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NATURAL CHAOTIC INFLATION 
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We present a chaotic inflationary model, in which nonlinear interactions of dilaton and axion fields in the context of the 
superconformal theory can dynamically give rise to initial conditions for the inflation of the universe and a flat potential that 
can produce enough inflation. Our model is free from dangerous thermal effects and large energy density fluctuations. 

The suggestion that the universe has undergone 
a phase of exponentially rapid expansion [1] 
created a lot of interest in the connection of 
cosmology to particle physics. This idea of an 
inflationary universe is extremely attractive, be- 
cause it gave a solution to some of the long-stand- 
ing problems of cosmology such as why the den- 
sity of our universe is close to the critical value 
(the flatness problem),1.  However, the specific 
models put forward so far, do always require a 
fine-tuning either in the potential V(4~) of the 
inflaton field q~, or in the initial conditions of the 
universe. 

In this letter we construct a model for the 
inflationary universe, in which no specific fine- 
tuning is necessary. Our model is based on Linde's 
chaotic inflationary scenario [3]. In the original 
model of chaotic inflation, one must assume that 
at the Planck time t = M~ -1 the kinetic energy 
EK = 1~2 of the inflaton ff is much smaller than 
the potential V(~). However, since one needs a 
very flat potential such as V = -12m2~2 with m 2 _< 
10-10 M 2 to forbid large density fluctuations, this 
would imply that a fine-tuning ~2 << ~2 is required 
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at t - Mp t for the inflation to start. Clearly there 
is no reason why one should believe such a fine- 
tuning and hence inflation is ad hoc. 

In our model, on the contrary, the desired 
situation q~ << V(~) emerges quite naturally on the 
onset of inflation ( t - 1 0 M p  -1) as a consequence 
of gravitational dynamics. An important point in 
our model is the introduction of an extra scalar 
field ~ which has only derivative couplings to ~. 
The additional field plays a very important role 
for driving the situation ~z << V(q~) at a bit later 
time t - 10Mp 1, even if ~2 ~ V(~) at the Planck 
time. As pointed out in ref. [4], because of the 
nonminimal couplings of ~ and ~ fields, the solu- 
tion of the equation of motion for the ~ field 
yields an effective potential term V~rf(q~) at the 
classical level. In the presence of Vcff(q 0, one 
easily finds that ~2 decreases with time more 
rapidly than V(ff). Although there are many possi- 
bilities of having such a ~ field (for example, it 
arises naturally in the no-scale models [5] as a part 
of an SU(1,1) symmetry, or simply it can be a 
Nambu-Golds tone  boson associated with a global 
U(1) breaking), we consider here a broken super- 
conformal theory as an illustration of our general 
idea. In this theory one will immediately under- 
stand not only why ~ has the specific form of 
coupling g~a~3~f(q~) ,  but also the very slow 
time dependence of V(q0. 

Superconformal invariance [6] is considered to 
play an important role in supersymmetric gauge 
theories and supergravity theories. For instance, 

282 0370-2693/87/$03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



Volume 183, number 3,4 PHYSICS LETTERS B 15 January 1987 

the N = 4 supersymmetric Yang-Mills theory has 
superconformal invariance and is known to be a 
finite theory [7]. In the no-scale supergravity mod- 
els [5] there exists a certain spontaneously broken 
superconformal symmetry. Here, we shall consider 
a general class of spontaneously broken supercon- 
formal theories in which there appear the dilaton, 
the "axion" and the dilatino as the Nambu-Gold-  
stone particles corresponding to the broken dilata- 
tion, chiral U(1) and conformal supersymmetry 
generators. The effective lagrangian which de- 
scribes the interaction among these particles can 
be written, for example, in the framework of the 
nonlinear realization of superconformal symmetry 
[8]. When the system is coupled to Einstein (super-) 
gravity, the bosonic part of the lagrangian is given 
by 

+ I/'-Z-gg "~ e--2°[½3,o3~o + ½3,~a~], (1) 

where o and ~ denote the dilaton and "anion" 
fields, respectively. Note that the o and ~ fields 
have noncanonical kinetic terms which are char- 
acteristic for the ~-models on k~ihlerian manifolds 
[4]. Of course, the gravity interaction breaks (su- 
per-)conformal symmetry explicity. However, we 
could have started from the system of conformal 
supergravity coupled to matter multiplets and let 
superconformal invariance spontaneously break 
down to super-Poincar6 invariance. This would 
lead to an effective lagrangian of the same form. 

We can regard the lagrangian (1) as coming 
from the spontaneously broken conformal ® chiral 
U(1) invariance. However, the presence of chiral 
U(1) charge is a natural consequence of the super- 
symmetric extension of conformal invariance. 

To the lagrangian (1) we now add a soft break- 
ing term which is taken to be of the form of a 
mass term for the o field 

*~"= - ~S'g-,o2, (2) 

where c is a positive parameter with a mass di- 
mension two. This term breaks conformal symme- 
try as well as supersymmetry explicitly but softly. 
The absence of a mass term for the ~ field is due 
to the chiral U(1) symmetry. If the U(1) current 
has the ABJ anomaly, the ~ acquires a mass 

through the instanton effects. However, for our 
discussion here these effects can be neglected. 

We are now ready to analyze the lagrangian 
£,e o = ~ +  c.Lz°' as given by (1) and (2). First we 
define the field q5 by 

@ = e ° (3) 

Then, in the Fr iedman-Robertson-Walker  back- 
ground, the classical field equations for homoge- 
neous (time dependent, spatially constant) q~(t) 
and ~(t) fields are 

+ 3Hq; - q~2 + 2,  ln(q~)/q~ = 0, (4a) 

( d / d t ) ( 4 2 4 8  3) = 0. (4b) 

From the latter equation we have 

= O R 3/@1, (5) 

where Q is an integration constant, R a cosmic 
scale factor and H = R / R  the Hubble parameter. 
Substitution of (5) into (4a) gives the equation of 
motion for the properly normalized q~ field: 

+ 3H@ + 3~, [½Q2R 6/¢p2 +,-(In ~)2] = 0. (6) 

Observe that the Q-dependent term behaves like 
an effective potential and therefore we can rewrite 
(6) as 

+ 3H@ + 3~u e = O, (7) 

where 

oQ = ½Q2R-6/q~2 + ((In q~)2. (8) 

In the very early stages of the evolution of the 
universe, when R is very small, the Q-dependent 
term in (8) dominates over (On @)2 and the equa- 
tion of motion for the q~ field would be 

+ 3n4  + 3~(½O2R-6/q, a) = O. (9) 

Supposing that R scales with time as R = Ro tn, 
eq. (9) can be solved exactly. The first integration 
gives 

( d ~ / d z )  2 + O2Ro6/q~2 = E 2, (10) 

where E is a positive constant, and 

r = ( 1 - 3 n ) - t t  1-3" n ~ ½ ,  

= I n  t n = ½ .  (11) 
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Positivity of q~2 requires qb ~ >1 QZRo6/E2. Eq. (10) 
can be integrated to give 

2Er ,/ 2 _ Ero) ~2 = EZ,r 2 + (V(p 0 _ QZRo6/E2 , + C, 

(12) 

where 

C -- E2~'02 + ~ -- 2ET0¢4, 2 - Q2Ro6/E2 ; (13) 

with R 0, ~'0, q~0, we indicate the initial values of 
R, "r and q~, respectively. 

The time evolution of R(t)  is controlled by the 
equation 

p( t )  = 3H 2 = ½~2 + ½QZR-6/~2 ' (14) 

where natural units have been u s e d  ( m p / 8 g t ~  - = 1). 

Then, one can easily verify that eq. (14) is also 
satisfied only if n = 1/3.  Taking initially p(tp) - 
O(1) then, because of (12), the terms ~2 and 
QZR-6/dp2 in (14) are initially of the same order 
of magnitude - O(1). Note here, that, because of 
the relation q,2 >~ Q2Ro6/E2 ' any large initial value 
of the 4' field is allowed. As the universe evolves 
with time, q, is moving under the influence of the 
force F =  QZR-6/~3, and the scale factor R is 
increasing and therefore, there will be a time when 
the Q-dependent term becomes comparable with 
the potential term e(ln ~)2. The q~ field then will 
move under the force F =  Q2R "6 /~ 3  --  2c ln(q,)/q, 
and there will be a time when F becomes zero. 
After that time, the Q-dependent term gradually 
decouples, the force becomes negative and, acting 
as a decelerating force, drives q~ to zero. Then 
inflation starts controlled by the potential c(ln q~)2. 
Note that, because of the logarithmic dependence 
of this potential, there will be a large region where 
inflation takes place. Our mechanism of inflation, 
which we have just described, serves as a qualita- 
tive picture of the time evolution of q~, and a 
detailed numerical analysis of the equations of 
motion will be presented elsewhere 

Our model is not based on supercooling [9], If 
inflation starts at an early enough time, we do not 

have to worry about temperature effects [3]. The 
energy density fluctuations, however, impose a 
strong constraint on any model for inflation. In 
our model a simple calculation gives 8 O / O -  
27~-/qbinf, where ~nt is the value of q~ at the onset 
of inflation (a more detailed study of the energy 
fluctuations is under progress). A large value of 
q'i~t can easily give ~p/p -  10 4. Notice here, 
that, because of (12), ~ - In t and therefore ~inf  is 
not much different from the initial value of ~ at 
the Planck scale. This indicates that, because of 
~p /p -  2V/~-/dpinf, the energy density fluctuations 
depend not only on a parameter of the lagrangian 
but also on the initial value of $. 

In conclusion, we have presented a model for a 
chaotic inflationary scenario, in which supercon- 
formal invariance forced us to have a nonminimal 
coupling between the dilaton o and the axion 
field. This coupling results in a nontrivial Q-de- 
pendent effective potential. We find that, in the 
presence of such a Q-dependent term, a desirable 
initial condition for the inflation to start emerges 
naturally. 
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