass of the charged Higgs particle 
4~ + . 

In the following sections we list only those con- 
tributions to the 2- and 3-point functions (and con- 
sequently in the renormalization constants) that go 
beyond the standard model set. In exceptional cases 
where also the standard contributions are included 
this will be mentioned explicitly. All calculations are 
performed in the 't Hooft-Feynman gauge. 

3.1. Vector Boson Self- and Mixing Energies 

The 2-point functions for the vector fields can be 
decomposed into their transverse and longitudinal 
parts according to 

A~(k)= - g , ~ +  k2 ]AT+~y-A~L (3.1) 

where ~ = 7, Z, W, 7 Z. 
For our purpose of calculating radiative correc- 

tions to fermionic processes where at least one fer- 
mion pair is light it is sufficient to deal with the 
transverse parts only. These define the self energies 
in the following way: 

i i 1 
Z~(k2) k2 M~ , c~=7, W,,Z A w - k 2 - m  2 k 2 -M~  

i 1 (3.2) 
A~T z -  112 z'Z(k2) k z _MZz - 

In particular we have as extra Higgs contributions: 

Photon self energy (Fig. 1): 

Z ~ ( k 2 ] = ~ k  2 (A ~.~)M2 
" " 12rt - I n +  z~in(k2), 

Z~in(k2) = 1~-~ k2 in ~ w  3 

+(k 2 - 4 M,~) F(k 2, Me, M,)] .  (3.3) 

Photon-Z mixing energy (Fig. 2): 

o: s2--Cw k2 A - I n  rz 2 
z~Z(k2) ~ 6SwC w + S~in(k ), 

[ ,z 2 ~ s 2 - - c 2  k 2 1 n ~ 2  q 2k2 
Zfi'(k )-47z 6SwC w M~ 3 

- 4 M ~ )  F(k 2, Me, Me) ] . (3.4) +(k  z 

Fig. 1-9. Non-standard contributions to self energies and vertices 

Fig. 1. Photon self energy 
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r ( 

Y . . . .  z ~ z 

Fig. 2. Photon-Z mixing energy 

/ ~-~ H 1 
H 1 [ I 

H2. 

l ~  ~ ~4 

Fig. 3. Z boson self energy 

~ - ~ \  H 2 / 

Hz ~ / 
f 

Fig. 4. W boson  self energy 

i - -~- \  $ * 

HI Hz 

f f f f v f 

r 

v f "~ 
Fig. 5. a Charged lepton self energy, b neutrino self energy 

k 2 F( k2, M 1 , M e) 

2 2 2  
d- (M2 -Me)k2 F(k 2, M2, Me) 

+(k 2 - 2 M  2 - 2 M ~ )  

�9 [1+ M e 
M 2 ~ l n M ~ t  +F(k2, M1,Me)] 

+(k 2 - 2 M  2 - 2 M ~ )  (3.5) 

in Me . F k  2 M [ lq M 2 + M ~  M~zt ( ,  2,M~)]. 

In these formulae s w and c w are used as abbre- 
viations for 

Z boson self energy (Fig. 3): 

XZ(k2)_%n l+(c2-s2)2k2  ( A _ l n M 2 ] + X Z  (k2), 
12C~vS~v p2 ] 

c<{ 1 [ M2 2k 2 
XZn(k2)=4n " • 2 k21n ,~w -t 

12cws w M1M z 3 

+ 2(M~ - Mz 2 ) In ~-~ -~ (M2 -k2 M2)2 

�9 F(k 2, Ma, M2)+ (k z - 2 M  2 - 2 M  2) 

+ 
( 1 4 M 2  M221n~+F(k2,  M1,M2))] 

(Cw-Sw) k z In q 
~- 2 ~  12CwS w Me, 3 

+(k2-4M~,)F(k2, Me, Me)]}. (3.5) 

W-boson self energy (Fig. 4): 

ZW(kZ)= ~ A - l n  q-~ ' f in (k  ) ,  
6S W ]12 ] 

c~ 1 { ( M2 
z" "(k21-4  128  k2 ln +ln 

M e M1 M2 

+ 2 (M) - M~) In M e  + 2 (M~ - M~) In Me 
M1 M2 

s w = sin Ow, c w = cos 0 w. (3.7) 

All other quantities in (3.3-6) are defined in the 
Appendix A. 

3.2. Fermion Self Energy 

The diagrams of Fig. 5 contain the Higgs scalars 
with enhanced couplings to the charged lepton�9 The 
self energy X I of the fermion f, defined via 

i i 1 
SF(k)-tC-my CO-my XY(k) l t -my (3.8) 

can be decomposed as 

Zf(k) =k  Xf(k 2) +7~ ]/5 Zaf(k2) + my Zd(k2). (3.9) 

The diagrams of Fig. 5 give for a charged lepton: 

z f  = -4nn Gf[B~ (k 2, my, Ma)+ B~(k 2, ms, M2) 

+ B~ (k 2, O, Mo)] 

c~ GyBl(k2,0, Me) (3.10) = - G  

Gf[Bo(k 2, ms, M,) -Bo(k  2, my, M2) ] 
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~, I H1 

f f 

Fig. 6. Electromagnetic vertex of charged leptons 

and for a neutrino' 

5~ 
S~v s = - S ~  s = - - ~  Gy B, (k z, my, Me) 

I:},=0. 
(3.10') 

In these equations we have used Gy as an "effective" 
coupling 

G _ 1 (flml]2 (3.11) 
f - 4 s ~  \Mw / 

f v ' ~ f  

Fig. 7. Weak neutral current vertex for charged leptons 

Fig. 8. Electromagnetic vertex of neutrinos and neutral current 
neutrino vertex 

that contains the enhancement factor ft. 
The functions B 0 and B~ are 

Appendix A. 
given in 

3.3. Vertex Corrections 

We calculate the contributions of the extra Higgs 
scalar with enhanced couplings to the leptonic elec- 
tromagnetic and neutral current vertex. Thereby the 
fermion are taken on-shell; k 2 denotes the momen- 
tum transfer at the vertex. 

Electromagnetic Vertex. The results from Fig. 6 can 
be summarized in the form* 

Fyf (k2 )=ieG 

c~ G I(A M~ 1\ my)] --ieT, ~ r  - l n - ~ - + ~ ) + A l ( k 2 ,  M1, 

[ (  ] Gr 1 M~ +2  +A,(k2 ,M2 - i e G ~  - ~  A - l n ~ -  ,ms) 

~ (A M~ 1~ 
+ie7~(1+75) 47r : [ ~  - l n ~ - + } )  +A2(kZ, M4)]. 

(3.12) 

The UV-finite functions A~,A 2 are given in 
Appendix B. 

Weak Neutral Current Vertex. With the axial and 
vector coupling constants 

1 
a - v=a(1 -4s~)  (3.13) 

4Sw cw' 

we write for the sum of the diagrams in Fig. 7: 

* Terms ~m} are neglected in (3.12, 14, 17) 

F y  S (k2) = i e 7,(v - a  75) 

-ie7u(v+a?s) 4rt f - I n  ~ - + ~ )  

+Al(k 2, MI, mf)] 

_ieG(v+a75)~n@[_~(AC~ - ln~-+~)M 2 1\ 

+ Jil(k2, M2, m~-)] 

,o " 

+A2(k 2, Me) ] 

G (A M~ 1\ 
- i - - 7 , ( 1 + 7 5 ) ~ -  n f [ - ~  

e 

2CwS w 

+ ~_3(k 2, Me) ] 

e a G [ M1M 2 1 + i - -  y, A --In 
2CwSw ~ T~ i ~ - + ~  

+A_4(k 2, M1, M2, my)]. (3.14) 

The neutral current neutrino vertex reads (Fig. 8) 

e 
r f v v ( k 2 )  = " - -  Tu( 1 4 C w S  w -Y5) 

c~ G ( 1 (A ' M~ 1\ 
+ i e T u ( 1 - 7 s ) ~  fl4~wS w - i n ~ - + ~ )  

Sw /~s(k 2, M•,mr) 
c W 

} CW - - S W  - 2 + ~ A 6 ( k  ,Me, my ) . (3.15) 
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r  r . " "  

w - - - < 2 .  . 
"~ "% f 2 f 

Fig. 9. Charged current leptonic vertex 

Finally we give the electromagnetic vertex for the 
neutrino (Fig. 8): 

Fff"~(k 2) = i e 7u(1 - ?s) F~ (k2), (3.16) 

Fg(k 2) = - - ~ -  GI[As(k 2, M+, my) +/16 (k 2, M+, ms) ] . 

Weak Charged Current Vertex. The leptonic charged 
current vertex gets contributions from Fig. 9: 

r y . s ( k . )  = 7,(1 - y,) {1 
2] /2s  w 

M~ 1 1 M 1M~ +4.  r 

(3.17) 

For the invariant functions /1~ .. . .  ,AT again see 
Appendix B. G ! is defined in (3.11). 

4. Renormalization 

We follow the on-shell renormalization scheme as 
worked out in detail in 1-12]. 

The procedure for obtaining the renormalized 2- 
and 3-point functions by adding counter terms is 
specified in Appendix C. We restrict ourselves to the 
renormalization in the physical sector (without 
longitudinal vector boson, ghost and Higgs-ghost 
self energy renormalization) that enters the radiative 
l-loop corrections of the fermionic processes (i)-(iii), 
Sect. 1. The physical sector can be treated separately 
from the unphysical one by the method of 1-12]. A 
complete renormalization would need the whole in- 
formation about the 2-doublet Higgs potential. 

We denote the renormalized quantities by the 
same symbol as the unrenormalized ones in Sect. 3 
but with an extra . 

The conditions which fix the renormalization 
constants in the counter terms of Appendix C are: 

ReXZ(M~)=Ref~W(M~v)=ReZY(C~=my)=O (4.1a) 

Z'z(o) = 0 (4.1 b) 

ak 2 (0)=0 (4.1 c) 

1 Zf(k) k=,.f K-m,. = 0  (4.1d) 

ffff~e(o) = i e Yu' (4.1 e) 

The last condition involves the electrons on-shell. It 
is only a condition for the vector part; the vanishing 
axialvector in the Thomson limit is already a con- 
sequence. 

From the set of (4.1), together with (C.2), (C.3) 
from Appendix C, the following expressions for the 
gauge field and gauge coupling renormalization con- 
stants are derived: 

(Aw:=A - l n M ~  

( M2 
3 Z ~ = 6 Z ~ -  12u A w + l n ~ 2 ] '  (4.2) M o !  

~ ' -1  2 2 2  2 
[ . . 

12CwSw MOJ 

+ 4 - 4 ,  
Mz Mw !fin S 2 ~ 2 

c~ [ 1 ~ M2w \ 
g ) z W - - - ~ t ~ S 2 w A W + ~ I n ~ )  

c 2 {5M2z 6M~ 

2 2 
bz~Z = (3Z~ z _ c~ s w - c w A w 

47~ 6s w c w 

+cw \MTzz s w M 2  )fl. 

with 

( Mz' 
~2Z2 M 2  )fin 

Z 2 (~,fin(Mz) w 2 Sf[n(Mw) ~ 
= R e ~  M2 M~ v (4.3) 

Z W and Seth, 2 f i  n from (3.5) and (3.6). 
For the charged leptons we give the expressions 

for the vector and axialvector renormalization con- 
stants which enter the counter terms for the vertices. 
They follow from (4.1d) and (C.6): 

c~ ( 1 / A ,  M~ 1~ l f A _ l n M  ~ 1, Z 

-fig-+~) + 6zf~ ~ , (4.4) 

( 3 Z a = ! G y "  1 (A " M~, 1\ 
47r 5 - t n ~ 7 - + 2 }  (4.5) 
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•Tfin ~v in (4.4) denotes the finite part 

~Tfi~ - 2 - 2 ~v =B~(mf, my, Mt)+ Bl(m], mr , M2) 
+ 2m}[U't(m}, mr M,) -B'o(m ~, mr., Ma) 

+ B't(m}, me, M2) + B'o(m}, ms, M~)]. (4.6) 

For the functions/3t, B'~, B o see Appendix A. 
Two limiting situations are of particular interest: 

heavy Higgs (M~, 2 > m~): ~v'~Tfin ~ o -  

light Higgs (M~,2~m~): 6Z vfi._~+31n7 M~_lnM2" 
my my 

The condition (4.1d) ensures that we do not need 
an external wave function renormalization in calcu- 
lations of matrix elements with external charged lep- 
tons on their mass shell. External neutrino lines, 
however, get a wave function renormalization con- 
stant 

1 ~ [ M~M 2 fin \ 
1 - ~ "  4~-0~ I l n ~ - ~ - + a Z v  ). (4.7) 

5. Renormalized Self Energies and Vertices 

The formulae of Appendix C together with the ex- 
plicit form of the renormalization constants from the 
previous section allow us to give the following list 
of the relevant boson self and mixing energies and 
vertex corrections. 

Boson self energies: 
M# 

~e(k  2) = ~V~in(k2 ) - ~ - ~ -  k 2 In (5.1) 
12n M~' 

s  zcb2 , v2Cw{CSM~ c~M~v 
----fin'" l--r~ ~ ~ ~ Z  M2 ]fin 

2 2 2 oc c w - s w M w 
q- k 2 in 

4re 6SwC w M~ ' 
*Z 2 Z 2 Z (k)=Se~(k  ) ReZZ~(M 2) 

+(k2_Mi)[c~r-s~r ( (5M2 8M2~ 
Mw /tin [ s~ \ M 2 

12~ 

I~W(k 2) w 2 w = Zfin(k ) -  Re Zri.(Mw) 
[c 2 {6M~ 6M 2 

+(k ~-Mg) [~  ~ M~ 
Mw /fi~ 

1 - 12~-In M~J" 

Electromagnetic vertex." 

7 _ _  7 FSr FJ?s) (5.2) 

with the formfactors 

F~= ~- Gr fll(k2, M~,mfl+ fl~(k2, M2,mr) 

- zi 2 (k 2, Mr - ,~7~i-] (5.3) 

c~ @712(k2, M~). (5.4) r~ = - ~ -  

c57fi" is defined in (4.6), Gy in (3.11) and the A_- ~V 
functions in Appendix B. F A vanishes for k2=0 so 
that real photons have no axial coupling. 

Weak neutral current vertex: 

fzY Y= i e ?,(v - a  7 5) + i e T,(FvZ- FZ 7 5) (5.5) 

with the form factors 

FZ-  47c v[~ll(k2'Ml'mf) 

,~7finq +3~(k ~,M~, ml) ~ v  

+ 2CwS ~ A 2 ( k  ,M e ) 
1 - 2 

+ ~  A3(k , Me) (5.6) 
J ZCwS W 

FZ:  L Gy {a[ fl,(k2, Ml, mf)+ flx(kZ, M2, m,) 

+ 2zi4(k 2, M,, M2, mr-) + aZg"] 

+C~v-S~ Y42(kZ, 2CwSwl _]13(kZ, Mr (5.7) 

For the neutrino vertex one finds: 

FZVV(k2)=ieT,( 1 - ? s ) [ ~ 1  +F~Z(kZ) ] 
L4cwS w J' 

z 2 _ c~ f 1 (in M1 M~ fin\ 

Sw Zls(k 2 , M ~ ,  m I) 
CW 2 } 

, C w - - S w  " 2  ~ ~ 
+ - ~  l l6  tK-,  1v1,, %.) . (5.8) 

2 C w S  w 

Since there is no counter term for the v v 7 vertex the 
form (3.16) is identical to the renormalized F~ .%~ 

Weak charged current vertex: 

e 
/~wvY(k2) = i 2 ~ s  w 7u(1 -75) [1 + FW(k2)], 

az(~&(k ~, M~, M~) FW (k2) =4~ 

+ lzi7 (k 2, M 2 , M,) + 6z~)n}. (5.9) 
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For the functions /1~ . . . .  we again refer to 
Appendix B. 

Table 1. sin20w and M w for Mz=93.2GeV. (Pure numbers for 
masses in GeV) 

M 1 M 2 M4~ sin 2 0 w M w (GeV) 
6. D i s c u s s i o n  o f  L e p t o n i c  P r o c e s s e s  

Mz Mz 
The results of Sect. 5 enable us to discuss the effects 10 10 
of non-standard Higgs particles on those observables 0.1 0.1 
from which s 2 and the vector boson masses can be M z M~ 

determined. We restrict the investigation to the fol- 10 10 
lowing electroweak processes: 1 1 

0.1 0.1 
(i) /t decay: the lifetime z, yields a relation be- 5M z 5M z 

tween M z and M w ;  5M z Mz 

(ii) ~-v ~" e scattering, which allows a determination 5M~ M z 

of the weak mixing angle; Standard 
(iii) e+e  ~ / t + #  -, z+z  - for P E T R A  and LEP  

energies. 

6.1. Re la t ion  Be tween  M w and M z 

For a given value of M z the mixing angle resp. M w 

= c w M z is fixed in terms of the well known # life- 
time z u and the theoretical expression 

1 1 [ ~ . . . . .  q 
- o [ i  + ~ U 4 ~ - ~ )  1 (i--6weak) -2 (6.1) T# '~'# 

with 

z ~ 384~z mu mZu ] \ m w s w !  

6w~ak depends on M z and s2; therefore (6.1), togeth- 
er with M w = M z c w ,  can be solved numerically 
yielding values s 2 ,  M w for a given M z. 

6 , ~  k is the sum of the standard weak corrections 
6S.eak (including the standard single Higgs contri- 
bution) and a non-standard part NS 3w~.k due to the 
extra scalars. The standard part  is specified in [13]. 

The non-standard contribution allows the follow- 
ing approximation:  All the Higgs couplings to the 
fermions involved in /~ decay contain at least a fac- 
tor (mu/Mw)  2 in the matrix elements, that suppresses 
single Higgs exchange and box diagrams with Higgs 
exchange so much that even fl~103 would not be 
sufficient a make their contribution physically signif- 
icant. Also the insertion of vertex corrections and v 
wave function renormalization do not give larger 
effects. Therefore the only relevant part  in us bw~ak is 
the W self energy generated by the extra Higgses: 

_ s S w ( 0 )  (6.2) 
6weak-- t~weak ~- M ~  

with 2~ w from (5.1). 
The results for s~v and M w obtained numerically 

from (6.l) and (6.2) for a given M z are listed in 

M z 0.2208 82.27 
M z 0.2194 82.35 
M z 0.2194 82.35 

5M z 0.1995 83.39 
5M z 0.1916 83.80 
5M z 0.1915 83.80 
5M z 0.1915 83.80 

M z 0.2005 83.33 
M z 0.2212 82.25 
5M z 0.2207 82.28 

0.2208 82.27 

Table 1 for some values of the extra Higgs masses. 
In this analysis also the standard correction s CSweak is 
incorporated with Mno= 100GeV. The results can 
therefore directly be confronted with experimental 
data. 

A significant deviation from the standard result 
is obtained if either 4) + or H, ,  H~ are heavy. All 
other cases lead only to small modifications. These 
results are in agreement with those of a similar 
analysis by Bertolini [14] performed in Sirlin's re- 
normalization scheme [15] without field renormal- 
ization. 

If the neutral H1, H 2 become light the values for 
s 2 and M w tend to become insensitive to their ac- 
tual masses depending only on M~ (besides Mz) .  

Precision measurements of M w and M z may decide 
about the existence of additional Higgs bosons with 
large mass splittings, since a variation of M N in the 
standard model between l0 and 500 GeV gives only 
As2=0.0035 resp. A M w = O . 1 9 G e V .  The value for 
M w in case of M 4 , ~ - 5 M  z is about  the 1 - t r  limit of 
M w [163. 

6.2. Neu t r ino  Elec tron  Scat ter ing  

The determination of sin 2 0 w with help of a purely 
leptonic process has the advantage that it is free of 
theoretical uncertainties. A sensitive measurement 
can be obtained in terms of the ratio of neutrino 
and antineutrino cross sections 

a(v  u e) 
R~ = o_(9_ u e) (6.3) 

which reads in lowest order: 

RO_1+~+~2 1 _ ~ + ~ 2  , ~ = l - 4 s  2. (6.4) 
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The standard model corrections to R~ have also 
been discussed in [13] and turned out to be very 
small around S~v=0.22. This is agreement with an 
independent analysis by Bardin and Dokuchaeva 
[18]. In particular the standard corrections are near- 
ly insensitive to the mass of the standard Higgs such 
that R~ can be considered as a function of S~v only, 
also in higher order. 

Now let us discuss the extra Higgs contributions. 
They consist of 

a) the ? Z  mixing energy 
b) the neutrino charge radius (from the electro- 

magnetic neutrino vertex) 
c) box diagrams with exchange of one or two 

Higgses. 

The v v Z vertex contributions together with the 
neutrino wave function renormalization vanishes for 
k2---,0. Moreover, by the same argument as in 6.1 
one can neglect all diagrams where a Higgs couples 
to the electron (small m J M  w factors). Therefore the 
only relevant part consists of a) and b) which lead to 

R~ - 1 - 3~z _ ~(1 - 23~z) + ~2 (6.5) 

where 

l n ~ T - -  + ~ - ~ ' M + ]  ( m. 6) (6.6) 

with s from (5.1). The second term is the v charge 
radius lim F~/k z where F~ is the electromagnetic v 

k2~0  

formfactor in (3.16). Figure 10 shows the dependence 
of R v on the mixing angle s 2 for various mass values 
of the extra Higgs bosons. In contrast to the stand- 
ard situation there is now also a significant de- 
pendence on the scalar masses, which means that the 
extraction of S~v from a measured R~ value will lead 
to different s 2 for different masses of the extra 
Higgses. Again we encounter the situation that re- 
markable deviations from the standard model occur 
only if either M~ or (M~, M2) are large. R~ becomes 
independent of M 1 and M 2 for light neutral scalar/p- 
seudoscalars. 

The neutrino charge radius in (6.6) plays only a 
subordinate r61e, in particular for heavy qb +. E.g., 
M + ~ M  z and fi= 300 would change R~ by less than 
0.01. This is also different from the minimal model, 
where relatively large contributions from s and 
the v charge radius cancel each other. 

The experimental value for R~ is [19] 

+0.41 
R~P= 1.26 

-0.28" 

i - -  i ~ L i i 

2.0 ~v 

, , \  ",, ts ,<)<),, , ~  

.1 ,1g . 2 0  2 2  . 4 . .28  .30  

s~ 
Fig. 10. R~, (6.3), in lowest order ( - - )  and for different Higgs 
masses with radiative corrections due to additional Higgs bosons. 
Mz=93.2GeV. - -  . . . .  M a = M 2 = M z ,  M 4 = 5 M  z, - . . . . .  M 1 
= M ~ = I O G e V ,  M ~ = 5 M  z. f l=50 

0.5 

This gives in the standard model: 

sin 2 0 w =0.221 +0.031. 

The mean value of R v would give in the two 
doublet model: 

MI M2 M 4, sin z 0 w 

10 GeV 10 GeV M z 0.220 
10 GeV 10 GeV 5M z 0.203 
M z M z 5 M z 0.208 
5 M  z 5M z M z 0.208 

The present accuracy does not allow to put tight 
restrictions on the possible mass range of extra sca- 
lars, but this will change with the expected improve- 
ment in the R~ measurements aiming an accuracy of 
A s~ = 0.005. 

There is also a second way to discuss the quan- 
tity R~: 

For a fixed M z ,  sin 2 0 w can be determined with 
help of T, as done in 6.1. The theoretically predicted 
value for R~ is then a function of the extra masses 
and can directly be compared with the experimental 
result. The theoretical R~ values obtained in this way 
are listed in Table 2. Again the variation of R~ is 
within the experimental uncertainty. 

6.3. e + e -  ~ l  + l -  

The standard electroweak corrections in the on-shell 
scheme have already been presented in [13, 20] for 
the forward-backward asymmetry, and for the polar- 
ization asymmetry in [20, 21]. 

We want to discuss now the effect of the ad- 
ditional scalars in the 2-doublet extension of SU(2) 
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Table  2. R~ for M z = 9 3 . 2  GeV. (Pure  numbers  for masses  in GeV) 

M 1 M 2 M 0 R~ 

M z M z M z 1.26 
10 10 M z 1.27 
0.1 0.1 M z 1.27 

M z M z 5 M  z 1.34 
10 10 5 M  z 1.36 

1 1 5 M  z 1.36 
0.1 0.1 5 M  z 1.36 

5 M  z 5 M  z M z 1.32 
5 M z M z M z 1.26 
5 M  z M z 5 M  z 1.26 

S t anda rd  1.26 

- Longitudinal polarization asymmetry AL: 

~(P~) -~(-eL) 
PL " AL - -  a(PL) + a(  -- PL)" (6.9) 

The differential cross section has the form 

da 0{ 2 
dO - 4 s lay (0) + PL aL (0)] (6.10) 

where 

s----(p e + p e + )  2, 0 = ~ ( e - , f l - ) .  

With the propagator  function 

x U(1). Some simplifications can be made based on 
the small me/M w ratio: 

- vertex corrections with scalars in the e § e -  ver- 
tices can be neglected because of the factor 
(fl m e / M w )  2. 

- Box diagrams with exchange of one and two 
scalar bosons can also be neglected since the Higgs 
has always to couple to the electron. 
- The scalar-vector mixing propagators  give also 
terms of order (flmemr in the matrix element 
and can therefore also be neglected for fl not essen- 
tially larger than 102 . 

Consequently we have to take into account 

- the 7 and Z self energies 
- 7Z mixing energy 
- the final state vertex corrections. 

In case of a/~+ # -  final state the latter one will also 
give a negligible contribution due to the factor 
( m j M w )  2 in the vertex diagrams; for a z+z - final 
state, however, mUM w can be (partly) compensated 
by the enhancement factor ft. This different magni- 
tude of the vertex corrections can give rise to an 
apparent violation of t h e / ~ - ~  universality in physi- 
cal observables. 

Since polarization experiments become feasible 
around the Z ~ we include the case where the elec- 
tron is longitudinally polarized with polarization de- 
gree PL- The following observables are of particular 
interest: 

- Integrated cross section: 

do" 
a = ~ d~2 ~ (6.7) 

- Forward-backward asymmetry Avs: 

1 d a  " d O  d a  \ 

s 
Z (s) = s - M~ + ~z (s) (6.11) 

a v and aL can be specified in the following way: 

a~=(A~ +AJ2 Re z + A ~  Imz+A~[z[2)  . (1 +cos2 0) 

+(U~ +U~ R e z + B ~  Imz+B{[z[2)  .2cosO 
(6.12) 

for j =  U and j = L .  
The 0-independent coefficients ,4, B are put to- 

gether in Table 3. The form factors F v and F a in the 
table are those defined in (5.3-7). For the numerical 
discussion we have used fl = 50. The quant i t ies /7  are 
the relative self energies 

n ~'= 2~ ~ (s)), H ~ z _ 2~ z (s)., (6.13) 
s s 

~ , ~ z  are the renormalized functions of (5.1). 
We divide the discussion into two parts: 

a) P E T R A  Energies. At energies around 40 GeV the 
leptonic polarization asymmetry is small (~2~o);  
higher order effects are < 1 ~o. Therefore we con- 
centrate our discussion on the unpolarized observ- 
ables a and A V g .  

Figure 11 shows how the relation between AFB 
and s 2 (for fixed Mz) is modified in case of a heavy 
~b § A heavy H 1, H 2 pair gives a similar effect. For  
light H1, H 2 AFB becomes independent of M1, M 2. 
Values for s 2, if extracted from -~FB~r for given M z, 
would be lower than in the standard model. This 
behaviour is just opposite to the tendency of the 
PETRA experiments [-17]. On the other hand, the 
measured AFB can be converted to restrict possible 

2 is taken from Mw, z extra heavy Higgs states if s w 
measurements as s 2 = 1 - M w / M  z . 2  2 

Differences between the # and r asymmetry are 
small in all cases (~0.1 ~o). This is due to cancel- 
lations of the leading vertex corrections which are 
different for # and z. 

The second point of view incorporates the results 
of 6.1 and relates a and AVB directly to M~, M 2 ,  M e 
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Table 3. Coefficients in the differential cross section for e + e - ~  l + l- 

j = U  j = L  

AI 1 - 2  R e l i C + 2  ReF~ 

A{ 2vZ(1 - R e  H e ) - 4 v  R e / F  z 

-]-2/) 2 R e F ~ . + 2 v a  Re FJ + 2v R e F v  z 

Ai3 - 2 v  z I m  H ~ + 4 v I m  H ~z 

+2v 2 ImF~j+2va ImF~ -2v  ImFv z 

A{ (v 2 + a2) z - 4v(v ~ + a z) Re H "~z 
+2(v 2 +a 2) (v ReFZ +a ReFa z) 

BI 0 

B~ 2a  z (1 - Re H ~) 

+ 2a z Re F~ + 2va  ReF~+2a ReF z 

B~ - 2 a  ~ Im H ~ 

+ 2 aZ lm F~ + 2 v a lm  FJ - 2 a lm  F z 

B~ 4v 2a z - 8 v a  z ReH ~z 
+ 4 v a ( v  Re FZ+a ReFv z) 

0 

2va(1 - Re H '0-2a  ReH rz 
+2a 2 ReFf t+2va  Re F~+2a ReFv z 

- 2va  Im FF + 2a Im H ~z 

+2a 2 I m F J + 2 v a  lm F~-2a lmFv z 

2va(vZ +aa) -2a(3vZ  +a z) ReH ~z 
+4va(v  ReFZ+a ReFa z) 

2 ReFJ 

2v a(1 - Re H ~) - 2a Re H ~z 
+ 2 v a  Re F~ +2v 2 Re FJ +2v ReFa z 

-2va lm/7  ~ 
+ 2 v a  ImF~+ 2v z ImF] -2v  lmF z 

2v a(v z +a 2) - 2 a ( 3 v  z + a 2) Re IF z 

+ 2(v z + a 2) (v Re Fv z + a Re Fff) 

12] t , ~ i , , i 

L IAFsl "/. 1'~f) ~ ~:34.S GeV 

7 

s 1~ ' ' ~ ' ~ ' . .~, 20 �9 .2 "t . 6 .28 .30 
s ~  

Fig. 11. Forward backward asymmetry as function of s~v at ]/s 
=34.5GeV. Mz=93.2GeV. - . . . . .  M I - M 2 = M z ,  M4~=5M z, 
. . . . .  M~=M2= 10GeV, M I,=5M z. fl=50 

by means  of (6.1-2). The  results are l isted in Tab le  4. 
Dev ia t ions  from the s t anda rd  mode l  would  be ha rd  
to detect  exper imenta l ly  ( < 0 . 3  ~o). The  reason is that  
the effect of the Z self energy in (6.12) and  of the W 
self energy in (6.1) largely compensa te  each other. 

In  the cross section, however ,  there  is a v io la t ion  
of the universal i ty  in the case of  l ight neutra l  par-  
ticles (1-3~o effect). A light p seudosca la r  gives a 
cons tan t  con t r ibu t ion  for M 2 ~ 0 ,  whereas  a l ight 
scalar  yields a l oga r i t hmic  increase for M~ ~ 0 .  Their  
con t r ibu t ions  to o are a lways  negative.  A 5 ~ effect, 
which cor responds  to the present  exper imenta l  un- 
cer ta in ty  for a j o  o [22] is ob t a ined  e.g. for M~ = M  z 

= 1 0 G e V  and  f l = 2 0 0  or  M a = M 2 = S G e V  and fl 
= 140. This  is a t ighter  l imit  for fl as from g - 2  for 
m u o n s  [6]  in the degenera te  H 1, H z case. 

Table 4. 1/s=34.5 GeV (,6=50) 

M1 M2 m~ a(z + z-)/~ro AF,(r) ~r(~ + U-)/(r0 ,4Fd#) 

M z M z M z 1.003 - 8.52 1.002 - 8.62 
10 10 M z 0.999 - 8 . 5 7  1.002 - 8 . 6 3  
0.1 0.1 M z 0.980 - 8 . 5 7  1.002 - 8 . 6 3  

M z M z 5 M  z 1.003 - 8 . 6 9  1.002 - 8 . 8 0  
10 10 5 M  z 0.999 - 8 . 7 9  1.002 - 8 . 8 6  

1 l 5 M  z 0.990 - 8 . 7 9  1.002 - 8 . 8 6  

0.1 0.1 5M z 0.978 - 8 , 7 9  1.002 - 8 . 8 6  

5 M  z 5 M  z M z 1.002 - 8 . 6 9  1.002 - 8 . 8 0  
5 M  z M z M z 1.003 - 8 . 5 9  1.002 - 8 . 6 2  

5 M  z M z 5 M  z 1.003 - 8 . 5 9  1.002 - 8 . 6 1  

0.1 M z M z 0.985 - 8 , 5 3  1.002 - 8 . 6 2  

M z 0.1 M z 0.998 - 8 , 5 4  1.002 - 8 . 6 2  

S tanda rd  1.002 - 8 . 5 3  1.002 - 8 . 6 2  

b )  O n - r e s o n a n c e .  We consider  the exper imenta l ly  

most  interest ing case I /S-=  M z and  include the longi-  
tudina l  po la r i za t ion  a symmet ry  (6.9). 

F igures  12 and  13 display the sZ-dependence  of 
AFB and A L for the case of a heavy charged  Higgs. 
The  asymmetr ies  for /~ and  r are only sl ightly dif- 
ferent due to the fact that  the formfactors  largely 
cancel  in the asymmetr ies .  Also  a c o m m o n  l imit ing 
curve is reached for l ight neut ra l  part icles,  which 
represents  essential ly the lower  curve in the figures. 

The case of a heavy H 1 ,H  2 pa i r  and  M o ~ M  z 

prac t ica l ly  coincides  with the previous  one (q5 § 
heavy, M 1 ~ M  2 ~ M z )  and is not  d i sp layed  separa te-  
ly. Devia t ions  from the s t a n d a r d  mode l  p red ic t ion  in 
all o ther  cases (no large mass  split t ing) are less sig- 
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30 Irff= Mz 
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Fig.  12. On-resonance forward backward asymmetry, S~v- 
dependence .  M z = 9 3 . 2 G e V .  - . . . . .  M I = M 2 = M z ,  M , ~ = 5 M z ,  

. . . . .  M 1 = M 2 = 1 0 G e V ,  M 0 = 5 M  z. f l = 5 0  

nificant (<0.7%). Qualitatively, this behaviour is 
quite similar to that encountered in a). 

N o w  we follow the lines of a) and incorporate 
the results of  6.1, which means that S~v is no longer 
an independent quantity but already fixed if M z and 
the Higgs masses are specified. 

6C ~ AL (%) 
x 
\ \ s=M ~, 

3 0  

2c \~ \  \ 

lo '"~),~ 

-2(3 

\ \ \ .  

6 i i i i i 
.1 .18 ,20 .22 .24 .26 .28 .30 

s~ 
Fig.  13. On-resonance polarization asymmetry A L. S2w-dependence. 
M z = 93.2 GeV.  M 1 = M z = M z ,  M e = 5 M z, - . . . . .  M 1 
= M 2 = 1 0 G e V  , M ~ = 5 M  z. f l = 5 0  

The values of a, AFB, A L obtained in this way 
are put together in Table 5 for various choices of  the 
Higgs masses, both for # and z final states. 

Let us first have a look at the asymmetries: 

Table 5. ] / s  = M z. (fl = 50) 

M 1 M 2 M o z + z # + ,u- 

a/ao AFB AL a/ao AFB AL 

M z M z M z 0.9989 3.95 22.90 0.9986 3.96 22.90 
10 10 M z 0.9403 4.07 23.29 0.9398 4.09 22.90 

1 1 M z 0.9287 4.07 23.28 0.9395 4.09 23.29 
0.1 0.1 M z 0 .9182 4.07 23.27 0.9395 4.09 23.29 

M z M z 5 M  z 0.9508 4.92 27.75 0.9506 4.92 27.75 
10 10 5 M  z 0.8786 4.83 29.37 0.8783 4.89 29.36 

1 1 5 M  z 0.8662 4.73 29.24 0.8745 4.88 29.38 
0.1 0.1 5 M  z 0.8546 4.60 29.03 0 .8744 4.88 29.37 

5 M  z 5 M  z M z 0.9526 4.86 27.45 0.9528 4.87 27.45 
5 M  z 5 M  z 5 M  z 0.9982 3.89 22.70 0.9991 3.89 22.70 
5 M  z M z 5 M  z 0.9972 3.92 22.79 0.9981 3.92 22.97 

M z 10 5 M  z 0 .9424 4.92 28.45 0.9421 4.95 28.44 
M z 1 5 M  z 0.9399 4.88 28.39 0 .9420 4.93 28.41 
M z 0.1 5 M  z 0.9395 4.88 28.38 0 .9420 4.93 28.41 

10 M z 5 M  z 0.9428 4.92 28.45 0.9421 4.95 28.44 

1 M z 5 M  z 0.9371 4.86 28.35 0 .9420 4.93 28.41 
0.1 M z 5 M  z 0.9256 4.77 28.19 0 .9420 4.93 28.41 

5 M  z 5 M  z M z 0.9562 4.86 27.45 0.9528 4.86 27.45 

5 M  z M z M z 0.9982 3.89 22.70 0~9991 3.89 22.70 
5 M  z M z 5 M  z 0.9972 3.92 22.79 0.9981 3.92 22.79 

M z 10 5 M  z 0 .9424 4.92 28.45 0.9421 4.95 28.44 
M z 1 5 M  z 0.9399 4.88 28.39 0 .9420 4.93 28.41 

M z 0.1 5 M  z 0.9395 4.88 28.38 0 .9420 4.93 28.41 

10 M z 5 M  z 0.9428 4.92 28.45 0.9421 4.95 28.44 
1 M z 5 M  z 0.9371 4.86 28.35 0 .9420 4.93 28.41 

0.1 M z 5 M  z 0.9256 4.76 28.19 0 .9420 4.93 28.41 



304 W. Hollik: Non-Standard Higgs Bosons in SU(2) x U(1) Radiative Corrections 

Differences between A u and A ~ are not more than 
~0 .4%;  this is again a consequence of cancellation 
of the leading vertex corrections in AFB as well as in 
A L. Consequently, AFB and A L are not very sensitive 
to the enhancement factor. 

Comparing the results with the standard model it 
becomes obvious that the on-resonance asymmetries 
are sensitive to the extra Higgs contributions, in 
particular when either ~b + or H1, H 2 are heavy. This 
is different from the off-resonance case. The reason 
for this is that W and Z self energies do not com- 
pensate each other for s=M~ (on-shell subtraction 
of 2;z). One can also learn that a light H, ,  H 2 pair 
tends to a common limit in the asymmetries. 

The integrated cross sections in Table 5 are given 
as ratios a/ao, where a 0 measures the lowest order 
standard cross section (S2w =0.2208). The sources for 
deviations from 1 are 

- different coupling constants resulting from (6.1) 
and (6.2); 
- contributions from ~ z  and the formfactors; light 
neutral Higgs give 2-3 % difference between # and z; 

different Im ^z 2 - Z (Mz) in case of light neutral par- 
ticles. 

a will therefore, in contrast to the asymmetries, 
show a dependence on light neutral particles and to 
enhancement effects. For a more realistic experimen- 
tal discussion also the effect of light scalar 
bremsstrahlung has to be considered. 

7.  C o n c l u s i o n s  

In the framework of a SU(2)• U(1) gauge theory 
with 2 Higgs doublets and enhanced Yukawa cou- 
plings we have calculated the l- loop corrections to 
the leptonic processes # decay, rue scattering and 
e+e---*/~+# -,  r + z - .  The renormalization is per- 
formed in the on-shell scheme; field renormalization 
leads to finite self energies and vertex functions. 
Measurable effects on the M w - M  z mass relation, 
a(v,e)/a(~ue) and AFB , A L in e+ e --+l+1 - appear if 
either the charged Higgs mass or the neutral Higgs 
masses are heavy. Effects of light scalars/pseudo- 
scalars and the influence of the enhancement factor 
play a subordinate r61e in the asymmetries. They are 
better investigated in terms of cross sections. Present 
limits on a(e+e----,'c+z ) restrict the enhancement 
factor to ~ 140 for a neutral H~, H 2 pair at 5 GeV 
and 200 for 10GeV. The best place to look for 
heavy Higgs particles with large mass splittings will 
be the on-resonance polarization asymmetry in con- 
nection with precise vector boson mass measure- 
ments. 

Acknowledgement. I want to thank M. BOhm and B. Naroska for 
helpful discussions. 

A p p e n d i x  A 

Invariant Functions in 2-Point Integrals 

2 
With A = - - 7 + l n 4 n ,  e = 4 - D ,  and the mass scale # 

e 
introduced in dimensional regularization the func- 
tion B o reads 

mlm2 , ~ IL2 /,f/2) ' Bo(k 2, ml ,  m2) = A -- In 7 -  • not~ , ml ,  
(A.1) 

2 2 
B o ( k 2 ,  m l , m 2 ) = l  m i + m 2 1 n m l + F ( k 2 ,  ml ,m2) .  

2 2 
/T/1 -/////2 /T/2 (A.2) 

An analytic expression for F(k 2,rn*,m2) is given in 
[123. The integral representation for B o is 

/~0(k 2, rnl ,  m 2) 

1 x 2 k 2  x ( k 2 q _  2 2 2 m 1 - m 2 ) + m  1 - i ~  
= S dx in (A.2') 

0 rnl "m2 

With help of 

A ( m ) = - m 2  ( A - l n ~ +  l) 

one can write for the function B~: 

2 
Bl (k  2, m 1, m 2 ) -  m2 - m l  2 - k  2 2k2 Bo( k2, m,, me) 

A(m2) -A(ml )  (A.3) 
q- 2k 2 

For the fermion renormalization constants we need 
the specific values 

Bl(m 2, m 1 , m2) 

1 {A m22 1\ 
- 2 ~ - l n T - I - 2 ) + B l ( m 2 ' m i ' m 2 )  (1.4) 

&(m~, ml, m2) 
1 m 2 m: m2-2m~ 

- ~ + ~ l n - - - ~  F(m~,ml,m:). 
4 m: - m l  m I 2m 2 

(1.5) 

Furthermore we need the derivatives 

3Bo 2 So(m21, m,, m2) = ~ k  2- (k = m 2, ml ,  m2) 

3B1 (k 2 = m 2, ml, m2). B', (m 2, m l ,  m 2 ) = ~  



W. Hollik: Non-Standard Higgs Bosons in SU(2)x U(I) Radiative Corrections 305 

They read: 

r 2 Bl (ml , ml , m2) " 2m 2 

_ 1 m 2  - -  2 
- 2 - In  - -  - B o ( m  1' m l ,  m 2 )  

/74 1 

- 2Ba (m~, ml, m2)+ (m~ - 2m 2 ) Bo(m 2, m~, m2), 
(A.6) 

t 2 m2 ) Bo(m~, rn~ , 

_ 1 +mZ-m~lnm2 2ma(rn2-3m 2) 
m 2 m~ m a m~]/imZ_4m~l 

f I arctan I / ~ - - ,  ] [/ 2m~+m 2 (ml--m2)2<m2 

, , 
I n  - - ~  , (m, -m2)  2 > m  2. 

2 (A.7) 

A p p e n d i x  B 

Invariant Functions in 3-Point Integrals 

The finite parts of the 7u and 7u75 coefficients in 
Sect. 3 are: 

k 2 
Al(k 2, M, m)= -�88189 

M2 [1 k2 m2 M2 
- In ~I 2 4 In ~ 2  + F( m2, m, M)] + ~ 2  M 2 _m2  

M 4 { M  2 1~ 
+~-Co(k2 ,  m , m , M ; m ) + i ~ \ ~ - - ~ ] ;  (k2 >0), 

(B.1) 
1 1(1 2M2]  M 2 

Jl 2 (k 2, M) = ~ + ~ \ - ~ T - ]  F( k2, M, M) -~ k2 

{M2] 2 1 ; ( 0<k2<4M2)  ' 
- 4  \ ~ ]  arctan 2 ]/4M2/k2 _ 1 (B.2) 

k 2 M 2 (  k2 )  
fi-3(k2, M ) =  - � 8 8 1 8 9  - 1 - l n  M~ 

+ ( ~ ) 2  [An Mk22 In (1 + Mk--~-22) + Sp ( -  Mk--~22) ] 

1-1 M 2 M 4 k 2 

ZI4. (k 2, M, ,  M2, m ) =  �89 +/~0 ( k2, M1, M2) 

+~'~ 1 M2 
k2 In m +B~176 

+ ~'~ 2 M1 
k2 In m + B~ (m2, M2, m) -/3o( k2, M1, M2) 

-~ 2M~M~k2 Co(k 2, M 1 , M2, m; m); (n.4) 

n~ ! Ftk2 m) /15(k2, M,m)=�88 M 2 ~ ,m, 

M 2 _ m  2 
4 k2 [Bo(k 2, m, m) -Bo(0  , m, M)] 

(M2 m2)2 ] Co(k2, m,m,M;O); + m 2 + k2 ] 

A6(k 2, M,m) 1 1 2 = x + s F ( k  , M, M) 
M 2 _m z 

- k2 [B 0 (k  2, M ,  M )  - B 0 (0 ,  m,  M ) ]  

+ [m2-~ (M2 ~m2)2] Co(k 2, M, M,m; 0); 
k 2 ] 

z i 7 ( k  2, _ 1 1 2 M 1, M2) - x + s B o ( k  , M~, M2) 

M~ [ln M2 - 2 
+ 2 ~  Mll -U~ ' MI' M2)] 

+~2-M~ [lnM1M22 -B~ 

M2 M22 r ,,_2 
t~otn , M 1, M 2, O; 0). 

C o denotes the scalar vertex integral with equal 
_2 _2 ~ 2 and the momen tum external masses /)1 ~P2 = m  

transfer k 2 = (Pl + P2) 2 : 

i 
Co(k 2, M1, M2, M3; m) 16re 2 

= f d 4 q  1 
J(2n) 4 [(Pl +q)2 _ M  23 [(P2 _q)2 _ M  2] [q2 _M33] �9 

In our cases we do not need the full expression 
containing 12 Spence functions. Since we work in 
the approximation m 2 ~ k  2 and since the C o flmc- 
tions in (B.1) and (B.4) appear with coefficients 
MZ/k 2 we need only their approximate form for m 2 
~M~,M~: 

k 2. Co(kZ, m,m,M; m) 

(B.5)  

and 

k 2. Co(k 2, M1, M2, m; m) 

~ - - - - S p  1 -  
6 

+~=1 ~ SP \M22_x j - -SP \ M  2_x~] j  (B.6) 



306 W. Hollik: Non-Standard Higgs Bosons in SU(2) x U(1) Radiative Corrections 

with 

1 2 _ k  2 X1,2 =g(M 2 - M  2 

•  2 ~ ~ ~ - M t - k  ) - 4 M 2 k 2 + i e ) .  

Sp means the Spence function or Dilogarithm 

1 ln(1 - x z )  
Sp(z) = - [ .  dx 

0 X 

Appendix C 

Counter Terms for  Se l f  Energies and Vertices 

Here we collect the formulas for the renormalized 2- 
and 3-point functions which are composed by the 
unrenormalized quantities and their corresponding 
counter terms. 

We expand the renormalization constants ac- 
cording to 

Z i = l + ( ~ Z  i . 

It is convenient to introduce the following linear 
combinations of the SU(2) and U(1) field renormal- 
ization constants aZ~ 'B and the gauge coupling re- 
normalization constants aZ~ 'B 

6 g z ] = \ c  2 s 21 \ 6 Z f / '  i=1 ,2 .  (C.1) 

Denoting with X ~, 2 ~z, Z z, 27 w the unrenormalized 
boson self energies, the corresponding renormalized 
ones are obtained via 

- r '  (k ~) = Z' (k ~) + ,SZ~ k ~ 

2 z ( k  2 ) - - - -  z~ z (k 2 ) - -  aM~ + ,SZ z (k 2 - M 2) 
(c .2)  

s = ZW(k 2 ) _ 6 M  2 + 6ZW(k 2 - M  2) 

s ) ~,z 2 2 ~,z ~z --6Z 2 k +Mz(bZ  1 - - (~Z 2 ). 

In the last line the combinations 

•z•z CwSw ( 6 Z Z _ 6 z D ,  
C W - -  S W 

i=  1, 2 (C.3) 

have been introduced. 
The mass counter terms ~M~,  z (which get fixed 

by the on-shell conditions) fulfil the important re- 
lation 

bM~ aM 2_s w (36Z~2 z_26Z~z). (C.4) 
M 2 Cw 

This relation allows to express 6Z z, bZ w by means 
of the on-shell values of the unrenormalized vector 
boson self energies. 

For  fermion renormalization a field renormaliza- 
tion constant bZ L is assigned to the left-hand lepton 
doublet and a bZ R to the right-handed charged sin- 
glet. We make also use of the combinations 

bZ v - OZL + 3ZR (~Z A -- 5ZL -- (~ZR (C.5) 
2 ' 2 

The renormalized fermion self energy can be written 
as 

+my ( Z Y s ( k Z ) - 6 Z v - ~ : )  (C.6) 

f with the unrenormalized ZV, A, s. 
Finally we need the renormalized electromag- 

netic vertex of the leptons 

s = rTss + i e ~ . ( a z ~  - ~ z ~  + a i r  - a z ~  7 5) 

+ i e T , ( v - a T s ) ( a Z I z - a z ~ 2  z) (C.7) 

and the leptonic neutral current vertex: 

~zs: = FfSS + i e  7.(v - a  7s)( aZz - 5ZZ) 

-- i e 7~,(c~Z~ z -- 6Z~ z) 

+ i e y .(v  3Z v +a bZA) 

--  i e 7 .  Y5 (v b Z  A + a a Z v ) .  (C.8) 

F~ stands for the corresponding unrenormalized ver- 
tex. 

The v - Z  vertex is given by 

~ Z v v =  F Z v v  e + i - - ~ . ( 1 - ~ 5 ) ( a z L + a z f - a z ~ )  
4CwS w 

(C.9) 

and the electromagnetic neutrino vertex" 

f y v v _ _ / - y v v  �9 e y z  y z  
. - _ .  - , 4 ~ 7 ~ , . ( 1 - ~ , ~ ) ( a z ,  - az2  ). (C.IO) 

Appendix D 

Feynman Rules for  Gauge-Boson Higgs 
and Fermion-Higgs Interaction 

b• Z denote the unphysical Higgs states, ~b ~+ and 
H o, H I, H 2 the charged and neutral physical states. 
Charges are always understood as incoming. 

__ _ / w~+; z,  

H0 ~ - - W  v ;Zv 

~,• < W :  

Av; Z 

{ e e} 
- i - - ;  -i772~2 Mwg~, v 

S W S W C W 
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: ~p  4# 

W �9 "-~.q 
~' "Ho; .Z 

{ e 
+-i~Sw; (P-q)~, 

i :  e 13mr l + y  5 
iSw v ~/'~ M w 2 ++ 

/ 

A.; Z .  ~ ~ .  r 
{ _ i e ; _ ~ e  2 2~ Sw-Cw 

Z C  w S W ) 

to e 13% 1 - 7  5 

- iSw]/~ M w 2 ~- Vs 

I I Z  

Z u ~ ~ H o 

11~p + 
/ 

Au;Zu ~ , g p _  

/ / / H 2  

u ~ ~ H I  

w.  - \ 

~Ht; H 2 

e 

2CwS w (P-q)u 

- i e  s w - c w  (p-q) ,  
- i e ;  2CwSw 

e 

- 2 c w s ~  (p - q)~ 

• 1 2 ~  w , (P -- q)u 

dO q 
L o o p  I n t e g r a t i o n :  ~(270 0 

T h e  m a t r i x  e l e m e n t  J / /  fo r  a + b ~ l + . . . + N  o b -  

t a i n e d  b y  t h e s e  ru les  is r e l a t e d  to  t h e  d i f f e r en t i a l  

c ross  s e c t i o n  in  t h e  f o l l o w i n g  w a y :  

o - - (2704 ~4(pl  + ""  +PN --Pa --Pb) [ ~ / ( 1 2  

4 ] / / ( p .  - pb) 2 - - m  2 m 2 

�9 ffI d3pi  

i= 1 (27Z) 3 2P ~ 

R e f e r e n c e s  

+ + .  . . + .  . @ / , I p  ,Ho,z,q~ ,Hx ,H  2 _ 
~ /  e z 

. .  z 2s 2 g.~ 

,'rW~ " O - ; H o ; Z ; ffa - ; H1; H z 

i 2c~ guy 

#Z~ " " \ H  

: ~ ; 4 )  ~ 

+_ 2s w g"~ 
"X; H2 

A~ /~+; q~+ 
i2e2 gu~ 

i e 2 6w --  cW 

. 7 \ \  _ _ SW cW 
"Av, Z. q, ; ~ 

2 (S~ -- 4 )  2 ) ; ie ~ ~g~,, 
AS w C w ) 

Z•f 
:Ho; H1; H2; X 

H .r4 . u  .~ 
v 0 ,  ~ 1 ,  * * 2 '  A 

e 2 

t ~ g u v  
Z S w C  W 

7 / f  =e'#' r e 13m: 

H~ - %  - i 2 s ~ "  M w 
f 

f 
f e 13% 

-H-2-- 28 w M w  75 
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