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After describing the general structure of variant axion models, we examine the theoretical 
predictions for, and the experimental bounds on, weak decay processes and nuclear de-excitations 
involving variant axions. Although no individual reaction alone can be used to rule out the 
existence of variant axions, we find that the recent bound on the decay, ~r +--* ae+ve, in 
combination with a bound for a AT= 0 transition in l°B effectively exclude these excitations. 

I. Introduction 

The existence of a narrow positron line in the produced positron spectrum in 
heavy ion collisions at GSI [1], which appears to be correlated with an equally 
narrow electron line [2], has renewed interest in axions. In principle, if there existed 
an axion of mass near 1.7 MeV produced nearly at rest in the heavy ion collision, its 
dominant  decay, a ~ e+e -, would then provide both a positron peak and a 

correlated e + e -  signal. There are a number of difficulties with this scenario. First of 
all, as has been pointed out by many authors [3], it is difficult to conceive of a 
dynamics which will produce axions nearly at rest and in sufficient quantity to fit 
the GSI  observations. Secondly, very recent observations [4] appear to indicate two, 
not one, correlated e+e - signals whose origin, obviously, is difficult to reconcile 
with a single axion. Thirdly, the excitation observed at GSI cannot be a standard 

axion [5], since a standard axion with a mass as heavy as 1.7 MeV would have very 
enhanced couplings to either charm or bot tom quarks and so would be in conflict 
with the existing bounds on ~b ~ ya  or T ~ y a  [6]. 
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Although it is unclear whether one can invent axion models which can overcome 
the first two difficulties, it is possible to construct variant axion models in which 
axions with mass near 2 MeV can exist, without being in contradiction with the 
quarkonia bounds. These models are of a type first suggested by Bardeen and 
Tye [7] and recently rediscovered, motivated by the GSI phenomena, by Krauss 
and Wilczek [8] and by Peccei, Wu, and Yanagida [9]. In these variant axion models, 
the axion decays very rapidly into e+e - pairs (for the simplest model discussed 
in [8] and [9], ~-(a ~ e+e -) = 6 × 10 -13 sec). As a result most previous bounds on 
axions are irrelevant for variant axions [10]. This is true for most beam dump exper- 
iments done in the past, as well as for the 12C de-excitation experiment of Calaprice 
et al. [11], which are sensitive only to relatively long lived axions. It is clearly 
important, therefore, to ascertain if these excitations really could have escaped 
detection up to now, irrespective of whether variant axions have anything to do with 
the effects seen at GSI. 

The purpose of this paper is to examine the question of the viab!lity of variant 
axion models in detail. After briefly discussing the structure of variant axion models 
in sect. 2, we examine in sect. 3 what bounds exist on variant axions from weak 
decay processes, notably ~r+~ ae+ve and K + ~  art +. To calculate these processes, 
we make use of an effective lagrangian technique in sect. 4 which incorporates 
correctly all the (approximate) symmetries present at the quark level. This section, 
which is the core of our paper, also serves to clarify certain important issues relating 
to the structure of axion interactions. In sect. 5 we discuss the expectation of variant 
axion models for nuclear de-excitation processes. There we comment particularly on 
the implications of a recent experiment involving laN [12] and on the reanalysis 
performed by the Princeton group [13] of the old nuclear internal pair correlation 
experiments of Warburton et al. [14]. Our conclusions, which cast serious doubt on 
the existence of variant axions, are given in sect. 6. 

2. Variant axion models 

In the SU(2) ® U(1) electroweak theory, the Yukawa interactions between fermi- 
ons and doublet Higgs fields are invariant under an additional global U(1) symme- 
try, provided one has at least two doublet Higgs fields [15]. Such a symmetry, when 
imposed also on the purely Higgs sector, allows one to solve the strong CP puzzle, 
since one can show that the effective CP violating parameter 

O= 0 + argdet M (2.1) 

vanishes [15]. If one has a theory where this additional PQ symmetry exists, then 
the breakdown of SU(2) ® U(1) caused by the nonvanishing expectation values of 
the doublet Higgs fields also causes the extra global Upo(1 ) to break down. The 
associated Goldstone boson is the axion. However, because the UpQ(1) symmetry is 
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anomalous in the presence of the strong interaction, this excitation acquires a small 
mass. 

The standard anion model [5] has precisely two Higgs doublets: ~ and ~2. The 
model is constructed so that, automatically, there are no Higgs induced flavor 
changing neutral currents (FCNC). This requires that • 1 couple only to the 
right-handed charge - ~ quark fields and ~2 couple only to the right-handed charge 

1 quark fields• If i, j are family indices and we let QLi stand for the left-handed 
quark doublets, then the standard axion couplings are given by 

• ~a'¢ukawa(std. axion) = l 'uijOLi~lURj "~ FdijOLi~2dRj q- h.c. (2.2) 

Diagonalization of the quark mass matrices will automatically diagonalize the Higgs 
couplings. However, the above structure also implies that quarks of the same charge 
are treated in an identical fashion. Furthermore, all that distinguished charge 
from charge - ½  couplings, apart from quark mass factors, is the ratio of the 
doublet vacuum expectation values: 

X = ( 1 ~ 2 ) / / ( I ~ 1 )  . ( 2 . 3 )  

To get an axion mass as large as 2 MeV, it is necessary that x (or x -1) be large [7]. 
This necessarily implies, therefore, that one has enhanced couplings to all the charge 

2 1 quarks) and one runs into trouble with the - 7  quarks (or all the charge - 7  
quarkonia bounds [6]. 

Variant axion models [8, 9], to avoid the quarkonia bounds, must de-enhance the 
coupling of axions to both c and b quarks. Thus these models will not automati- 
cally prevent the appearance of Higgs induced FCNC. Retaining only two Higgs 
doublets [9], it is not possible to avoid altogether these interactions but one can 
minimize the effects by restricting them to the charm sector. If one is willing to 
complicate the Higgs sector sufficiently and impose certain discrete symmetries, one 
can construct models [8] where no FCNC occur at all. At any rate, the important 
property of variant axion models is that the axion has couplings to quarks which, 
besides the usual mass factor, can differ for quarks of the same charge. For 
example, one can enhance the coupling of axions to the u quark and de-enhance the 
coupling of axions to all other quarks. Indeed, this is precisely the situation for the 
simplest variant axion model considered both in [8] and [9]. 

For simplicity, here we shall consider variant axion models with only two Higgs 
fields, ~1 and ~2. Furthermore, to avoid the FCNC problems in the charge - 
sector, we shall couple all charge - ~ right-handed fields to @2 [9]. Then the various 
different axion models are characterized by the number N of charge - 2 right-handed 
fields which are coupled t o  I~ 1 and they depend further on whether u R couples or 
not to @1. Thus the variant axion couplings are given by 

..~Yukawa(var axion) u -- • = r ,jQi~i~juRj + rd, jOLi~2dRj  + h.c. (2.4) 
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TABLE 1 
Variant axion model assignments for three families 

(1) ~j: ~1, ~2, ~2 
(2) ~j: 41, ~2, tI)l 
(3) ~j: t~2, t~2, ~x 

and the different models are distinguished by what Higgs field t/ij couples to URj. 

To avoid the quarkonia problem however, one must always take the Higgs field 
coupled to c R as ~2 = i~2~'. For three families of fermions, there are three possible 
variant axion models with the assignments detailed in table 1 for ~j. 

It is convenient to isolate the axion field in ~1 and ~2 as an overall phase field, 
dropping the other quantum excitations. In the zero charge sector, the axion is 
orthogonal to the excitation that eventually gets eaten by the Z ° and it is easy to see 
[7] that one should write 

1, 
where x = f 2 / f l  is the ratio of the Higgs vacuum expectation values and f is the 
scale of the breakdown of the weak interaction symmetries, 

f =  ~ + f22 = (v~-GF) 1/2 = 250 GeV. (2.6) 

Under a PQ symmetry transformation the axion field should just translate, 

a --, a + i f .  (2.7) 

A particularly convenient definition of the PQ symmetry in the quark sector is one 
where QLi is left invariant and the right-handed quarks fields transform so as to 
insure that (2.4) is left invariant. Hence under a PQ transformation, 

dRj --* e -  i~/XdRj , 

uRj ~ e-"~ZJuRi, (2.8) 

where zj = x if the corresponding Higgs field in (2.4) is ~j = tba, but zj = - 1 / x  if 
the corresponding Higgs field is ~i = ~2. The PQ symmetry current for the variant 
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axion models is therefore 

Jf'Q = f O~,a + (1/x ) ~lNrd-Ri~l.tdRi Jr- X~-~INURi'[~URi 

+ ( - 1/x)Nu+ lU~UR?f, URi. (2.9) 

where Nf is the number of families and N is the number of charge - ~ quarks 
coupled to ~1. Clearly this current has a color anomaly [16] which is only 
proportional to N 

a ~ a l / , v  • 0% p° = ½N(x + 1 /x ) (as /4r )F  .,,F (2.10) 

Obviously, besides N, it is important for the physics of the model in the light quark 
sector to know whether the u quark couples proportional to x or 1/x  in eq. (2.9). 

Besides J,  PQ, it proves useful to define another current, ~ ,  which is anomaly free 
and contains the axion. In principle, an infinity of such currents exist. However, the 
only interesting such currents, as Bardeen and Tye have emphasized, are ones which 
have a soft divergence. That is, a divergence which vanishes in the limit as the light 
quark masses vanish. For our purposes it will suffice to consider here the case in 
which only the u and the d quarks are considered as light. Then it is easy to see 
that [7] 

~ =  J~PQ-- 1N(x + l/x)( ( m d / ( m  u + md))Ky.ysu + (mu/ (m  u + md))d-'f~y5d ) 

(2.11) 

has precisely the desired property. Its divergence 

O"f~= - N ( x  + 1/x) (mume, / (m u + me,)) ( ~[iYsei"ZV,//]u + d[iy, ei"~,/xf]d } 

(2.12) 

vanishes as either m u or m a goes to zero. Here we have neglected the effects of 
axion mixing angles related to possible flavor changing neutral currents as they are 
constrained to be small from the analysis of charm decays [9]. 

For what follows, it is convenient to explicitly indicate the axial-vector current 
content of ~ .  Let us define, as usual, the isoscalar and isovector axial currents as 

A3,= ½[Ky, y su -  cfT, vsd ] . (2.13) 

Then the axial piece of the current ~ can be written as 

=fO, a + X,A,, + X3A3, + heavy quark pieces. (2.14) 



406 W.A. Bardeen et aL / Variant axion models 

The constants,  X, and X 3, are model dependent  and read 

X, = ½{(z + 1 / x )  - N ( x  + l / x ) } ,  

X 3 = ½{ ( z -  l / x ) -  N ( x  + 1 / x ) [ ( m  d - m u ) / ( m  d + mu)]  }. 

Here, z = x, if the u R quark in eq. (2.4) couples to 

in eq. (2.4) couples to ~2. Given that x will turn 

have a mass near 2 MeV, and that the light quark 

[ ( m d - - m u ) / ( m d + m u ) ]  

it is possible to have models in which X s vanishes or X 3 vanishes, but  both  can not  
vanish simultaneously. This remark will have important  phenomenological  conse- 

quences. 

(2.15) 

~1 or z = - 1/x ,  if the u R quark 
out to be large, for the axion to 

masses give [17] 

= 0.26, (2.16) 

3. Experimental bounds on variant axions from weak decays 

The decay K + ~ art + provides a strong constraint on the s tandard axion model. 

For  m a < 2me,  the axion can only decay into two photons  and its lifetime is very 

long, of  order  (100 k e V / m  a) 5 see for the s tandard axion [7]. In these circumstances, 

the axion just  gives, experimentally, a missing energy signal (a = nothing). The most  

str ingent b o u n d  for these axions was obtained by K E K  [18] with 

B ( K  + ~ ~r + + nothing) < 2.7 × 10 -8 . (3.1) 

Although,  as we shall see, it is difficult to reliably compute  the nonleptonic process 

K + --+ a~r +, for the case of the s tandard axion one has a penguin contribution, which 

gives a relatively safe estimate [19] 

B p e n g u i n ( K +  ~ a~r +) = 1 0  - 6  X X 2 . (3.2) 

Hence  x must  be small to survive (3.1). However, an x ~ 10 1 would then lead one 

into contradic t ion with the T ~ aT bound  [6]. So a combinat ion of the K decay 
b o u n d  and the T decay bound  rules out the s tandard axion. 

For  variant  axions, since m a > 2m e, the main decay channel for the axion is now 

into e+e . Furthermore,  the lifetime of the axion is now very short, and it is no 
longer  true that experimentally the axions give a missing energy signal. If  % --- 6 × 

10-13 see, as is the case for the models of refs. [8] and [9], then the decay distance 

for the K E K  experiment would be around 2 cm. The produced e+e pairs would 
have been vetoed in the setup of  ref. [18], so that the bound  in (3.1) is irrelevant for 

the variant  axions. To the best of  our knowledge, there is no relevant bound  on the 
process K + ~ art + with a ~ e+e -, as yet! A Berkeley experiment of a decade ago 
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[20], which measured the process K + --, 7r+e+e - and found 

407 

B ( K  + ~ ~r+e+e - )  = (2.7 + 0.5) x 10 -7 (3.3) 

could in principle provide some information, if reanalyzed. However, the published 
data has a cut for m~+~-> 140 MeV. Similarly, the experiment of Yamazaki 

et al. [21] at KEK,  which obtained a bound 

B ( K  + ~ ~r+anything) < 2 x 10 -6 (3.4) 

also had a cut on the recoil mass of manything > 5 MeV. However, we understand [22] 
that experiments at BNL and K E K  should in the near future be able to estabfish 

limits for the process K+--* air + with a ~ e+e - at the branching ratio level of 
10 -6 -10-7 .  Our theoretical estimates, to be discussed in the next section, should be 

compared,  therefore, with branching ratios of this order of magnitude. 
Suzuki [23] has pointed out another weak decay process which is of importance 

for variant axions: ~r + ~ ae+~e followed by a --* e+e -. A rather stringent bound for 
the process Tr + ~ e+e -e+p ,  

B(~r --* e + e - e + G )  < 5 × 10 -9 (3.5) 

was established a decade ago at Dubna [24]. From a reanalysis of this experiment, it 
would be possible to infer a bound on the ~+ --* ae+ue decay, but this bound would 
be strongly dependent on the axion lifetime. Fortunately, very recently, in an 
elegant experiment at SIN, the process ~r + ~ e+e-e+~, e has actually been seen [25]. 
The observed branching ratio 

B(Tr ~ e+e-e+l ,e)  = (3.4 __+ 0.5) X 10 -9  (3.6) 

is slightly below the bound of eq. (3.5) and is in agreement with standard expecta- 
tions. Furthermore,  an analysis of the e+e - invariant mass distribution can be 

performed to set a bound on the ~r+~ ae+ue decay mode. This analysis has now 
been completed, giving a branching ratio bound of the order of [26] 

B(~r + -* ae+p¢) < (1 - 2) X 10 -1°, (3.7) 

provided the axion lifetime is sufficiently short O'a < 10-11 sec). As we shall see in 
the next section, this bound is very restrictive for variant axion models. 

4. Theoretical considerations on weak decays involving axions 

Branching ratios for the processes K + ~  a~r + and ~r+~  ae+pe can be estimated 
rather simply by using the fact that the axion, at some level, "mixes"  slightly with 
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the ¢r 0 [27]. Let us consider, for instance, the decay ~r + ~ ae + u~, which is somewhat 
simpler to calculate because it is a semileptonic process. To compute the decay rate 

for this process, one needs to know the matrix element of the charged current, J ,,  
between an axion and a ~r + state. If  we denote the mixing angle between the ~r ° and 
the axion as ~,,a and proceed naively, then we expect the relations 

(al J_,lTr +) = ~a(qr° l J  ~]qr +) = ~fR~ra(Pa q- P~)#. (4.1) 

The second line follows, since only the f+ form factor is non-vanishing for the pion 
matrix element. A simple calculation then gives a formula for the rate 

3 -1 2 5 2 F(~r + ~ ae+t,~) = (384~r)  (GF) (rn,,) ( ~ a )  . (4.2) 

The mixing angle (~a can be taken as the fraction of the isovector axial current A3, 
present in ~ ,  modified by the ratio of the pion-to-axion decay constants, f J f .  

~,~a= ?t3( f, J f  ) .  (4.3) 

Using eq. (4.3) in eq. (4.2), one obtains a sizable branching ratio for the process 
~r +---, ae+ue in variant axion models. For instance, in the simplest variant model 
considered in refs. [8] and [9], one has N = 1 and z = x = 70, so that X 3 = 26. This 
value implies a branching ratio 

Bsimplest (q7 + --~ a e + ~ )  = 2 x 10 .6 , (4.4) 

which is four orders of magnitude above the SIN bound (3.7)!t Clearly, if the above 
estimate of the J _ ,  matrix element (eq. (4.1)) and of the ~r ° - a mixing (eq. (4.3)) 
are correct, then the only tenable variant axion models are ones where the isovector 
mixing parameter  X 3 is suppressed by about two orders of magnitude below that 
found for the simplest case. Although such models exist, they require one to have 
N = 4 and so one needs more families than we presently know with PQ couplings, or 
they require some other mechanism for producing a large color anomaly in the 
Higgs sector. 

Because the bound obtained from the process, ~ r+~  ae+u~, is so strong, it is 
imperative to make sure that the above estimate for the branching ratio is not in 
error. We will see that, in fact, the result obtained above is correct*. However, it is 
important  to analyze this process (and also the process, K + --, a~r +) with some care, 
since there are a number of questions which tend to cast some doubt on the simple 
minded treatment used to obtain the above bound. Two such questions immediately 
come to mind: 

(i) If  it were not for the axial anomaly, the axion would be a massless Goldstone 
boson. Therefore, the axion should decouple at zero momentum. So, why is the 

* After completion of this work we received a paper by Krauss and Wise [39] where the result (4.4) is 
also obtained. 
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matrix element in eq. (4.1) not simply proportional to the axion momentum, Pa, 
only? 

(ii) The current, ~ ,  which contains the physical axion and is anomaly free, has a 
divergence which is purely isoscalar (c.f. eq. (3.12)). How is it possible that there 
should be any communication between the low-energy coupling of the physical 
axion and the physical ~r°? Doesn't the mixing angle, ~,,a, actually vanish? 

To answer these questions, one can systematically study the low-energy theorems 
associated with the current algebra of the axion, or alternatively one can give a 
general solution to the current algebra by constructing an effective lagrangian 
involving pions and axions (or ~r's, K's, and axions) which reflects all the symme- 
tries present at the quark level. This effective lagrangian can be used to compute all 
the decay amplitudes. Such an approach was used by Bardeen and Tye [7] and by 
Kandaswamy, Salomonson, and Schechter [28] to compute standard axion proper- 
ties and, more recently, by Georgi, Kaplan, and Randall to compute some proper- 
ties of invisible axion models [29]. We will find it also to be very useful to examine 
the variant axion models. 

We want to construct an effective lagrangian for pions and axions, including the 
effects of the weak interactions, which reproduces the low-energy dynamics of the 
standard model augmented by a PQ symmetry [15]. Before constructing the effective 
lagrangian, it is important to understand the full global symmetry structure at the 
quark level. The variant anion models discussed in sect. 2 are described by the 
following fermion-axion lagrangian, 

,L#= QL ( i'yD } QL + LL ( iyD } LL + ~l~ ( i'yD } UR + dR ( i'yD } dlt + ~R { i'yD } eR 

--UL{ Muei'a/f ) uR + h.c.- dL{ Mdeia/~f }dR + h.c. 

--LL{ Mee ̀ za / / }  e R + h.c. + ½(c3,a) 2, (4.5) 

where {D~,} are the covariant derivatives for the SU(3)c ® SU(2)® U(1) gauge 
interactions of the standard model and M u, Ma, and M e are fermion mass matrices 
with the family indices being suppressed. The axion couplings are model dependent 
with the elements of the matrices, z, being x or - 1 / x  for up quarks and 1 / x  or 
- x  for leptons. The axion couplings are clearly directly related to the structure of 
the right-handed ferrnions. 

The physical structure of this lagrangian may be examined if we first diagonalize 
the mass matrices for the fermions. The mass matrices for the up and down quarks 
can be put in the form, 

M u = BumuCu + , 

M d = B d r n d C ~ ,  (4.6) 

where m u and m d are the diagonal quark mass matrices and B~ and C k are the 
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necessary rotations in flavor space. We diagonalize these matrices by making the 
following transformations on the quark fields, 

/dR ----) Cu/,/R , U L ~ BuU L , 

d R ~ Cad R , d L -* Bad L . (4.7) 

In the standard axion model, all reference to the mixing matrices disappears from 
the Yukawa terms and the only physical dependence on these matrices is in the 
combination Bu+Bd which is just the KM matrix for the W + interactions. In variant 
axion models, more of the mixing angles become physical as the Yukawa interac- 
tions are not independent of C u. After diagonalization, we have 

,'u aw  = _ ( m Cu + } uR + h.c.- ZL ( m e'° xJ } dR + h.c. 

--  ]--~L { me e ' z " / /  } eR + h.c., (4.8) 

where we have presumed the lepton mass matrix to be diagonal. The physical 
mixing angles in Cu are responsible for FCNC interactions and are strongly 
constrained by the charm decays [9]. We will ignore their effects in our subsequent 
discussion. 

The relevant symmetries can be seen by examining the lagrangian in (4.5). As in 
eq. (2.9), the PQ current may be written in terms of the right-handed fermion 
currents 

4 P Q = f O ~ a + ~ R ( Z Y ~ ) U R + d R { X - I y , } d R + Y R { Z Y ~ } e R  . (4.9) 

The PQ symmetry [15] is spontaneously broken at the same time as the SU(2) ® U(1) 
weak symmetry breaking by the non-zero vacuum expectation value of the Higgs 
fields, (~x) and (~2). The concomitant Goldstone boson is massless in the absence 
of the non-perturbative QCD interactions. The axion lagrangian (4.5) has additional 
fight-handed symmetries if some of the quarks may be considered as massless. 
Taking the first family of quarks to be massless, we have the freedom to rotate 
independently the corresponding u R and the d R fields 

~dR ~ e i a u R  , 

d R ~ eil~dR, (4.10) 

and the currents which correspond to these symmetries may be written as isoscalar 
and isovector currents as in (2.3) 

A s ~  = URV.UR q- dR"/'/~dR , 

A3/~ ~ U R ' ~ U R  --  d R T ~ d  R . (4.11) 
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The effects of including the strong interactions are twofold. First, non-trivial 
condensates of the light quarks form in the physical vacuum of QCD, 

(Ku) = (d-d) * O. (4.12) 

These condensates induce a spontaneous breaking of the global symmetries (4.10), 
producing (apparently) two additional Goldstone bosons in the neutral charge 
sector, the ~r ° and an isosinglet excitation we shall call q9 °. Second, when the full 
strong interactions are included, the isoscalar current is no longer a good symmetry 
current. Indeed, this current has an Adler-Bell-Jackiw anomaly [16] associated with 
the color gauge fields, 

a "a/~tp O~As~= (as/4~r)r ~ r  . (4.13) 

This anomaly combined with the QCD vacuum structure implies there is no 
symmetry reason for the qo ° meson to remain massless. In fact the situation is more 
complicated due to the presence of the PQ symmetry. The global PQ symmetry is 
also broken by the same anomaly as that given in (2.10). However, the strong 
anomaly cannot break independently both symmetries, and a linear combination of 
the PQ current and the isoscalar quark current remains conserved. It is easy to see 
that the current 

J * ~  = ~PQ -- ½ N ( x  + 1/x )As ,  (4.14) 

does not have a strong anomaly and is conserved along with the isovector current in 
the limit that the light quarks remain massless. Hence, we expect to have only two 
true Goldstone bosons in the symmetry limit, the physical ~r ° and the axion. The 
presence of mass terms for the light quarks breaks both of these remaining 
symmetries. However, this symmetry breaking is much weaker than the breaking 
caused by the strong anomaly, (m n, >> m~0). Hence, the mixing between the pion 
and the axion can be determined by studying the chiral limit, m u, m d ~ 0, as 
emphasized in [7]. The interplay between these three symmetries will be evident 
in our formulation of the effective lagrangian to be discussed below. 

The structure of the axion couplings can be explicitly exhibited at the quark level 
by making a local, right-handed gauge transformation to remove the axion field 
from the Yukawa interactions. This transformation is accomplished by rotating the 
quark and lepton fields,' 

U R ~ e - i z a / f U R ,  

d R --., e - i a / x f d R  , 

eR ---, e-iza/feR. (4.15) 
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In making this transformation we must be careful to account for the anomaly 
structure of the fermions. The naive transformation removes the axion field from 
Yukawa interactions and generates derivative interaction from the kinetic terms for 
the fermions. The anomalies produce additional, non-derivative interactions which 
can be computed from the known anomaly structure of the fermion loops [16]. We 
obtain the following lagrangian equivalent to (4.5) ignoring the right-handed mixing 
angles associated with FCNC, 

.~P= Qc ( i.yD ) Qe + 1-,c ( iyD ) LL + ?tR ( iyD } UR + dR ( iyD ) dR + eR ( iyD ) eR 

--ilL( mu } UR+ h .c . -  alL( md) dR + h . c . -  eL(me)eR+ h.c. 

+ f - l f i  R ( zy" ) u R cg,a + (xf  ) - t d  R ( y~ } d R O~a 

7(O~a) + f - l ~ R ( Z y ~ ) e R O ~ a  + 1 2 

+ a ( tru[ z / f  ] + trd[1/xf ] } (aJS~r) { Fa,~ff a~" } 

+a{~tru[z/ f]+~trd[1/xf]+tre[z/ f l}(16~r 2) I{B~,B~"), (4.16) 

where Fa~,~ is the color gluon field strength and B~ is the field strength of the U(1) 
weak gauge field coupled to the right-handed fermions, 

B , ~ = e ( F v ~ - ( g ' / g ) F z ~ ) .  (4.17) 

For the standard axion, it is this last term which is used to compute the decay of the 
axion to two photons. From the form of the lagrangian in (4.16), we see that the 
axion has only derivative coupling to hadrons except for the anomaly coupling to 
gluons which will obviously generate only flavor singlet interactions. We will see 
that it is, in fact, the derivative interactions which are responsible for the mixing 
with the pion and give the strong constraints from pion and kaon decay. We also 
remark that the lagrangian in (4.16) can be used to demonstrate the decoupling of 
the heavy quarks as their derivative interactions with the axion can only generate a 
small renormalization of the kinetic energy of axion, or terms which are highly 
suppressed by powers of the heavy quark mass. The real effect of the heavy quarks 
on the low-energy theory only comes through the contribution of the anomaly. 

We now return to the formulation of our effective lagrangian. This lagrangian 
represents the full interactions of the axions and mesons as expanded to lowest 
order in the meson momenta or masses. The effective lagrangian contains three 
separate pieces. There is a ehiral lagrangian term describing the U(2)® U(2) 
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invariant strong interactions of the ,r and tp ° fields plus a kinetic term for the axion, 

= ~(f,~) t r (O~Uta~U)  + ½O~a a~a, (4.18) .,~Ochiral 1 2 

where the chiral field U is given by 

U =  exp( i(, .~r + ~o)/f~ }. (4.19) 

Clearly eq. (4.18) is invariant under global U(2) ® U(2) transformations, 

U ~ gLUg~ (4.20) 

and under a global translation of the axion field, 

a ~ a + ~f.  (4.21) 

The electroweak interactions can be introduced into eq. (4.18) by replacing the 
derivatives by the appropriate covariant derivatives. According to our discussion at 
the quark level, even after this is done, the theory should still be invariant under 
three chiral U(1) symmetries. It is easy to check that the substitution 

O,U--* D,U= O,U+ i½g," W,U+ i~g'Y,U+ ig' - g , (4.22) 
o 1 

which introduces the electroweak interactions for the U field, still preserves the 
(U(1)) 3 symmetry in the effective lagrangian, 

.~Pchiral+Wl= ¼(f~)2tr{(D,U)t(D"U)} + ~ O, aO"a. (4.23) 

That is, eq. (4.23) is still invariant under the restricted set of transformations (4.20) 
where 

[e,- 0] 
g R =  0 ei • , g L = l ,  (4.24) 

and is obviously also invariant under (4.21). 
In addition to (4.23), the effective lagrangian must contain terms which incorpo- 

rate the effects of the chiral anomalies and terms which reflect the Yukawa 
interactions at the quark level. Let us look at this last term first. For the models 
under consideration, the interaction of eq. (2.4) for the light quark sector reads 
effectively, 

'~mass [--  ia z / f = ( 4 . 2 5 )  
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where z = x or - 1/x depending on the particular model considered. This interac- 
tion no longer preserves the two U(1) transformations of eq. (4.10), but is does 
preserve the PQ symmetry, provided that u R and d R respond appropriately (c.f. eq. 
(2.8)). Thus, we may include the effects of the Yukawa interactions in the effective 
lagrangian by adding a term which explicitly breaks the symmetry in an analogous 
way to (4.25). Since the U matrices are the unique, non-derivative fields which have 
the same chiral transformation properties as the quark mass operators, the Yukawa 
interactions are represented by 

where 

• ,~Omass breaking = 1U tr( UAM + M*AtU* }, (4.26) 

[o 0] M = u , (4.27) 
m d 

[ e -iza/f 0 ] 
A = . (4.28) 

[ 0 e - i a / x f  

The parameter v is related to the scale of the spontaneous chiral symmetry 
breaking. Clearly (4.26) is invariant under the PQ symmetry transformation, 

a --, a + f f ,  (4.29) 

[eo  e: xl 
This interaction, however, is not invariant under the transformations (4.24). Thus, 
two combinations of the Goldstone fields, a, q0 °, and ~r 0 will acquire masses from 
this term in the effective lagrangian. A finear combination of the neutral meson 
fields remains massless and is the Goldstone excitation associated with the naive PQ 
transformation. 

The final piece to be added to the effective lagrangian is a term which incor- 
porates the anomaly structure of the quark theory. For the heavy flavors, we have 
exhibited, in eq. (4.16), the axion anomalies which are induced by the quark theory. 
There are anomalies associated with both the weak and the strong gauge fields. For 
the processes we wish to consider, only the strong anomalies contribute and we will 
ignore the weak anomaly contributions. Using eq. (4.16), we obtain from the heavy 
quarks, 

a ~al~, 
• . ~ a n o m a l y ( a )  =a{tru[z/f ] + trd[1/xf]}H(aJ8~r){F ~F } 

=af-l{ Ns(x + 1/x)}(aJ87r){ F"~,~F"~"}, (4.31) 

where N H is the number of heavy quark families with PQ couplings, z = x. The 
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effective lagrangian must also reflect the strong anomalies of the meson fields as 
indicated by the anomalous divergence of the isosinglet current in eq. (4.13). This 
anomaly may be determined in a manner similar to (4.31) with the result 

.£a nom~y (cp0) = cp0 (2 / f~) - l (as /80r){  r a f f ~  }. (4.32) 

The strong gauge fields may be integrated out with the effect that the strong 
anomaly contribution is effectively a mass term for the meson fields which multiply 
F .  ft. For the case at hand, this procedure gives the anomaly term in the effective 
lagrangian 

.oCPanom~y---- --lmZ[ep° + l ( f ~ / f ) {  NH(x + l / x ) } a ]  2. (4.33) 

Since the mass parameter, m 0, must be large to produce the physical meson mass 
spectrum, the combination of fields appearing in (4.33) effectively decouples from 
the low-energy dynamics. The orthogonal combination of q9 ° and a 

~= ( fa-½f~{  Nn(x  + l / x )  } qo°)/'f " (4.34) 

does not feel the effect of the strong anomaly. In the absence of the Yukawa 
interactions, but including the full weak interactions and the strong anomalies, both 

and ~r 0 _ in the neutral sector - would be massless. 
The physical meson states and the mixing parameters may be determined from 

the meson mass matrix which can be obtained by expanding the Yukawa interac- 
tions (4.26) to second order in the meson fields and adding the contribution of the 
strong anomalies (4.33). In the charged pion sector, we find 

.Wm~s(charged ) = _ ( f ~ ) - 2 ( m ,  + rod)v0r+~r , 

which identifies the parameter, v, as 

2 v= (f~m~) / ( m  u + md). 

The mass terms in the neutral sector read, 

1 2 
ZPm~s(neutral) = -~((f,~m,~) / ( m  u + md) ) 

(4.35) 

(4.36) 

× {-u [-°s. + cs.- z.s]2 + -. [--°s° + .i-J] 2} 

1 2[cp0 + ½(f, l f ) { N H ( X  + l / x ) }a ]2  - -  ~ r n  o 

1 2 = _ 5m~(mu/ (m u + rod)) [~r ° + rp ° -- a(zf=/f)] 2 

1 2 5 m , ( m d / ( m u  + md))[--~r° +~p ° a( f~/x f )]  2 

5m0[cp ° +  ~( J f ) { U H ( X  + l / x ) }  _1  2 1 f a]2 (4.37) 
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Since m o >> m =, the mass matrix can be easily diagonalized to give the axion mass, 

2 _ _  m2(f=/f)2NZ(x + 1/x)Z(murnd/(mu + md) 2) (4.38) m a -- 

and the axion mixing parameters, 

2 2 
~e.a = X 3 ( f J f  )[1 + rna/m,~ ] , 

~a+ = X , ( f J f ) ,  (4.39) 

where N is the total number of PQ families (N  = (N H + 1) if z = x and N = N H if 
z = ( -  I / x ) )  and X 3 and Xs are as given in eq. (2.15), 

) t3= l { ( z -  l / x ) -  N (x  + l / x ) [ (m d- -mu) / (m  d+ m u ) ]} ,  

X,= - ½NH(x + 1/x) .  (4.40) 

These are essentially the results for the mass and mixing parameter as given by 
Bardeen and Tye [7]. The qra mixing parameter of eq. (4.39) is precisely that of eq. 
(4.3) apart from a tiny correction of order (ma/m,O.2 2 

The principal strong and weak interactions of mesons are described by the 
interactions contained in the chiral lagrangian of eq. (4.23). The couplings involve 
only the rr ° and qo ° fields and have no explicit dependence on the axion field. 
Therefore, the axion couplings are generated by the mixing with the meson fields as 
determined by the mixing parameters of (4.39) and the relations 

,/r 0 = "/r?hy s + ~ a ~ r a p h y s  , 

q)O = ¢pOhy s + ~a~paphys  , 

a = aphy S - ~ a ~ r ~ ? h y s -  ~a~q00hys  . (4.41) 

There will be corrections to the results obtained by this procedure of order 
2 2 (m,,/mK). If we use the obvious generalization of this procedure to include the 

strange quark as one of the light quarks, then the predictions should then be good to 
order 2 2 (m~,/m,y). The mixing with the vr ° is described with sufficient accuracy for 
our purposes by the calculation given above. 

The calculation of the process ~r+~ ae+ve is now straightforward using the 
effective lagrangian given in eq. (4.23) with definitions in (4.22). As we have 
discussed above, there is no direct coupling of the axion to the W + and the weak 
decay proceeds through the mixing with the vr °, as there is also no coupling for the 
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tp ° in this amplitude. The mixing gives the following amplitude 

417 

A(~r + --~ ae+~e)= ~a,,A (~r + --* ¢r°e+ue)(p~o =pa  ) 

= ~a~GF [(p~ + pa)~U(p~) T~(1 - ys) V(pe)] . (4.42) 

Here, as usual G F is the Fermi constant, G F = gZ/8M~ = l / v ~ f  2. This amplitude 
gives the rate quoted in eq. (4.2). 

We can now make some comments on aspects of the effective lagrangian solution 
to the current algebra. We first consider the role of the ~ current for studying the 
properties of axions. It was constructed from the PQ current by using a particular 
combination of light quark currents which cancels the strong anomaly. It is 
dominated by the axion pole and its conservation implies a massless axion. The 
structure of the currents can be seen explicitly using the effective lagrangian to 
express them in terms of the meson currents. The PQ current becomes 

J fQ =fO~,a + ~ [(z + 1/x ) f~  O,q~ ° + (z - 1 / x ) f ,  0,Tr°]. (4.43) 

This is just  a transcription of eq. (2.9) in which the roles of the isoscalar and 
isovector currents are given by 

As~=f ,O,~ °, 

A3, = f~ 0~¢r ° . (4.44) 

Using these identifications the anomaly free, soft current ~ of eq. (2.4) is simply 

,~ = fO~a + k~f,, 3~op ° + k3f  ~ 0 7 0 .  (4.45) 

Of course, any linear combination of the currents, A3~ and ~ ,  is anomaly free, and 
both currents are conserved in the chiral limit mu, m d ---,0. However, when the 
chiral symmetry breaking from the Yukawa interaction is included, it is clear that 
is the axion current for two closely related reasons: 

(i) The divergence of ~ is soft, i.e. it vanishes in any of the symmetry limits for 
the axion, m u or m d ~ O. 

(ii) Expanding the ~ current in terms of the physical fields, we see that it has 
essentially only an axion contribution. 

~ 2 

= f a ~ a p h y s -  ( m a / m ~ r )  ~ 3 L  0 OpT/'phy s . (4.46) 

The pion component is suppressed by the small axion mass. 
This discussion hopefully clarifies an essential point raised at the beginning of 

this section. It is indeed true that the current, ~ ,  has an isoscalar divergence and 
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that this current is dominated by the axion pole. This, however, does not mean that 
there is no 7ra mixing as described by the mixing parameter, ~a~- This mixing occurs 
for the chiral invariant interactions, while the properties of the divergence of the 
current relate to the interactions which involve symmetry breaking. The weak 
processes we are considering are all related to the chiral invariant couplings of the 
~r 0 and the axion. 

In view of the above discussion, there remains a small problem of principle to 
clarify connected with the first query raised in the beginning of the section: why is 
the pion decay amplitude (4.42) proportional to (P=+Pa) ,  and not only to the 
axion momentum Pa as one might expect from the low-energy theorem associated 
with the almost Goldstone nature of the axion? We note that in the chiral limit, 
both the ~r ° and the axion should be exact Goldstone bosons as the explicit weak 
interactions should not break the chiral symmetry. Hence, it should be sufficient to 
study these interactions at purely the pionic level. 

To understand this point it is necessary to write out a bit more of the structure of 
the weak vertex for the pions as we have kept only the leading terms needed for our 
calculation. From the lagrangian given in (4.23), the full pion-W boson interactions 

are given by 

£f  w =  ½gf, W ~e'(~°/L){ O T + -  ivr+ O~(~r°/f~) } . (4.47) 

The non-derivative interaction term involving the ~r ° appears as a phase which 
reflects the chiral structure of the left-handed current. This phase can be removed 

by a point transformation of the ~r + field 

~r + ~ ~r+e -i(=°/:~) . (4.48) 

With this transformation, the lagrangian really involves only the derivatives of the 

~r ° field 

~ w  = ½W " [ f ~ O T + - 2 i ~ r  + 0~vr°] . (4.49) 

A similar transformation at the quark level in (4.16) was used to make all 
interactions of the axion into derivative coupling except for the anomaly terms 
which contribute effectively only to the meson mass terms. Of course, the transfor- 
mation (4.48) also affects the purely strong interaction terms in the effective 
lagrangian (4.23), giving an additional term 

AoLP= i Or( 7r°/f~)(~r- 0 7  + - ¢r + 0 qr). (4.50) 

One can check, explicitly, that (4.50) and (4.49) give the same physical amplitudes 
for W interactions as (4.47), as they should since the S-matrix elements are 
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unaffected by piont transformations at tree level. Although the transformed 
lagrangian involves only 0 7 °  , and therefore through mixing only 0~aphys, the 
presence of the trilinear coupling (4.50) gives an extra contribution to the amplitude 
for ~r + ~ ae +~,e, involving an intermediate pion pole. The charged pion propagator 
is also proportional to PaP~ and this cancels out the Pa factor in the numerator, 
yielding a result consistent with the previous calculation. 

Let us turn now to the process K+---> aqr +. This reaction is considerably more 
difficult to estimate than the decay ~r+~ ae+~e, since the processes it is naturally 
related to, K + ~ r + ~ r  ° and K+---~r+~v~rtual , are both non-leptonic decays. A 
number of approaches exist already in the literature to compute this rate for 
standard axion [30]. Here we shall try to estimate the rate by using a chiral 
lagrangian for the weak decay involving the meson nonet, supplemented with 
appropriate mixings of the axion with the ~r °, ,/, and 7/'. Although there is 
considerable uncertainty in our estimate, it is important to get at least an order of 
magnitude idea of the expected branching ratio as this process provides complemen- 
tary information to the decay 7r+~ ae+ue. This latter process, as we have seen, 
measures essentially the isovector mixing of the axion, X3. This mixing, because of 
the SIN experiment [26], must be much below what is expected in the simplest axion 
models [8, 9] requiring a delicate cancellation to take place in eq. (2.15). However, if 
?~3 nearly vanishes, then it is not possible to also get the mixing of the axion with 
the 71 or cp (essentially the ?~s coupling) to also be small. This means that the process 
K + ~ a~r +, proceeding through the ~, cp-axion mixing, could provide an additional 
independent constraint on variant axion models and indeed serve to rule out these 
models. 

To proceed with our model calculation, we need the mixing of the axion with the 
pion and the eta and the singlet isoscalar ~o' = ~', 

~a = ( f J f ) ~ 3 ,  

~ a  = ( f J f ) X 8 ,  

~pa  = ( f J f  ) X o • (4.51) 

To compute the mixing angles, we can proceed in two alternative ways. Either we 
construct a U(3)® U(3) chiral lagrangian and proceed as before to compute the 
mixing by diagonalizing the relevent 3 x 3 mass matrix analogous to (4.37), an 
approach taken in the last reference of [30]. Or more simply, we can extract X 3, x 8, 
and ~0 by considering the current .~, appropriate to three light flavors, analogous 
to (2.11). This latter route is much more efficient, since the generalization of 
eq. (2.11) is immediate. One defines the current 

= L p Q  - -  1N( x + 1 /x) (mum s + mdms + mumd ) -1 

× { mams?cr~ysu + mumsdy~ysd + m umjy~'yss ) .  (4.52) 
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In terms of the light quark currents, 

= - 

A8,= ½~-(uy~'ysu + d"/¢ysd - 2g'~yss ) , 

(4.53) 

one may rewrite ~ as 

=fO~,a + ~3A3~ + ~8A8~ + ~koAot z . (4.54) 

The parameters, { X ), are easily identified. Since m s >> mu, rod, one can read off the 
approximate values from the structure of the current 

X3 = 1 [(z - l / x )  - N ( x  + l / x ) ( m  d -- mu)//(md + mu) ] , 

X8 = [ ( z -  1 / x )  - N ( x  + l / x ) ] ,  

Xo= ~ [ z  + 2 / x -  N ( x  + 1 / x ) ] .  (4.55) 

The SIN bound (3.7) puts a very strong constraint on X 3. Since (m d - mu) / 

(rn d + mu) -- 0.26, it is clear that the only model consistent with the SIN data would 
be one with N = 4 and with z = x. The combination Nx,  furthermore, is determined 
from the axion mass (c.f. eq. (4.38)), 

m a -- 25Nx keV. (4.56) 

Using the value inferred from the GSI experiment [1, 2] would give an axion mass, 
ma--1 .7  MeV, which implies for N =  4 that x ~ 17. This determines X 3 = -0 .34  
which is marginally consistent with the SIN bound [26]. However, we are then able 
to predict the value of X8: 

1 1 xs--  x0-- xs-- - -15 ,  (4.57) 

which will give phenomenological troubles for variant axions. 
With the mixing angles determined by (4.51) and (4.55), we must now find the 

appropriate effective lagrangian to describe the AS = 1, nonleptonic K-meson 
decays. The construction of this effective lagrangian is complicated by the large 
enhancement of the AI = ½ component of the interactions. It is expected that this 
enhancement will also enhance the processes involving axions. The fundamental 
interaction is the current-current interaction generated by W-boson exchange. 
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However the strong interactions renormalize this interaction and cause a mixing of 
the operators participating in the interaction. When the short-distance QCD correc- 
tions are included, there is the expected enhancement effect which increases the 
a I  = 1 components and decreases the AI  = ~ components, but only by a factor of 
2-3  generated by the usual mixing [31]. This effective lagrangian has two pieces, 
corresponding to operators that transform under SU(3) ® SU(3)V-A as an 8 and 27: 

50e~f (AS = 1) = g8508 + g27502v • (4.58) 

Here the operators in 508 and 5°27 can be represented in terms of currents, J,, 
which in turn are described in terms of the chiral 3 x 3 matrices, U = exp{ i~ • ~r/f~ }. 
One has the current 

J ,  = i(f~)2[ UOttUt ] (4.59) 

and the octet operator, 508, is given by 

508 = ( J;"  Jp')ds = (for)4[ O.U. G~/tU ~f ]ds" ( 4 . 6 0 )  

This enhancement does not explain the large factors observed in the K-decays. 
However, additional operator mixing can occur through the exchange of gluons 
through the mechanism known as penguins [32]. The penguin interactions generate 
new operators of a different structure than the usual left-handed current-current 
operators. It is likely that the penguin contributions will explain much of the AI - 1 
enhancement [32, 33]. For our analysis, it is sufficient to observe that both the 
enhanced current-current interactions and the penguins have exactly the same chiral 
structure and are both represented by effective lagrangian given by (4.60). In fact, 
this effective lagrangian is the unique operator giving the correct chiral structure for 
the A I = 1 amplitude, if we compute the amplitudes to lowest order in the meson 
momenta. Hence, we can compute the axion amplitudes in terms of the enhanced 
AI  = 1 amplitudes directly from the structure of the operator given in (4.60). For 
the two-body decays, we can expand (4.60) as 

1-  2 508 = u ( f ~ )  (3~ ~r2o~r- O,~rO~cr2}. (4.61) 

The necessary matrix elements elements are given by 

7r+~r- 15081K°) = C(2v~(PK)  z -- 2V~-(P=)2}, (4.62) 

(¢r+~r°1508[K+) = C(  - 2(P,+) 2 + 2(P,~o)2}, (4.63) 

(~r+rl1508]K+)=C{4~f~(pK)2--6~33(Pn)2+ 2 f f ( P ~ ) 2 ) ,  (4.64) 

(~+ qo 15061K +) = C ( 4 f f ( P K )  2 -  4 ~  (P,~)2). (4.65) 



422 W.A. Bardeen et al. / Variant axion models 

We may combine these amplitudes with our knowledge of the axion mixing angles 
to relate the axion amplitude to the AI = ½ K-decay amplitude. Using this relation 
and that (Pa) 2 = 0, we find 

(qr + alHwk[K + ) = (rr +~r- ]Hwkl K°>(m 2 - m2,r) 1 

X { -- ~-~ Sa,~om 2 + ~-$an(2m 2 + m 2) + 2~-3! Sa~o,(m 2 -  m2)}. 

(4.66) 

(m~/mK), this result simplifies to Neglecting terms of order 2 2 

(~r+aIHwklK +) = (~r+Ir- I H w k [ K ° ) { a ~ a n  + 2~i55 ~a~,} 

= (rr+~r - InwklK°)v~ { $a~ }, (4.67) 

where Sago is just the mixing with the two-flavor isoscalar previously considered. 
Hence, a bound on this amplitude directly complements the bound on the isovector 
mixing. From (4.51) and (4.55), we have 

(~r+alH~kIK + ) = @+qr-bHwklK°>{(~X8 + 2~Xo}(fUf) 

= (~r + 7r-I Hwkl K °) { v~X~ }(fJf). (4.68) 

Therefore we compute the result for the branching ratio for the axion amplitude 

B(K + ~ a,rr + ) =  (Pa/P,~)( F ( K  ° --,  ~ + ~- - ) /F (K  + ~ all)}( ~/2X, }2( f~r/f )2 

= 2.9 X 10-5 ( X s } 2. (4.69) 

Using the mixing parameters given in (4.57), one sees that the branching ratio is 
very large. Our calculation is based on the chiral structure of the A I = ½ amplitudes 
and should be a good estimate for the expected rate. Even the prediction based only 
on the short-distance enhancement of the current-current amplitudes, which is 
weaker by two orders of magnitude, would give a strong bound on this amplitude. 

Although there is as yet no real experimental bound on the process K + ---, a~r +, 
a ---, e ÷ e-,  it is clear that the situation for variant axions is extremely precarious. As 
we will see in the next section, nuclear de-excitation experiments give similar 
discouraging results for the existence of the variant axion. 
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5. Variant axions and nuclear de-excitations 

Axions can cause the decay of an excited nuclear state, N*, to its ground state, N. 
A general discussion of the formalism for calculating the ratio of the rates of axion 
and photon de-excitation of a nuclear level is contained in the paper of Donnelly 
et al. [34]. Basically, because the axion is a 0 -  excitation, it acts as a "magnetic" 
photon. Thus the axion rate, Fa, can be computed in an analogous way to the 
photon rate Fr, by using standard multipole techniques [35]. Many of the details of 
the precise nuclear wave functions disappear when one considers the ratio F J F r .  
Furthermore,  since the transition energies to be considered are much smaller than 
the typical nuclear Fermi momentum (k F = 250 MeV), one may evaluate the 
multipole operators in the long-wavelength limit. In this case the ratio, F J F r ,  
depends essentially only on some static quantities describing the coupling of axions 
and photons to nucleons. 

We reproduce below, for the case of M1 transitions, the relevant formulas for 
F J F y  obtained by Donnelly et al. [34]. One finds for isovector M1 transitions 

Fa//Fy = ½(S//o/)(ka//k)3[p(i)//(~t(1) _ ~(i))] 2 A T =  1, (5.1) 

while for isoscalar M1 transitions one has 

Fa/F ~ = ½(5 /a) (ka /k )3[p(° ) / (~  (°) - 7(°))] 2, A T =  0. (5.2) 

Here k a and k are the momentum of the axion and the photon in the transition and 
5 is the relevant scaled effective coupling squared of axions to nucleons 

5 = fUf)2 /4~r  

where gTrNN is the pion nucleon coupling constant. Numerically, one has 

(5.3) 

5 / a  -- 2.33 × 10 -4 . (5.4) 

The parameters ~l (T), ~(T), and p (T) (T  = 0,1) are related to the coupling of photons 
and axions to nucleons. Since one is dealing with a magnetic photon transition,/~(r) 
is related to the magnetic moment, while B(r) is related to the ratio of the 
convection current contribution to that of the magnetization current contribution 
[34, 35]. Specifically, one has 

/z (°) =/Zp +/1 n = 0.88, 

~(1) = ftp + ft n = 4.70, 

7](0) --2'-- 1 (5.5) 
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while @) depends on the specific nuclear transition considered. However, typically 
~/(~) <</,(1) and we shall neglect it in what follows. If one writes an effective 
axion-nucleon lagrangian as 

£°~N= ½i777s [ g(°)+ g(X),r3]Na , (5.6) 

then the parameters p(T) a r e  given by the equation [34] 

(5.7) 

To compute nuclear de-excitations of variant axions, we need, therefore, to ascertain 
what the p (r) parameters are. We shall see that p (°) and 0 (1) are simply related to 
the mixing parameters X, = v~-X8 and X3 of the preceding section, see eqs. (4.55), 
(4.57). 

To compute the effective lagrangian (5.6), we remark that, neglecting terms of 
2 2 O(mJm,,) ,  the current f contains only physical axion poles (recall the result 

(4.46)). Therefore the matrix element of ~ between nucleon states will allow us to 
compute directly the coupling constants g(0) and g(1), since the pseudoscalar form 
factors will be dominated by just the axion pole. Let us write in all generality 

(N [f~,]N) = U( p ' ){ [  iy,3,sG(A°)(t) + i( p'-- p)~,ysG(v°)( t ) ] -1  

+ [iy~YsGA(1)(t)+ i(p'-p).TsG(vl)(t)](½"r3)}U(p). (5.8) 

The pseudoscalar form factors G~ r) are dominated by the axion pole and measure 
the coupling g(r) 

G (vT) (t) = g(r)f/(t + m2a). (5.9) 

The pseudovector form factors, given the form of J~ in eq. (2.14), are nothing but 
the usual nucleon pseudovector form factors multiplied by the mixing parameters, 
?' s and X 3. That is 

= 

(~l)(t) =X3G~I)(t). (5.10) 

Using the fact that the divergence of the ~ current is dominated by the axion pole 
one obtains, in the usual Goldberger-Trieman way [36], a relation for the couplings, 
g(r) in terms of G(Ar}(O), 

g,o) = 2 x,o  °) (o) v / f  , 

g(1) = 2X 3G2 ) (0) M/f .  (5.11) 
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Using the Goldberger-Trieman relation [36]: 
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and eq. (5.7), we identify 

G~I)(O)M=f,,g,~NN, 

p(°)= 2~G[G(A°)(O)/G(A1)(O)], 

(5.12) 

0 (1) = 2X3. (5.13) 

There is no direct measurement for GA(0) experimentally. We shall therefore use a 
quark model estimate [36] for the ratio G~°)(O)/G~I)(O) 

= (5.14) 

Since, for the models of interest for variant axion, Xs = v~-?,8, we obtain finally the 
result 

p (1) = 2~k 3 • (5.15) 

With these parameters fixed and eqs. (5.1) and (5.2), we are now ready to confront 
experiment. 

As mentioned in the introduction, there are two recent nuclear de-excitation 
studies which have bearing on variant axions. Savage et al. [12] studied, in a very 
pretty experiment, the decay of the 9.17 MeV, 2 ÷, T =  1 state of 14N tO the 1 +, 
T = 0 ground state. Calaprice et al. [13] reanalyzed the pair correlation experiments 
of Warburton et al. [14], focussing in particular on the isoscalar, M1 transition from 
the 3.58 MeV, 2 ÷, T =  0 state of l°B to the 0.72 MeV, 1 ÷, T =  0 state. In both cases, 
the presence of variant axions would give an additional source of prompt e+e - 
pairs, besides those expected from normal internal conversion. Furthermore, the 
angular distribution of the e+e - pairs for variant axions is significantly different 
from that of internal pair conversion, so that one can distinguish between the two 
sources of pairs even if the rates are comparable in magnitude. 

Using eqs. (5.1) and (5.2), one predicts for variant axion models (assuming 
m a = 1.7 MeV) the following rates: 

(i) 9 . 17~0 ,  A T = l ,  14N transition: F a / F  ~ = 2 x 10 5 ( X 3 ) 2  , (5.16) 

(ii) 3.58--+0.72, AT=0,  I°B transition: F a / F  v = 1.8 × 10-3(•8) 2. (5.17) 

The main difference in these rates, apart from the X factors, comes from the large 
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isovector magnetic moment  in the AT = 1 transition. If  the axion lifetime is less than 
10-11 sec, then Savage et al. [12] gives a 90% confidence limit bound on the rate, 

14N: (f'a// 'v)exp < 4 X 10 -4 , (5.18) 

which implies 

X 3 < 4.5. (5.19) 

This bound on X 3 is enough to rule out the simplest variant axion model of refs. [8] 
and [9], which had predicted X 3 --- 26. However, eq. (5.19) gives roughly an order of 
magnitude weaker bound on the isovector parameter, )t3, than that obtained by the 

SIN experiment [261. 
The reanalysis of the Warburton et al. experiment [14], as done by Calaprice and 

collaborators [13], gives a branching ratio limit for axion lifetimes shorter than 

10-11 sec, at the lo  level, 

l°B: 

which implies that 

(Fa/FT)ex p < 0.75 × 10 4, (5.20) 

IX81 < 0 .18.  (5.21) 

This value of X 8 is about two orders of magnitude below what would be predicted 
by the model where X 3 was tuned to be small enough to escape the isovector bound 
of the SIN experiment. That is, for the case of N = 4 and x = 17 where recall that 
we found the value for X 8 -- -15(c.f .  eq. (4.57)). Thus the combination of both of 

these bounds excludes the existence of variant axions. Of course, the result (5.20) 
was obtained by reanalyzing an old experiment and one should be a bit cautious. 

However, if X 8 were of the order of magnitude expected in the surviving N = 4 
model, one would have expected a rate of F a / F  ~ ~ 0.3 which would have totally 
swamped the predicted internal pair rate F, JF~,  ~- 1.5 x 10 -4 [38]. So although the 
bound in eq. (5.21) may be too strong, a value of 15 should definitely be excluded*. 

6. Conclusions 

The narrow e+e - signal observed at GSI motivated the construction of variant 
axion models. Because, in these models, the axion decays very rapidly to e+e - pairs, 
many  of the previous bounds on axions are rendered irrelevant. Furthermore, by 
assigning the same PQ charge for c and b quarks, one can suppress both the ~b ~ ~,a 
and T ~ "ya decays. Hence these models appear, at first sight, to provide a viable 

and interesting way to solve the strong C P  puzzle. 
In variant axion models the isoscalar and isovector properties of the axions, 

characterized by the mixing parameters X s and ~k3, respectively, are not universal 

* After this paper was written, a report appeared of an experiment [40] looking for axions in 10 B in the 
decay of the 3.58 MeV state to the ground state. This direct experiment sets a bound X s ~ 1.75. 
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but depend on the individual model considered. It is, in fact, possible to have 
models where either A s or A 3 vanishes, so that no individual further experiment can 
be used alone to rule out the existence of variant axions. However, as one can see 
from eq. (4.38), (4.55), and (4.57), there is a model independent prediction for the 
difference between A~ and A 3. For large x, one has 

2 (A s -  A3) 2 = N2(x  + l / x )  ( m u / ( m  u + rna)) 2 

2 2 
~- ( f / f , )  (ma/m~) (mu/md)  = (25) 2, (6.1) 

where the numerical result applies for the case in which m a = 1.7 MeV. Because of 
the relation (6.1) variant axion models are excluded by combining the recent results 
of ~r decay and nuclear de-excitation which require individually that A 3 and A, be 
less than about 0.25. Note that since the constraint (6.1) is applicable for any 
variant axion model, the precise mass value inferred from GSI is not a particularly 
important  factor in ruling out models with m a > 2m e. We wish to remark that the 
phenomenology of completely general axion models is sensitive to only three 
potentially independent parameters, the axion coupling to the up quark ( z / f ) ,  the 
coupling to the down quarks (1/xf) ,  and the coupling to the color gauge fields 
(r = N(x  + 1 / x ) / f )  through the strong anomaly which determines the axion mass. 

Even models with no direct axion coupling to the quarks ( z / f =  1 / x f=  0) are 
strongly constrained because of the mixing induced by the strong anomaly of the 
quarks. 

The above considerations suggest that there is no window for axions to exist, 
whether of standard or variant type, if the breakdown of the PQ symmetry is 
intimately connected with that of the SU(2) ® U(1) scale, i.e. f =  250 GeV. Thus, if 
the solution to the strong CP puzzle is to be found by using an additional chiral 
symmetry, this symmetry most likely must be broken at a large scale, and the axion 
is of the invisible type. 
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