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We present an exact calculation of the process ee~ — e e~y to order g°, that is, including
the y and Z° intermediate vector bosons and keeping fermion masses. This condition is needed to
study the contribution of this process as background to single photon events. The calculation has
been done at the amplitude level and the strong peaks occurring in the matrix element squared for
the single photon configuration have been absorbed by an adequate mapping of the phase space
variables. These two facts are necessary in order to obtain a numerically stable integration and an
efficient Monte Carlo generator.

1. Introduction

The study of single y events in e *e ™ interactions above the Z° has been proposed
a long time ago as a direct method for counting the number of light neutrino types
[1]. More recently, the analysis of isolated photons in e*e™ interactions has been
suggested [2] as a clear signature for the existence of supersymmetry particles (like
photinos or s-neutrinos) or stable neutral heavy leptons. It is therefore important to
have reliable calculations of the background. In this paper, we have studied the
radiative Bhabha scattering e*e” — e*e "y because, although the transverse
momentum of the photon is limited due to the kinematical conditions of antitagging
in the final state leptons, the experimental resolution and detection gaps together
with the huge cross section of the process represent by far the most important
sources of contamination.

The particular kinematical conditions for the observation of an isolated photon
make the existing calculations of e*e™ — e*e~y [3] highly inefficient. On the other
hand, to have a reliable calculation for energies of Vs ~ Mo one has to take into
account the width of the Z° boson and, in order to avoid collinear divergences and
to achieve a good stability for the huge cancellations occurring in the evaluation of
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the matrix element one cannot neglect, at least for some region of the phase space,
the fermion masses.

In this paper, we present an exact calculation to order g3 of the process
e“e” —eTey, that is, without neglecting the Z° width and keeping the fermion
masses. Moreover, with a detailed study of the phase space we can absorb the peaks
in the matrix element through a transformation of variables obtaining a stable
integration and a very efficient generation of events. The extension of this calcula-
tion to the process e*e™ — f*f~y, models with more intermediate vector bosons
and polarized beams is straightforward.

The outline of the paper is as follows. In sect. 2 we explain the technique used for
the evaluation of the matrix element. Sect. 3 contains a detailed study of the phase
space, the transformations used for the generation of events and the integration of
the cross section. In sect. 4 we discuss the results obtained for a reasonable set of
experimental conditions. Sect. 5 contains a comparison with other calculations and
some remarks on the numerical stability. Last, we present in sect. 6 the conclusions
of the analysis. Some interesting details concerning the evaluation of the amplitudes
and the phase space are included respectively in appendices A and B.

2. The matrix element

Since we are interested in the experimental set-up where the outgoing electron
and positron are undetected, we shall keep the fermion masses to avoid collinear
divergences. Moreover, we shall keep the width of the Z° boson so the result will be
valid for Vs ~ M,0. With these conditions, it would be rather lengthy to do the
calculation by the standard technique of traces reduction. Therefore, we will use the
interesting approach of refs. [4-7] and work at the amplitude level (i.e. with complex
numbers). This procedure, besides simplifying enormously the calculation, provides
a higher numerical accuracy than the traditional method because the huge cancella-
tions between the Feynman diagrams of a gauge invariant subset now take place at
the amplitude level.

In order g3, the process

e"(p)+e(py) > e (ps) +ev(pa) +v(k) (1)

is represented by the 16 Feynman diagrams shown in fig. 1. If we define the
couplings to the photon and the Z° as

/"“< iey* ——‘< iey"(CLPL + CgPyg), (2a)

~1+ 2sin’d,, 2sin?d,,

L . 3 R ™ . 3
sin24d,, sin 24,

where

(2b)
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Fig. 1. Feynman diagrams contributing to e*e™ —> e*e~y to order g°.
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being P; (Pg) the left- (right-) chirality projectors, and the kinematic invariants

2 2 2
s=(pr+tp), t=(pi—p3)°, u=(p—p),

’ 2 ’ 2 ,
s =(P3+P4) ’ t =(P2_P4) s u =(P2_P3)2,

with the relation

s+s'+t+t+utu =4m?+4m?,

we can write the amplitude for the diagrams g-1 or z-1 as

ie’

IM =—_T pi’Ai)’
RETPVIOM
where
Tl(Pi9 }\i) = [‘_‘(P3, }‘3)11“(#‘1_&‘*"")#*(1" )\k)“(Pl’ >\1)]
X[E(Pza}‘z)FpU(Pm)H)]
and
I ", for the photon
T\ y*(C P, + CrPR), for the Z° ’

¥, for the photon
F(y)=
(y~M2) +iMzl0, for the Z°

(3a)

(3b)

(4a)

(4b)

(4c)

(4d)
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The amplitudes for the remaining diagrams can be directly obtained from this one
by the appropriate permutation of variables and conjugations. Therefore, we shall
deal from now on only with iM; given by the egs. (4).

Once we have the expression (4b) we can assume that, for calculational purposes,
antiparticles have a negative mass and introduce the relation

;u(pﬂ)ﬁ(p,%)ﬂ“rm, ()

treating the spinors u(p, A) and v( p, A) in the same way. Moreover, if we consider
that any p corresponding to a massless particle represented by u(p,A) can be
expressed as

Yu(p,Nu(p,A)=p, (6)

A

we can formally rewrite the expression (4b) as
Ti(p;» A,) = )> [H(Ps’ >‘3)F“(V(P17 MNu(py, M)
A
—u(k, A)a(k, M) ¢*(k, A u(py, Ay)]
X[a(Pz’Az)Fu“(Pm}w)]- (7

Following ref. [6] we can express the spinors u(p;, A,) in terms of the more
elementary chiral ones w( p,, A;) like

u(Pi’Ai)=W(Pi’>‘i)+H,'W(k0’_}‘i)a (83)
where p,=m,/n,, m,=2(p, k,) and
w(pi’xi)=#iw(k0’_)\i)/ni (Sb)

being the spinors w(k,, A) chosen such that

1+Ay3

W(ko’}‘)w(k()a}‘)= 2

k, (8¢)

and

W(k0,>\)=}\1¢1w(k0,—}\), (Sd)
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with k4 and k{ any four-vectors (here taken to be k5= (1,1,0,0) and k{ =(0,0,1,0))
different from p; (i =1,4) and & and satisfying

kik,o=kbky, =0,  kik,=—1. (9)

It is important to point out that the spinors w( p;, A;) and w(k,, —A,) are quite
different. One has therefore to be aware of whether the four-momentum variable is
pl or kb,

Once we have these definitions, we can express the product of two bilinears

(p;,kn pj’AJ’ pk’xk’ pl’ )E[u(px’}\ )F u pj’ ][u(pk’ k)Fp,u(pli)\l)]
(10)

in terms of the spinors w( p, A) for which we introduce*

Z(qi N 45 N i @i Mg @ ) = [90g0 X)) v w (g, M) [ (g M) vow (g, A )]

=F“(Ai’qi’qj)l:h(}\k’qk7ql)7 : (11a)

where
Fr(N, q,,q;) = [#(q:, M) v*w(q,, N)]. (11b)

It is a lengthy but straightforward task to demonstrate that the evaluation of the
functions Z(gq,, \;; ¢ s A Qi Ak gy Ay) can be easily performed if, at the level of
the functions F*(A, g;, q;), we make explicit the difference between w(p;, A) and
w(ky, A) by using, in all the occurrences, the substitution rule

F¥(N, ko q;) = —f*(=N. 45, ko),

F'L(A’pi’qj)= +f"()\’Piaqj)- (12)

After having used explicitly the substitution (12) in the amplitude, we can apply
the index elimination property (regardless whether p, = k, or not)

MM, 40,9,) f(N 40, q,) = =28, ASM(X, q,, 4, )SM( -}, q;, q;)

~28, _\SM(XA, q,,4,)SM(-X,q,,4,). (13)

* We shall use p;, to denote any four-momenta occurring in the process and ¢; to denote any
four-vector ( p; or kg).



606 C. Mana and M. Martinez / Radiative Bhabha scattering

The quantities SM(A, ¢;, q;) are just c-numbers depending on the components of
the four-vectors and are defined in the following way:
(i) For any four-momenta occurring in the process

SM(A, p;, p;) = u( p;, Nu(p;, —A)

X

0 _ 1/2 0_ ,x |1/2
. Py D . P — P
M(p?+irp?)| =5—=| —(p?+i\p} - (14a)
(( p! = p; (# /) P - p

It

and satisfy

(a) SM(A,P,,PJ)Z _SM(—)\7P1, PJ)*,
(b) SM(X, p;» p;) = —SM(X, p;. p.),
(b,) SM(>\’ Pis P,) = (. (14b)

(ii) If one of the four-vectors is k, then

(a) SM(A’ Pi’k0)= _SM(}"kO’pi)=T’ia

(2) SM(A, ko, ko) = 0. (14c)

Finally, we have to choose a suitable expression for the polarization four-vector
of the photon. To deal with massive spinors, an adequate choice is the generaliza-
tion of the one defined in ref. [S] for the massless case to the one given by

e*(k,\)=Nu(k,\)y*u(p,\), (15)

where u( p, A) is a massive spinor, p any four-momenta (here taken as p;) and N is
the normalization factor given by

-1
N=(2ISM(A, k. p)?) . (16)
It is straightforward to see that this polarization vector satisfies the relations
k,e*(k,N) =¢,(k,\)e*(k,A) =0, g,(k, N)e*(k, =A) = -1,
e,(k, =A)=¢eX(k, ). 17)
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With the use of egs. (10) and (15) we can express the amplitude T;(p;, ;) as a
function of the Z( p;, A,) functions like

Tl(Pp A Pas A kAL Py Ass pas Ay)

= NZ(Z(Pa’ Ay, P1s A, Pas Ay, Py >‘4)2(1’1, AP ALk A Py )\3)
A

—Z(P3, Ay, kA, Py, Ay, pa, }‘4)Z(P3a AP ALK A, Py, >‘3)), (18)

which are easily calculated for a particular helicity configuration once we have
generated an event according to a phase space distribution. In appendix A we work
in detail the expression of Z( p,, A;) for a given helicity configuration as function of
the quantities SM(A, g;, q;) and give a list of the Z( p,, A,) functions for all possible
configurations.

As stated before, all other amplitudes can be obtained from iM, by adequate
permutations and conjugations. Then, the general procedure consists on adding ali
the amplitudes for a given helicity configuration, multiply by the complex con-
jugated and sum over all possible helicity configurations. Since particles are massive,
chiral projectors are not helicity projectors and therefore all amplitudes are different
from zero. Nevertheless, since the ¢ channel is obviously dominant and m;/E <« 1,
only the amplitudes corresponding to chirality conservation for the ¢ channel in the
case of massless particles, i.e.

++A++ +—-A+ - —+A—+ ——A-- (19)

contribute significantly to the matrix element. Moreover, as we will see in the next
section, the contribution of the Z° boson to the matrix element is small. Therefore,
for an approximated estimation one can consider only eight photonic amplitudes
and speed up considerably the calculations.

3. The phase space

For an efficient generation of events, we have made a detailed study of the phase
space in order to find the adequate approximants which smooth the behaviour of
the matrix element. Since we are interested in tagging on the photon and antitagging
on the final state fermions, we express the phase space as function of the polar angle
of the photon (#,) and outgoing fermion () with respect to the incident positron,
the energy of the photon (E,) and the two trivial azimuthal angles (¢, and ¢;).
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Then, a single photon event is defined specifying the limits of integration of these
variables. That is, if we call &, the veto angle for the final state fermions, 4, the
tagging angle for photons and x, _ the minimum fraction of energy for the photon
with respect to the beam energy, a single photon event is defined as:

(1) ~1<cosd;< —cosd,, cosd, <cosdh<l,

(ii) X SXp< X

(iii)) —cos¥; < cosd, < cosdy,

(iv) 0<op<2m,

v) 0< ¢ <27, (20)

where x, is the maximum fraction of energy kinematically allowed for the
photon.
With these variables, the phase space can be expressed as

&I = Wpsdx, d2,dR, (21a)
where
x, B2 x
W= LE2 P37 ps , (21b
PSR, + xi(cos B, — B,,) )
E; [P,
%S B,, = ——h , (21c)
df2,=d(cos ;) d¢, . (214d)

In the case where the mass of the particles can be neglected, Wp¢ takes the simpler
form

2

XX
Wes = 16 E; ﬁl , (22)
K

which will be used to construct the approximant of the cross section.

The different amplitudes corresponding to the Feynman diagrams shown in fig. 1
have a fermion propagator and a photon propagator. Since we are interested in hard
photon emission, the fermion propagator can peak only in the case where the
photon tends to be collinear with the fermion but, due to the tag on the photon and
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antitag on the fermions, this configuration is not allowed by momentum conserva-
tion. We can therefore assume that the fermion propagator does not represent an
important problem. The situation is quite different for the photonic propagator. The
s-channel is harmless since the invariant mass of the initial or final state leptons is
high. On the contrary, the t-channel can give a huge peak when a final state fermion
tends to be collinear with the incident one. This is the peak we have to study in
detail in order to find an appropriate approximant so that we can use an importance
sampling algorithm for the numeric integration and generation of events.

In general, the matrix element corresponding to the diagrams of fig. 1 can be
written (keeping only the relevant masses for our configuration) as

A’

W =4t Ty pabrt * rd (k)

(23)

where the A4, have a smooth behaviour (since do not depend on ¢! or #'~!) and 4,
and A’; are symmetric under the exchange of particle for antiparticle. Due to the
kinematics, the final state leptons cannot be simultaneously collinear with the
incident particles. Therefore, the peaks of the photonic propagator in ¢ and ¢’ do
not occur simultaneously and we can use the superposition principle to obtain an
approximant based on the simple independent functions ¢,,, given by

1 X X2
S k) Pkt (1-x,)

d’,, dx,d2,de, (24)

and o, obtained from o,,, by the exchange of particle for antiparticle. Due to the

app
symmetry of the problem it is enough then to study o, . If we define

app*

[ m? m? (1 — max(x ))2
p= 1+ — , &= —_— P R 25
E? E} 2max(xp3)2 @)

we can express the approximant for the cross section (see appendix A for a detailed
description) as

d¢ dxk dcos &,
do,,, =
d+§ x4 (p—cosﬂk)

I_I K, dn, (26)

being £ =1 + cos ¢

> M; €10,1] the new variables of integration used to absorb the
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peaks in the differential cross section given by

Kaln(8+£)(8+1—cosﬁv) ’
8(8+1+cosd,)

cos ¥, > cosd,

Mo~ ’
6+¢
Ky 'ln o cosd, < —cosd,
X
m= Kl_llnx :
kmin
. 1 1
M=K,

p—cosd, p+cosd,|’

"73 = K; ¢p3 3

T’A = K;1¢k ] (27)
and the k; are the normalization constants given by

_ (8+2)(8+1—cosd,)

o~ 8(8+1+cosd,)
k
— ln max ,
o X kimin
2cos 4
2T 2T cos?d,
Ky=K,=2T. (28)

The inverse transformations, necessary for the integration of the cross section and
generation of events are given by

(8+2)(8+1—cosd,)

Mo

~-8+9 <M
; 8(8+1+cosd,) ’ o= Mim
B 8+1+4+cosd, \[(8+2)(6+1—cosd,)\™ ’
—8+46 s M6 > MNim
8+1—cosd, 8(8+1+cosd,)
kau L
xk:kain —x— ’
kmin
2 — cos?®
cosd,=p s d

~ p—(1—2n,)cos 3,

¢,, = 2703, ¢, =2m0,, (29)
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being
8§+1—cosd, | (§+2)(8+1—cosd,)
nlim =n ln (30)
8 8(8+1+cosd,)
Since all variables are then independent, we can write
_ d¢ ,x, dx dcos @
2 1—cos#, k max k {cosdy k 2 27
0, = — —_— — d d
app /;+cosﬁv‘/(.) o+¢ X, Xk Y —cosdy (p — COoSs ﬂk)z j(; ¢P3 j(; o

4 1 4
- I~ /O dn= I« (31)

The existing symmetry between o,,, and o, leads to the same value of the integral

and the same distributions when the kinematic variables are transformed as

EP3 « EP4 4
P3= — P4,
ke —k. (32)

If we take the variables %, uniformly distributed in [0, 1] we obtain, by means of
the transformations (29), the variables of the phase space distributed in such a way
that they reproduce the important peaks of the differential cross section. Then, the
total cross section will be given by

Or= '[9|MT|2d5F

2
= f| |MT| (lM |2+ iM' p‘2)d51ﬂ
Q

2 2
Mappl + |Ma,pp| P .
|My|?
= do +da')
2 2 (
a|Mypp|“ + M| P PP
|M|3
= 3 5 -(0,,,+0. ). (33)
<IMapp| + MLl e e
(app, app’)

Therefore

o1 =2((WT) £ 4 wr) 0app» (34a)
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Fig. 2. Distribution of event weights.

where

| M3
WT = (34b)

2 2
| Mapp| =+ | M|

(app.app’)

has to be calculated generating 50% of the events with d5crapp and 50% with d5oa’pp
since the value of the integrals is the same. Due to the existing symmetry between
both approximants, the most efficient way would be to generate the events with
d’s,,, (or d%¢/, ) and apply the transformation (32) to 50% of them. In order to
obtain the events according to the probability given by the cross section, we have to
apply a rejection algorithm to the weight WT to correct for the approximated
distribution. In the present case and for the cuts specified in sect. 4, the distribution
of weights obtained by sampling 1000 events is shown in fig. 2. The small variance
of the distribution shows that the mapping we have used in order to absorb the
peaking structure of the matrix element squared is very efficient. For the practical
generation of events, the use of an adaptative stratified sampling algorithm allows
us to obtain a more refined approximation to the cross section in such a way that
the variance of the estimation of the integral is reduced and the generation

efficiency increased.
4. Results

In this section we will discuss some relevant distributions of the process e¥e™ —
e*e”y together with* e*e™ — »¥y for a c.m. energy of Vs = 100 GeV with M,o=93

* Using a similar procedure, we have calculated the complete g order contribution to e*e™ — v¥y
and found very good agreement with the approximated cross section obtained by Gaemers et al. (see
ref. (1]).
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Fig. 3. Cross section as function of Vs fore*te™ - e*e vy (solid line) and e* e~ — »py (dashed line).

GeV, sin*?®, = 0.22 and a hypothetical experimental set-up defined by

(1) veto angle for electrons of ¥, = 5°,

(ii) tagging angle for photons of 4, = 20°, and

(iii) minimum photon energy™® of 1 GeV.

The cross section for the processes e*e” > e*e”y and e*e” — »vy under the
experimental conditions previously referred is shown in fig. 3. As one can see, the
big cross section for the radiative Bhabha scattering (solid line) decreases with Vs.
For the particular selection cuts the photonic s-channel is by far the most relevant,
being the effect of the Z° boson negligible. We have superimposed the cross section
for e*e” — vy (dashed line). In this case, since the s-channel with the Z° is
dominant, there is a clear peak when the center of mass energy is close to the Z°
resonance.

The differential cross section as function of the photon energy for the processes
e*e” >e*e vy and e*e” - vy is shown in fig. 4. Again, there is no significant
effect due to the Z° boson for e*e™ — e*e~y (continuous histogram) while in the
case of e*e™ — ppy (dotted histogram) there is a peak when

E,=" z (= 6.8 GeV in thi 35
= ———— = 0. t .
Y 2/s eV in this case) (35)

This may allow a study of the process e*e™ — »vy performing a subtraction of the
background from e*e™ —e*e”y for energies such that in the region where the
photon energy is peaked there is a reasonable signal-to-noise ratio.

For an efficient reduction of the contamination from e*e™ — e*e~y, the photon
transverse momentum (P}) distribution is more relevant. The differential cross
section as function of P} for the two processes is shown in fig. 5. Due to the tagging
conditions, the transverse momentum for the photon in the process e*e™ —>e*e”y

* For a very small value of x, in (%X min < 0.001) it is necessary to include higher order electromag-
netic corrections which, if necessary, can be estimated by exponentiation of the leading log terms.
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Fig. 4. Differential cross section as function of the photon energy for e*e” — e*e "y (continuous
histogram) and e* e~ — v¥y (dotted histogram).

is limited by

Vssin 9,

Pl =
Tomax =1 4 sin &,

(= 8.7 GeV in this case) . (36)
The scatter plot of P} versus cos ¢, for both processes can be seen in fig. 6. One
can clearly see that an adequate cut in P} eliminates the contribution of e*e™ —

e"e vy and leaves a significant signal for e*e~ — v¥y in the central part of the
detector (fig. 7).
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Fig. 5. Differential cross section as function of the photon transverse momentum for the same processes
and specifications as before.
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Fig. 6. Scatter plot of the transverse momentum of the photon versus cos &, fore*e™ —e*e”y (fig. 6a)
and e*e” — v7y (fig. 6b) the number of entries in both plots is normalized to the relative cross sections.
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Fig. 7. Distribution of cos#, for ete™ - e*e "y (continuous histogram) and e*e” — »vy (dotted
histogram).
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5. Comparison with other calculations

We have compared our matrix element to the one given in ref. [8] by computing
its value in a region of the phase space where the fermion masses can be neglected
and found perfect agreement. Nevertheless, one has to be aware of the fact that,
since the fermion masses are not included in their calculation for the particular
configuration we are dealing with, their result cannot be directly extrapolated to the
present situation.

In a more direct comparison with some of the previous estimates of the process
ete”—>e*e vy as background for single y events, we found in particular that the
results quoted in ref. [9] are wrong since they do not integrate over the region of
small angles for outgoing fermions which gives a huge contribution.

Last, we have compared our calculation with the one in ref. [10] and found
agreement after correcting for the fact that they use a,,, =1/128.5 whereas we use
ey = 1/137.

6. Conclusions

We have done an exact calculation of the process e" e~ — e"e”y to order g* and
an unweighted Monte Carlo generator of events including the y and the Z°
intermediate vector bosons and keeping fermion masses. These conditions allow us
to study the contribution of this process as a background to single photon events; in
particular e*e” — »¥y which we have also calculated completely to order g°.
Compared to previous calculations of this background, the fact that we have done
the calculation with the helicity amplitudes technique has shown to be very useful as
far as simplicity and numerical stability concerns. In particular we have seen that, as
obviously expected, only the eight helicity amplitudes of the photonic ¢ channel
corresponding to chirality conservation for massless particles are relevant for this
analysis.

Finally, we have seen that to study the process e*e™ — »py, although it may be
possible, in the region where the photon energy is peaked and the signal-to-noise
ratio reasonable, to perform a background subtraction, it is in general much more
efficient to make a cut in the transverse momentum of the photon because this
eliminates completely the contribution of e*e™ — e*e™y and leaves a significant
signal of e*e”~ — vpy in the central part of the detector.

Appendix A

In this appendix we are going to show as an example, how to calculate, for a
particular helicity configuration, the Z( p,, A;) and afterwards, give a list with all
possible occurring cases so that the evaluation of any amplitude T(p,, A;) will
become a trivial (but lengthy) operation easily implementable in a computer
program.
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As we have seen in sect. 3, the Z( p;, A;) functions are defined as

Z(p ;s Pis N5 Pio N Pis A= [E(Pw Ai)Fpu(pj’ Aj)]

X[a(l’k’}\k)r;:”(l’/’ >‘1)]- (A1)

For simplicity, we will consider the case where I'* = I"* = y*. When the function
Z( Py, AL Pas Ay D3, As; Pay Ay) s expressed in terms of the chiral spinors w( p;, A)),
it reads

Z(p1sA1s P2y Ags 3y Ass Py, Xs)
= [W(Ph >‘1) + Ihw(ko, _Al)]Y”[W(Pz, Ay) +uaw(ko, _>\2)]

X [W(ps, A3) + u3w(ko, _>‘3)]Y,L[W(P4’ Ay) + (ko —A,)], (A2)

which gives in general 16 terms of the form F*(A; g, q;)F,(A;, g4, q;)- As an
example, consider the case where A, =X, =A,;=A,= +. Then, since

w(pi, +)v*w(ko, =) =w(ko, =)v*w(p;, +)=0 (A3)
the expression reduces to

Z(+ +++)=[W(p, +)v*w(pa, +) + s (ko, =) v*w ko, —)]
X [W(p3, +)Y,LW(P4a +) + papgw(k, —)yuw(ko, _)]
= [f“('*' s D1y D2) — o £ (+, ko, kO)]

X[fu(+’P3’P4)_ﬂ3l‘4fp(+’k0,ko)] (A.4)

after having used the relation (12). Then, using egs. (13) and (14), we can express
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this product as function of the quantities SM(A, p;, p,). In this case we have
(1) fﬂ(+ s D1y P2)f;¢(+ s P3s P4) = _ZSM("' s P1s P3)SM(‘ » P2 P4) ’

(11) f"(+ > P1s pZ)fp,(+ ’ kO’ kO) = _2SM(+ » P1» kO)SM(+’ Pas kO)

= =2nm,,
(iii) A+, ko, ko)f,;("‘ s P3> Pa) = —2SM(+, k¢, p4)SM(+, ko, P3)
= =213,
(iv) f*(+, kos ko) f(+, ko, ko) =0. (A.5)

Therefore
Z(pla +, Pyt P3s +, P, +) = _ZSM(+’ P> Pa)SM(—'s P2, P4)

+2ppomang + 20, - (A.6)

To obtain the expression of the functions Z( p,, A;) we have written a program in
algebraic language (REDUCE) which allows us to handle expressions of I'* more
complicated than the ones we are dealing with (eq. (2.1)). In particular, for the case
where I'* = y#(C P + Cx Pg) we found, in agreement with ref. [6] (besides a trivial
misprint) that*

Z(+,+,+,+) = =2(SM(+, p3, p)SM(~, py, p;)CiCr

— B30 CRCL — MMt 3k aCICR),
Z(+,+,+,—) = —20,Cr(SM(+, ps, p1)psCL — SM(+, ps, PORCR),
Z(+,+, =, ) = —2mCr(SM( =, py, p3)1sCi = SM(—, Py, P)BsCR),
Z(+,+,+,+)= _Z(SM("‘ » P3, P1)SM(—, p,, P2)CrCy

— 13 CRCL — N3 aCiCr)
Z(+, -, +,+) = =20,C4(SM(+, py, p)p,Cr — SM(+, ps, P2)rCr),
Z(+,-,+,-)=+0,
Z(+, =, =, +) = =2 peanmCiCr + oM CRCr — okt mm3CiCr

—pisn1aCRCL),

Z(+ s T s T _) = _27’3C£(SM(+ ’ pZa p4)”"1CL_ SM(+’ p17 pA)”ZCR) . (A7)

* Note that for I'* = y* one just has to set C; = Cg =1.
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Due to the existing symmetry, one can obtain the remaining configurations inter-
changing all the helicity indices, that is, SM(A, p,, p;) > SM(—A, p;, p;) and L & R.

Appendix B

As explained in sect. 3, in order to have an efficient numeric integration of the
cross section, we have absorbed the peaking structures of the photonic ¢ channel in
an approximated differential cross section which is afterwards corrected applying
the appropriate weights. Since the peaking structures in |M,|? are of the form ¢!
(or ¢'~1) we can construct an approximant as

1 x,x2
Oapp & P dx, d2,d8, (B.1)
(p2k)(psk)t (1= x,)

and similarly for o, interchanging particle for antiparticle. Taking the Z axis as

U,+, we have that

dS

t=—2Elx, (8+1+cos®, ),
(p2k) = Edx,(p—cosd,),

XpXp,
(pak) = E&l—_;—k(p +cos ), (B.2)

where we have defined

_ 1+m_2 8=E|§xp3_|P1||P3|_m2 (B.3)
P EZ’ 1P, || '

and used explicitly the relation

2(1 - x,)

PP 2—x,+ x0089,

(B.4)

due to energy-momentum conservation. Therefore, we can write the expression (24)
as

do = dx,dcos ¥, dcosd, do,do,
P x(p—cos®, ) (8+1+cosd, )(p+cosd,, )

(B.5)

The term cosd,, correlates 4, and &, but, due to the kinematics of the
problem, is obvious that it is dominated by #, since the direction of the outgoing
electron is very close to the beam direction. Therefore, we can eliminate all
correlations among the variables considering

cos#y, ~ —cosdy
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and write

dcosd,  dx, dcosd,

d = Tk
Tapp 8'|'1'|‘COS19P3 Xy (p—-cosﬂk)z

4
do, do, = ]‘!)x,, dg,, (B.6)

where 7, €[0,1] and k, are the corresponding normalization factors. Since we expect
cos 1‘}1,3 ~ —1 we will use, for numerical accuracy, the variable £ =1 + cos 0P3. Last,
since in our case E2>> m? we can make a Taylor expansion of the modulus of the
trimomenta appearing in the numerator of the function § defined in (B.3). Keeping
terms of order O(m?) we have that

2 2
2 EPl + EP3

~ 1
IPII |P3| =Ep1Ep3 l - 2m EpzlEpZ} (B.7)

Therefore
2 2 2 2

m Em + Eps - 2EP1EP3 _ m_2 (1 B xPs)
2EP1EP3 EPIEPJ Eé 2x2

P3

8

in

(B.8)

As we see, & depends on x, . Nevertheless, since x, will be very peaked to the
maximum value kinematically allowed (so the momentum transfer is minimum), we
can fix it to this value and neglect any variation. This gives the approximant we
used in eq. (26) of sect. 3.
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R. Gatto and M. Caffo for interesting discussions and some of the members of the
MARK-J Collaboration, in particular B. Zhou and H.G. Wu., for their help in
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hospitality.
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