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We present an exact calculation of the process e + e- --0 e + e- 'r  to order g3, that is, including 
the 7 and Z ° intermediate vector bosons and keeping fermion masses. This condition is needed to 
study the contribution of this process as background to single photon events. The calculation has 
been done at the amplitude level and the strong peaks occurring in the matrix element squared for 
the single photon configuration have been absorbed by an adequate mapping of the phase space 
variables. These two facts are necessary in order to obtain a numerically stable integration and an 
efficient Monte Carlo generator. 

I. Introduction 

T h e  s tudy  of  single y events in e÷e  - in teract ions  above the Z ° has been  p roposed  

a long  t ime ago as a direct  me thod  for count ing the number  of l ight neu t r ino  types  

[1]. M o r e  recent ly ,  the analysis  of isolated pho tons  in e÷e  - in terac t ions  has been  

sugges ted  [2] as a clear  s ignature  for the existence of supersymmet ry  par t ic les  (like 

p h o t i n o s  or  s-neutr inos)  or  s table neutra l  heavy leptons.  I t  is therefore  impor t an t  to 

have  re l iable  calcula t ions  of the background.  In this paper ,  we have s tudied the 

r ad ia t ive  B h a b h a  scattering e + e - ~ e + e - y  because,  a l though the t ransverse  

m o m e n t u m  of  the pho ton  is l imi ted  due to the k inemat ica l  condi t ions  of  ant i tagging 

in the  f inal  s ta te  leptons,  the exper imenta l  resolut ion and detec t ion  gaps together  

wi th  the huge  cross section of  the process represent  by  far the most  impor t an t  

sources  of  con tamina t ion .  

The  pa r t i cu l a r  k inemat ica l  condi t ions  for the observat ion  of an  isola ted p h o t o n  

m a k e  the exis t ing calculat ions of e+e  - ---, e + e - v  [3] highly inefficient.  On the other  

hand ,  to have a rel iable calcula t ion for energies of v~- - Mz0 one has to take into 

accoun t  the wid th  of  the Z ° boson  and,  in order  to avoid  col l inear  divergences and 

to achieve a good  s tabi l i ty  for the huge cancel la t ions  occurr ing in the evalua t ion  of  
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the matrix element one cannot neglect, at least for some region of the phase space, 
the fermion masses. 

In this paper, we present an exact calculation to order g3 of the process 
e + e - ~  e+e-y ,  that is, without neglecting the Z ° width and keeping the fermion 
masses. Moreover, with a detailed study of the phase space we can absorb the peaks 
in the matrix element through a transformation of variables obtaining a stable 
integration and a very efficient generation of events. The extension of this calcula- 
tion to the process e+e ----, f+f-~, models with more intermediate vector bosons 
and polarized beams is straightforward. 

The outline of the paper is as follows. In sect. 2 we explain the technique used for 
the evaluation of the matrix element. Sect. 3 contains a detailed study of the phase 
space, the transformations used for the generation of events and the integration of 
the cross section. In sect. 4 we discuss the results obtained for a reasonable set of 
experimental conditions. Sect. 5 contains a comparison with other calculations and 
some remarks on the numerical stability. Last, we present in sect. 6 the conclusions 
of the analysis. Some interesting details concerning the evaluation of the amplitudes 
and the phase space are included respectively in appendices A and B. 

2.  T h e  m a t r i x  e l e m e n t  

Since we are interested in the experimental set-up where the outgoing electron 
and positron are undetected, we shall keep the fermion masses to avoid collinear 
divergences. Moreover, we shall keep the width of the Z ° boson so the result will be 
valid for v ~ -  Mzo. With these conditions, it would be rather lengthy to do the 
calculation by the standard technique of traces reduction. Therefore, we will use the 
interesting approach of refs. [4-7] and work at the amplitude level (i.e. with complex 
numbers). This procedure, besides simplifying enormously the calculation, provides 
a higher numerical accuracy than the traditional method because the huge cancella- 
tions between the Feynman diagrams of a gauge invariant subset now take place at 
the amplitude level. 

In order g3, the process 

e - ( p l )  + e+(p2) ~ e - (p3)  + e+(p , )  + y(k) (1) 

is represented by the 16 Feynman diagrams shown in fig. 1. If we define the 
couplings to the photon and the Z ° as 

where 

iey ~' - - %  iey~(CLPL + CRPR) , (2a) 

- 1 + 2 sin2#. 2 sinE~w 

C L = sin20w , C R sin2#w , (2b) 
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Fig. 1. Feynman diagrams contributing to e+e - --* e+e-y to order g3. 

603 

being PL (PR)  the left- (right-) chirality projectors, and the kinematic invariants 

S ~- - -  (?1 "l-p2) 2' 

S' = (P3 +P4) 2, 

t = ( P t - P 3 )  2, 

t ' =  (P2--P4) 2' 

u = (pl  -p4)  2, 

u' = (?2 -P3)  2, (3a) 

with the relation 

s+s '  + t + t '  +u+u '=4m~ +4m 2, 

we can write the amplitude for the diagrams g-1 or z-1 as 

(3b) 

where 

and 

ie 3 

iM1- 2(plk)F(t) T~(pi, Xi), 

Tt( pi, )~i) = [u(p3, ~.3)F"(¢t-/~ + m )¢*( k, Xk)u( p l ,  Xt) ] 

X[o( P2, X2)/~.V (P4, ~'4)] 

r~  = [Y~ '  

'y/~(CLP L -'F CRPR) , 

{y, 
e ( y )  = (y _ M~.) + ~Mzorz., 

for the photon 

for the Z 0 , 

for the photon 

for the Z o 

(4a) 

(4b) 

(4c) 

(4d) 
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The amplitudes for the remaining diagrams can be directly obtained from this one 
by the appropriate permutation of variables and conjugations. Therefore, we shall 
deal from now on only with iM 1 given by the eqs. (4). 

Once we have the expression (4b) we can assume that, for calculational purposes, 
antiparticles have a negative mass and introduce the relation 

E u (  p,  X )Et( p,  )~ ) = i~ + m, (5) 
X 

treating the spinors u(p, ~) and v(p, X) in the same way. Moreover, if we consider 
that any ¢ corresponding to a massless particle represented by u(p, X) can be 
expressed as 

Eu(p,X)~(p,X)=¢, (6) 
x 

we can formally rewrite the expression (4b) as 

T I ( p i ,  Xi) : E [u(p3, ~k3)/"(u(P,, ~)U(pl,  ~k) 
X 

- u ( k ,  ~ ) u ( k ,  ~))¢*(k,  ~ k ) U ( p l ,  ~1)] 

× x2)r.u(p4, x4)]. 

Following ref. [6] we can express the spinors u(pi, )~t) in 
elementary chiral ones w ( Pi, X i) like 

u(p,, X,) : w(p,,  X,) + ~,w(k0,  - X , ) ,  

where ~i = mi/'Oi, •i = ~/2(pi" ko) and 

w(p,,  X,) = ¢ W ( k o , - X , ) / n  , 

being the spinors w(ko, h) chosen such that 

1 +X7 5 
W(ko, X) (ko, X)- 2 Go 

and 

(7) 

terms of the more 

(8a) 

(8b) 

(8c) 

w( k o, )~ ) = ?~lw( k o, -)~ ), (8d) 
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with k~ and k[' any four-vectors (here taken to be k~ = (1,1, 0, 0) and k~ = (0, 0,1, 0)) 
different from p~ (i = 1,4) and k and satisfying 

k~k~, o = k~k,~, = O, k~kl~ , = - 1. (9) 

It is important to point out that the spinors w(p~, hi) and w(k o, -h~) are quite 
different. One has therefore to be aware of whether the four-momentum variable is 
p/~ or k~. 

Once we have these definitions, we can express the product of two bilinears 

Z(p i ,  Ai; pj, Aj; pk, Ak; pl, A t )~  [fi(p~,A~)F~u(pj, Aj)][r~(pk, Ak)F;u(p,,A,)] 
(lO) 

in terms of the spinors w(p, A) for which we introduce* 

= F~( h,, q,. qj) F.(A k, qk. q,), ( l l a )  

where 

F~(A,qi, qj) = [w(qi, A)Y~w(qj, A)]. (11b) 

It is a lengthy but straightforward task to demonstrate that the evaluation of the 
functions Z(qi, A 5 qj, hi; qk, hk; ql, At) can be easily performed if, at the level of 
the functions F~(A, q~, qj), we make explicit the difference between w(pi, h) and 
w(k o, A) by using, in all the occurrences, the substitution rule 

F~(A, k 0 ,qj)  = - f " ( - A , q j ,  k0) ,  

F"( A, Pi,qj) = +f"(A,  Pi,qj)" (12) 

After having used explicitly the substitution (12) in the amplitude, we can apply 
the index elimination property (regardless whether Pi = ko or not) 

if '( X, qi, qj)f~(h', qk, qt) = - 26x,x'SM(h, qi, q k ) S M ( -  X, qj, qt) 

-28x_x ,SM(X,q~ ,q t )SM(-A ,q j ,  qk ) . (13) 

* We shall use Pi to denote any four-momenta occurring in the process and qi to denote any 
four-vector (Pi or ko). 
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The quantities SM(X, qi, qj) are just e-numbers depending on the components of 
the four-vectors and are defined in the following way: 

(i) For any four-momenta occurring in the process 

SM(X, Pi, Pj) = Ft( Pi, X )u( pj, - X ) 

[ 09 - pX ]1/2 [ 0 0  --  Dx ]1 /2]  

--~ ( p Y + i ~ p , ) [ ~ l  - ( p Y + i ~ p f ) [ ~ J  ) 

and satisfy 

(a) 

(b) 

(b') 

(14a) 

SM( X , p~, pj ) = - SM( - 2i, p ~, pj )* , 

SM(X, Pi, Pj) = - S M ( h ,  pj, pi),  

SM(X, pi, p,) = O. (14b) 

(ii) If one of the four-vectors is k 0, then 

(a) SM(~,, p,, ko) = -SM(X,  k o, p~) = ~/,, 

(a ' )  SM(X, k0, k0) = 0 .  (14c) 

Finally, we have to choose a suitable expression for the polarization four-vector 
of the photon. To deal with massive spinors, an adequate choice is the generaliza- 
tion of the one defined in ref. [5] for the massless case to the one given by 

e'( k, • ) = Ni l (k ,  X )yJ'u( p, X ), (15) 

where u(p,  ~) is a massive spinor, p any four-momenta (here taken as Pl) and N is 
the normalization factor given by 

N = (~21SM(~, k, p)[2) -1 (16) 

It is straightforward to see that this polarization vector satisfies the relations 

k~,e"(k,X)=e~,(k,  2i)e~'(k,X)=O, e~(k, X)e~(k, -X)  = - 1 ,  

e ~ ( k , - X )  = e~(k, X). (17) 
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With the use of eqs. (10) and (15) we can express the amplitude Tl(p~, X~) as a 
function of the Z(p  i, X~) functions like 

TI(Pl,  Xl; P2, )k2; k, Xk; P3, ~k3; P4, X4) 

= NE(Z(p3, x3, p~, x, p2, x2, p4, h4)Z(pl ,  x, pl, xl, k, Xk, Pl, X3) 
X 

- Z ( p 3 ,  h 3, k, ~k, P2, h2, P4, X4)Z(P3, X, Pl, Xl, k, Xk, Pl, X3)), (18) 

which are easily calculated for a particular helicity configuration once we have 
generated an event according to a phase space distribution. In appendix A we work 
in detail the expression of Z ( p ,  X~) for a given helicity configuration as function of 
the quantities SM(X, q,, qj) and give a fist of the Z(p~, Xg) functions for all possible 
configurations. 

As stated before, all other amplitudes can be obtained from iM 1 by adequate 
permutations and conjugations. Then, the general procedure consists on adding all 
the amplitudes for a given helicity configuration, multiply by the complex con- 
jugated and sum over all possible helicity configurations. Since particles are massive, 
chiral projectors are not helicity projectors and therefore all amplitudes are different 
from zero. Nevertheless, since the t channel is obviously dominant and m f /E << 1, 
only the amplitudes corresponding to chirality conservation for the t channel in the 
case of massless particles, i.e. 

+ + X +  + + - ) ~ + -  - + X -  + 2~ (19) 

contribute significantly to the matrix element. Moreover, as we will see in the next 
section, the contribution of the Z ° boson to the matrix element is small. Therefore, 
for an approximated estimation one can consider only eight photonic amplitudes 
and speed up considerably the calculations. 

3. The phase space 

For an efficient generation of events, we have made a detailed study of the phase 
space in order to find the adequate approximants which smooth the behaviour of 
the matrix element. Since we are interested in tagging on the photon and antitagging 
on the final state fermions, we express the phase space as function of the polar angle 
of the photon (Oy) and outgoing fermion (#f) with respect to the incident positron, 
the energy of the photon (Ey) and the two trivial azimuthal angles ( ~  and ~f). 
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Then, a single photon event is defined specifying the limits of integration of these 
variables. That  is, if we call 0 v the veto angle for the final state fermions, 0 o the 
tagging angle for photons and Xk~,," the minimum fraction of energy for the photon 
with respect to the beam energy, a single photon event is defined as: 

(i) - 1 ~< cos 0 r ~< - cos 0 v , 

(ii) Xkm," <~ xk <~ Xkm~,, 

(iii) -- COS 0 d ~< COS 0 k ~< COS Od, 

(iv) 0 ~< ~f ~< 2~r, 

(v) 0 < '/'k < 2~r, 

cos 0 v ~< cos 0f ~< 1, 

(20) 

where Xk~ ~ is the maximum fraction of energy kinematically allowed for the 
photon. 

With these variables, the phase space can be expressed as 

where 

dSF=  WpsdXk d~2k d~pj , 

X k ~p23X p 3 
Wps 1 2 

= gEb2flp3 + Xk(COSOkp3- -~p3) '  

(21a) 

(21b) 

Ei [Pe3 [ (21c) 
X i =  E Z ,  tip3 = gp 3 ' 

d~2, = d(cos 0i) de , .  (21d) 

In the case where the mass of the particles can be neglected, Wps takes the simpler 
form 

2 
1 E 2 XkXp3 (22) 

Wps~-~ ]6 b ~ - - - -  , 
I - - X  k 

which will be used to construct the approximant of the cross section. 
The different amplitudes corresponding to the Feynman diagrams shown in fig. 1 

have a fermion propagator and a photon propagator. Since we are interested in hard 
photon emission, the fermion propagator can peak only in the case where the 
photon tends to be collinear with the fermion but, due to the tag on the photon and 
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antitag on the fermions, this configuration is not allowed by momentum conserva- 
tion. We can therefore assume that the fermion propagator does not represent an 
important problem. The situation is quite different for the photonic propagator. The 
s-channel is harmless since the invariant mass of the initial or final state leptons is 
high. On the contrary, the t-channel can give a huge peak when a final state fermion 
tends to be collinear with the incident one. This is the peak we have to study in 
detail in order to find an appropriate approximant so that we can use an importance 
sampling algorithm for the numeric integration and generation of events. 

In general, the matrix element corresponding to the diagrams of fig. 1 can be 
written (keeping only the relevant masses for our configuration) as 

Al A'I (23) 
IMTI2=A0+ ( p 2 k ) ( p 4 k )  t + ( p l k ) ( p 3 k ) t , ,  

where the A, have a smooth behaviour (since do not depend on t -1 or t '-1) and A~ 
and A'~ are symmetric under the exchange of particle for antiparticle. Due to the 
kinematics, the final state leptons cannot be simultaneously collinear with the 
incident particles. Therefore, the peaks of the photonic propagator in t and t' do 
not occur simultaneously and we can use the superposition principle to obtain an 
approximant based on the simple independent functions Oapp given by 

1 XkX2 3 
dSoapp ¢c (P2k) (p4k)  t (~7-~k) dxkd~2kdg2p~ ' (24) 

and oa'pp obtained from (lap p by the exchange of particle for antiparticle. Due to the 
symmetry of the problem it is enough then to study %p. If we define 

m2 m2 (1 - max(xp3))2 (25) 

p =  1 + E---~' 6 =  E---~ 2max(xe3 )2 ' 

we can express the approximant for the cross section (see appendix A for a detailed 
description) as 

d~ dx k dcosO k 4 
d°app= ~q-~ Xk (p - -  COSl~k) 2 dqbp3d~bk= i=oHICid~li (26) 

being ~ = 1 + cos ~p3, 7/i ~ [0,1] the new variables of integration used to absorb the 



610 C. Mana and M. Martinez / Radiative Bhabha scattering 

peaks in the differential cross section given by 

[ 1 ( 3 + ~ ) ( 3 + a - c ° S ~ v )  
~o In . . . . . . . . . . . .  

J 3(3+l+cosOv) ' 
n ° =  | ~ 3 + ~  

[ ~ o l n  ~ ' 

COS ~P3 > COS 'ov 

COS ~P3 < -- COS ~v 

71 = ~11In xk  
Xkmi n 

( 1 1 ) 
n2=K21 

p -- COS 'O k p ~- COS 'od ' 

n3 = 61 p3, 

'/74 = K 4 1 ~ k  , 

and the x i are the normalization constants given by 

(3 + 2)(3  + 1 - cos 'ov) 
Xo = In 3(3 + 1 + cos 'or) 

(27) 

/£1 - -  In Xkmax , 
Xkmi n 

2cos 'od 

K2 - -  p2 _ COS2~d ' 

x 3 = x 4 =  2w. (28) 

The  inverse transformations,  necessary for the integration of the cross section and 
generat ion of  events are given by 

( (6 + 2)(6  + 1 _  coS'ov ) 7o 

3 + 3 3 (3  + 1 + cos 'ov) ' 

(3+l+c°S 'ov)( (3+2)(3+l-c°sv '~v))  7 ° _  
3+3 3 +  1 cos 'o v ~-(~-+-l-+cos~-v) ' 

710 < 71im 

'/70 > 't/tim 

Xkmax ) 71 
X k ~ Xkmin 

Xkmin ] 

cos 'ok = P - 
p2 _ COS2'Od 

p - -  (1 -- 2ha)COS& a ' 

dpp, = 2~-n3 , dp k = 2~r74, (29) 
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being 

n~m = In 8 + 1 - c°s # v ~  //ln (8 + 2)(6 + 1 ~'(--~ ~ i +-cos #v) - cos 0v) . 

Since all variables are then independent, we can write 

fl 2 fol-C°sO~ d' f~k"dXk fc°sOd dCOS&/' fo~' fo 2~ 
Oapp= +c°SOv ~_{._~ ~o Xk _cOS~a(p_cos~k)2 d~p3 dthk 

4 4 

(30) 

1 

= i=oI-Ixif~0 dTli=/--[-I0 r / . =  (31) 

The existing symmetry between Oapp and O~pp leads to the same value of the integral 
and the same distributions when the kinematic variables are transformed as 

e,,3 ,,, ep . ,  

P3 ¢* - - P 4 ,  

I, ~ '  - k .  (32) 

If we take the variables ~li uniformly distributed in [0,1] we obtain, by means of 
the transformations (29), the variables of the phase space distributed in such a way 
that they reproduce the important peaks of the differential cross section. Then, the 
total cross section will be given by 

= fg lMrl  2 dSF or T 

~lM~ppl 2 + IM~ppl 2 (IMa~p 12 + IMg~l ~) dsr 

= /" [MTI-2 (do~pp + do~pp) 
J~lMapp[ 2 + IM'ppl 2 

-- iMapp[ 2 + iM;p[2 • (aap p q" a a ; p ) .  (33) 
(app, app') 

Therefore 

o r = 2((WT) + A (w-r>) %pp, (34a) 
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Fig. 2. Distribution of event weights. 

where 

IMJ~ ) 
W T  = ]Map p ] 2 q_ , 2 ] Mapp ] (app, app') 

(34b) 

has to be calculated generating 50% of the events with d5oapp and 50% with dSoappt 
since the value of the integrals is the same. Due to the existing symmetry between 
both approximants,  the most efficient way would be to generate the events with 
d5oapp (or d5oaPpp) and apply the transformation (32) to 50% of them. In order to 
obtain the events according to the probability given by the cross section, we have to 
apply a rejection algorithm to the weight WT to correct for the approximated 
distribution. In the present case and for the cuts specified in sect. 4, the distribution 
of weights obtained by sampling 1000 events is shown in fig. 2. The small variance 

of the distribution shows that the mapping we have used in order to absorb the 
peaking structure of the matrix element squared is very efficient. For the practical 
generation of events, the use of an adaptative stratified sampling algorithm allows 
us to obtain a more refined approximation to the cross section in such a way that 
the variance of the estimation of the integral is reduced and the generation 
efficiency increased. 

4. Results 

In this section we will discuss some relevant distributions of the process e +e -  
e + e - - / t o g e t h e r  with* e÷e - ~ ~,~,/for a c.m. energy of v/s - = 100 GeV with Mz0 = 93 

* Using a similar procedure, we have calculated the complete g3 order contribution to e+e - - ,  ~,b), 
and found very good agreement with the approximated cross section obtained by Gaemers et al. (see 
ref. [1]). 
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Fig. 3. Cross section as function of v~ for e+e --' e+e 3' (solid line) and e+e ---, v~3, (dashed line). 

GeV, sin2~gw = 0.22 and a hypothetical experimental set-up defined by 
(i) veto angle for electrons of ~9 v = 5 °, 
(ii) tagging angle for photons of ~9 d = 20 °, and 
(iii) minimum photon energy* of 1 GeV. 
The cross section for the processes e+e ----, e + e - y  and e+e ----, v~3' under the 

experimental  conditions previously referred is shown in fig. 3. As one can see, the 
big cross section for the radiative Bhabha scattering (solid line) decreases with V~-. 
For  the particular selection cuts the photonic t-channel is by far the most relevant, 

being the effect of the Z ° boson negligible. We have superimposed the cross section 
for e + e - ~  v~y (dashed line). In this case, since the s-channel with the Z ° is 
dominant,  there is a clear peak when the center of mass energy is close to the Z ° 

resonance. 
The differential cross section as function of the photon energy for the processes 

e + e - ~  e + e - 7  and e + e - ~  v~y is shown in fig. 4. Again, there is no significant 
effect due to the Z ° boson for e+e - ~ e + e - y  (continuous histogram) while in the 
case of e+e - ~ v~7 (dotted histogram) there is a peak when 

s - M2o 
Ev 2v~- ( = 6.8 GeV in this case). (35) 

This may allow a study of the process e+e - ~ v~y performing a subtraction of the 

background from e+e - - ,  e + e - y  for energies such that in the region where the 
photon energy is peaked there is a reasonable signal-to-noise ratio. 

For  an efficient reduction of the contamination from e+e - - - ,  e+e -7 ,  the photon 
transverse momentum (P:~) distribution is more relevant. The differential cross 
section as function of P~ for the two processes is shown in fig. 5. Due to the tagging 
conditions, the transverse momentum for the photon in the process e + e - ~  e + e - 7  

* For a very small value of x k mi, (xk rain < 0.001) it is necessary to include higher order electromag- 
netic corrections which, if necessary, can be estimated by exponentiation of the leading log terms. 
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Fig. 4. Differential cross section as function of the photon energy for e + e - ~  e+e-y  (continuous 
histogram) and e+e - --* u~ T (dotted histogram). 

is limited by 

Cs-sin #v 
v ___ ( - -  8.7 G e V  in  this case). (36) 

PT,max I + s in O v 

The scatter plot of P~ versus cos #~ for both processes can be seen in fig. 6. One 
can clearly see that an adequate cut in P~ eliminates the contribution of e + e - ~  
e +e T and leaves a significant signal for e + e - ~  u~T in the central part of the 
detector (fig. 7). 

. ,0 
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90 

60 

0 5 10 15 P~ (GeV) 

Fig. 5. Differential cross section as function of the photon transverse momentum for the same processes 
and specifications as before. 
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Fig. 6. Scat ter  p lo t  of the t ransverse m o m e n t u m  of the pho ton  versus cos v~, for e ÷ e  ~ e + e - y  (fig. 6a) 
a n d  e + e -  ---, v~3' (fig. 6b) the number  of entr ies  in bo th  plots  is normal ized  to the relat ive cross sections. 

1 0 0 , 0 0 ~  . . . .  i . . . .  i . . . .  i . . . .  f l ~  

k 

~- !~!i!!!mi~qqiqiU.. "'~ ~ v h i i i i i i ! i H i i i i i i i ~ i i i !  

I ' ~  1 o o  

0.50 . . . . . . . . . . . . . . .  ~ ~ ~ 4 ~ iiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiii!i!iiiii!iiiiiiiiiiii 
I "~ iiiiiiiiHHi~Hi:h::::;: ........ 

o.~o iiiiiiiii!!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiN 
005 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiilliiiiiiiiiiiiiliNiiiiiiiiil 

iilNiiiiiiiii!iiiiiii!iiiiiiiiiiiiii!!iiiiiiiiiiiiiiiiiiiill 
0 . 0 1  i]il[~iiiiLiiiiiiiiiii!ii!!JiiiiU~!ii~m.!~i~i~i!~kmJ2 

-' .0 -0.5 . 0.0 0.5 1.0 cos 8~ 

Fig.  7. D i s t r i b u t i o n  of cos Oy for e + e  - - - , e+e  "/ (cont inuous  h is togram)  and e + e  ---, v~y (dot ted  
his togram).  



616 C. Mana and M. Martinez / Radiative Bhabha scattering 

5. Comparison with other calculations 

We have compared our matrix element to the one given in ref. [8] by computing 
its value in a region of the phase space where the fermion masses can be neglected 
and found perfect agreement. Nevertheless, one has to be aware of the fact that, 
since the fermion masses are not included in their calculation for the particular 
configuration we are dealing with, their result cannot be directly extrapolated to the 
present situation. 

In a more direct comparison with some of the previous estimates of the process 
e+e ---* e+e-~  , as background for single "y events, we found in particular that the 
results quoted in ref. [9] are wrong since they do not integrate over the region of 
small angles for outgoing fermions which gives a huge contribution. 

Last, we have compared our calculation with the one in ref. [10] and found 
agreement after correcting for the fact that they use OLem = 1/128.5 whereas we use 

aem = 1/137.  

6. Conclusions 

We have done an exact calculation of the process e+e - --, e + e - y  to order g3 and 
an unweighted Monte Carlo generator of events including the ¥ and the Z ° 
intermediate vector bosons and keeping fermion masses. These conditions allow us 
to study the contribution of this process as a background to single photon events; in 
particular e + e - ~  u~7 which we have also calculated completely to order g3. 
Compared to previous calculations of this background, the fact that we have done 
the calculation with the helicity amplitudes technique has shown to be very useful as 
far as simplicity and numerical stability concerns. In particular we have seen that, as 
obviously expected, only the eight helicity amplitudes of the photonic t channel 
corresponding to chirality conservation for massless particles are relevant for this 
analysis. 

Finally, we have seen that to study the process e+e - ~ u~'f, although it may be 
possible, in the region where the photon energy is peaked and the signal-to-noise 
ratio reasonable, to perform a background subtraction, it is in general much more 
efficient to make a cut in the transverse momentum of the photon because this 
eliminates completely the contribution of e+e - ~  e + e - y  and leaves a significant 
signal of e+e - ~ ~ ¥  in the central part of the detector. 

Appendix A 

In this appendix we are going to show as an example, how to calculate, for a 
particular helicity configuration, the Z(p i, hi) and afterwards, give a list with all 
possible occurring cases so that the evaluation of any amplitude T(p~, ~ )  will 
become a trivial (but lengthy) operation easily implementable in a computer 
program. 
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As we have  seen in sect. 3, the Z(p~, hi)  functions are defined as 

z(p, ,  X,; pj, Xj; pk, Xk; p,,X,)-[;,(pi, Xi)Pu(pj, Xfl] 

617 

X[fi(pk, Xk)F~u(pt, X,)]. (A.1) 

For  simplicity,  we will consider the case where F ~ = F '" = 7 ~. When  the funct ion 

Z(Pl, ~tl; P2, )k2; P3, )k3; P4, )k4) is expressed in terms of the chiral spinors w(pi, Xi), 
it reads 

Z(Pl, Xl; P2, X2; P3, )k3; P4, )~4) 

= [~(pl,  xl) + ~P(~o , -x0 ]  ~"[~(p2, x2) + ~2~(~o,-x~)] 

X [w(p3, X3) "31- ~3w(ko, -X3)] ~tp.[w(p4, X4) AI- ~4w(k0, --X4)] , (1.2) 

which gives in general 16 terms of the form F"(Xi, q~, q j ) f~( )kk ,  qk, ql)" As an 
example ,  consider  the case where X 1 = X 2 = X 3 = )'4 = + .  Then, since 

~(pi, +)v"W(~o, - )  = ~(ko, - ) , /"w(pi ,  +)  = o (A.3) 

the express ion reduces to 

Z( --[- --[- -]- --F) = [w(pl ,  ']-)'~'Uw(p2,--b) - [ -~2] lxw(ko, - )V"w(ko, - ) ]  

X [w(p3, + )Y~w(p4, + ) q- ~3~4w(ko , -  )~l~W(ko,- )] 

= [ f " ( + ,  Pl, P2) -- #l/ ' tzf .(+,  ko, ko)] 

X [ f~,( +, P3, P4)- ff3/x4f~( +, ko, ko)] (1.4) 

after  having used the relation (12). Then, using eqs. (13) and (14), we can express 
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this product as function of the quantities SM(?~, Pi, &). In this case we have 

(i) f~( +, pl, p2)f,( +, p3, P4) = -2SM(  +, pl, p3)SM(- ,  p2, P4), 

(ii) f~( +, pl, p2)f,( + ,ko ,ko)= - z S M (  +, pl,ko)SM( +, p2,ko) 

= - -  2 . 0 1 . 0 2  , 

(iii) f t , (+,  ko ' ko)f ,(+, P3, P,) = - 2 S M ( + ,  ko, p4)SM(+,  ko, P3) 

= _ 2 7 3 . 0 4 ,  

(iv) f " (  +, ko, ko)f~ (+, ko, ko) = 0. (A.5) 

Therefore 

Z(Pl ,  +,  P2, + ,  P3, + ,  P4, + )  = - 2 S M ( + ,  Pl, P3)SM( - ,  P2, P4) 

+ 21.11.2"q3114 + 2 . 0 1 . 0 2 1 . 3 1 .  4 . (A.6) 

To obtain the expression of the functions Z(pi, )~) we have written a program in 
algebraic language (REDUCE) which allows us to handle expressions of F" more 
complicated than the ones we are dealing with (eq. (2.1)). In particular, for the case 
where F~ = Y~(CI.PI. + Cp.Pp.) we found, in agreement with ref. [6] (besides a trivial 
misprint) that* 

Z ( + ,  + ,  + ,  +)  = - 2 ( S M ( + ,  Ps, Pl)SM( - ,  P,, Pz)C~CR 

- -  1 .11.  2 . 0 3 . 0 4 C 1 ~ C L  - . 0 1 . 0 2 1 . 3 1 . 4 C { . C R )  , 

Z ( + ,  + ,  + ,  - )  = -2.0zCR(SM(+ , P4, Pl)1*3C:_ - SM(+,  P3, Pl)1.4C~), 

Z ( + ,  + ,  - ,  + )  = -2.01CR(SM(- , P2, P3)1.4C{_- S M ( - ,  P2, P4)1.3C~), 

Z ( + ,  + ,  + ,  + )  = - 2 ( S M ( + ,  P3, pl)SM( - , P4, P2)C(cCR 

- -  t'1t* 2.03.04C ~ CL - .01.021. 3t* 4C [.CR ) , 

Z ( + ,  - ,  + ,  + )  = -2.04C~.(SM(+ , P3, Pl)1*2CR -- SM(+ ,  P 3 ,  P 2 ) 1 * I C L ) ,  

z ( + , - ,  + , - )  = +0, 

z ( + ,  , , + )  = -2(1.11.4.02.03C/.CL + 1.21.3.01.04C{CR- 1.21.4.01.03C{CR 

- -  1.11.  3 " 0 2 . 0 4 C l ~ C c  ) ,  

Z ( + ,  , , - ) = - 2 . 0 3 C ~ ( S M ( + , P E ,  Pa)1*lCL-SM(+,P1,  P4)1*2CR) • (A.7) 

• N o t e  t h a t  f o r  P '  = y~' o n e  j u s t  h a s  t o  se t  C L = C R = 1. 
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Due to the existing symmetry, one can obtain the remaining configurations inter- 
changing all the helicity indices, that is, SM(?~, Pi, Pj) ~ SM(-)~, Pi, Pj) and L o R. 

Appendix B 

As explained in sect. 3, in order to have an efficient numeric integration of the 
cross section, we have absorbed the peaking structures of the photonic t channel in 
an approximated differential cross section which is afterwards corrected applying 
the appropriate weights. Since the peaking structures in IMTI 2 are of the form t -1 
(or t ' -x )  we can construct an approximant as 

2 
1 XkXp3 dxkdI2kd~2p3, 

dSo~pptX (p2k  ) (p4k )  t ( l  ~ k )  
(B.a)  

and similarly for O'ap p interchanging particle for antiparticle. Taking the Z axis as 
Ue÷, we have that 

t =  -2E2xp~(3  + 1 + cos 0p~), 

( p 2 k )  = e x (o - cos 0 h ) ,  

(p4 k)  = E 2 XkXp3 [ ..j_ COS 0kp3) , 
b 1 _ X k  ~,p 

(B.2) 

where we have defined 

p=~l m2 E2Xp3- Iell Ie31- m2 
+ - -  8 =  (B.3) 

Eb 2 ' It'11 IP3I 

and used explicitly the relation 

2(1 - -Xk)  
(B.4) 

xp3 = 2 - x k + XkCOS Okp ~ 

due to energy-momentum conservation. Therefore, we can write the expression (24) 
as 

dx k d cos 0 h d cos Op3 dep k depp~ 

d ° a p p =  X k ( P - - C O S O k ) ( t $ +  l + C O S O p 3 ) ( p + c o S O k p 3 )  " (U.5)  

The term cos 0kp 3 correlates O k and 0p3 but, due to the kinematics of the 
problem, is obvious that it is dominated by O k since the direction of the outgoing 
electron is very close to the beam direction. Therefore, we can eliminate all 
correlations among the variables considering 

COS ~ k p  3 ~ -- COS ~k 
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a n d  wri te  

C. Mana and M. Martinez / Radiative Bhabha scattering 

d c o s  Vap~ d x  k d c o s ~  k 4 

d ° a p p =  8 + l + c o S V a p 3  x ,  (P-C°SV~*)2  d~bp dqb ,=  i=oI-Ixidrli' (B.6) 

where  ~i ~ [0, 1] and  xi are the cor responding  normal iza t ion  factors.  Since we expect  

cos 0p, - - 1 we will use, for numer ica l  accuracy,  the var iable  ~ = 1 + cos Op3" Last,  

s ince in our  case E 2 >> m 2 we can make  a Tay lo r  expans ion  of the modulus  of the 

t r i m o m e n t a  appea r ing  in the numera to r  of  the funct ion 8 def ined in (B.3). Keep ing  

te rms  of  o rde r  O(m2)  we have that  

IVll IV3[ ~EplEp3 ( 

There fo re  

1 2 <  + E 2  P3 
-- g m  E 2 E 2  Pl P3 

(B.7) 

m 2 E 2 +  E 2 -  _ m 2 (1 2 
8 ~ - -  p' P' 2 E p l E p '  -- up3) 

2Ep Ep, ~ l E p 3  E~ 2x 2 ' (B.8) 

A s  we see, 8 depends  on Xp3. Nevertheless ,  since Xp, will be very peaked  to the 

m a x i m u m  value  k inemat ica l ly  a l lowed (so the m o m e n t u m  transfer  is min imum) ,  we 

can  fix it  to this value and neglect  any  variat ion.  This  gives the a p p r o x i m a n t  we 

used  in eq. (26) of  sect. 3. 
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