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Abstract. We discuss the renormalization properties 
of the 2 dim. field theory describing an open bosonic 
string in the background fields corresponding to its 
massless excitations. The relevant fl-functions are cal- 
culated for gravitational, antisymmetric tensor and 
Yang-Mills background on l-loop level, for pure 
Yang-Mills background an 2-loop level and in the 
Abelian case up to 3 loops. We find a renormaliza- 
tion scheme dependence starting at 2 loop order. 
Putting [3 to zero yields the equation of motion for 
the non-linear electrodynamics of Fradkin and Tseyt- 
lin. 

1. Introduction 

At present supersymmetric string theories are good 
candidates for a unified theory of all interactions. 
Living in 10 space-time dimensions they have to be 
compactified to make contact with the real world. 
The compactification has been studied for the low 
energy effective field theory describing the massless 
excitations of the string. Along this line phenomeno- 
logical attractive compactification patterns have 
been explored [1]. Another approach starts directly 
with strings living in curved space-time and tries to 
get restrictions on the space-time manifold by re- 
quiring 2-dimensional world sheet conformal in- 
variance [-2-4]. The corresponding calculations have 
been done on l-loop and partially on 2-loop level of 
the 2dim. field theory. They yield as conditions 
forced by conformal invariance of the string just the 
equations of motion of 10-dim. supergravity coupled 
to a Yang-Mills supermultiplet (in the heterotic 
case). The 2-loop results have been shown to contain 
the crucial Lorentz and Yang-Mills Chern-Simons 
completions of the field strengths of the antisym- 

metric tensor field necessary for anomaly cancel- 
lation in the effective theory. 

Due to better phenomenological prospects of the 
heterotic string compared to the type I superstring 
the investigations have been restricted to closed 
strings. However, this restriction has also pure techni- 
cal reasons [3]. Mainly to fill this gap we consider 
in this paper as a first step the open bosonic string 
in general gravitational, antisymmetric tensor and 
Yang-Mills background. 

Our starting point is the (Euclidean) action [-3] 

S=S~t + S~M 
1 SM =4no( ~ d2z{]/gg'"(zlGu~(x(z))C?mXU(?nX~(Z) 

+ e""B.v(x(z))e ,Se~ + c~'l/g R~2~(x)} 

SOM= - - log t rP  expi ~ Audx'. (1.1) 
OM 

Gu~ is the metric in the D=26 dimensional space- 
time manifold, B,,. an antisymmetric tensor field, A, 
the Yang-Mills vector potential and ~b the scalar 
dilaton field. This set of fields corresponds to the 
massless excitations of open and closed bosonic 
strings. The 2 dimensional metric gm"(z) and the string 
position x'(z) are the quantum fields. M denotes the 
2dim. parameter domain with boundary aM. The 
case of interacting strings is included if M is allowed 
to be multiconnected. For fixed gin" we have a gener- 
alized a-model [5, 6]. Due to general covariance the 
trace of the 2 dim. energy-momentum tensor has the 
structure ( a m= 0 )  [3] 

T2 = fie ] /g R(2) + ficu~ ]/ggrnn~mX#~nXv 
+ fl~em"O=xUc? x v. (l.2) 

Conformal invariance requires to put all the 3[# 
functions defined in (1.2) equal to zero. This yields 
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the set of equations for the background fields qS, G, 
B mentioned above. 

If the Yang-Mills field couples only via the 
boundary it is difficult to pick up the correct re- 
sponse to a change of g"" defining Tin,. We have no 
direct solution to this problem. Instead we prefer to 
use the alternative definition of the fl-functions via 
the renormalization properties of generalized a-mod- 
els [5]. In the case of ~'~, fig and ~B this is equivalent 
to (1.2) and for the wanted fiA it yields sensible 
results. 

Since our main object is the treatment of the 
Yang-Mills coupling via the Wilson loop along 0M 
we restrict ourselves for simplicity to flat 2 dim. met- 
ric g"" and consequently neglect the dilaton field 4). 
In Sect. 2 we sketch the background field method 
(with respect to the string configuration) as used in 
our context and study the system in G, B and A 
background in l-loop approximation. The require- 
ment /]A=o yields the ordinary equation of motion 
for a Yang-Mills field in gravitational background. 
Section 3 is devoted to a 2-loop study of the prob- 
lem with pure A, background. Here we find a renor- 
malization scheme dependence. The result is com- 
pared to the corresponding equation derived on the 
basis of c(--,0 considerations of dual S-matrix ele- 
ments [7]. Section4 extends the investigation for 
Abelian A to 3 loops. The equation for A, agrees in 
this order with the equation of motion for a general- 
ization of the Born-Infeld action derived in [8] by a 
quite different method for constant electromagnetic 
fields. The concluding Sect. 5 discusses the open 
problems and makes some comments on the renor- 
malization scheme dependence. 

2. The General Method 

introduction of an auxiliary field which allows to 
express the Wilson loop as a two point function [9]. 
We make no further use of this formalism but only 
notice the general rule that 1-point vertices of the 
string fluctuation y" lying on the boundary and cou- 
pling to the Yang-Mills background have to be tak- 
en into account. (The boundary acts effectively as a 
further leg of the corresponding vertex.) On the 
other side 1-point vertices in the interior of M or on 
~M not coupling to Au are irrelevant. 

Second, the method in a first step yields counter 
terms as functions of the background configuration 
x". But the same functional structure then gives the 
counter terms as operators, i.e. as functions of the 
full quantum field. Hence going to the next order of 
perturbation theory the counter terms of the lower 
order have to be included into the background- 
quantum split x" ~ x" + y~. 

The expansion of SM[x+y] (g"" flat, ~b=0) can 
be taken from the standard literature. One only has 
to take care of partial integrations to keep possible 
boundary effects. We follow the appendix A of [6J. 

S M Ix + y] = S M [x] + term linear in 

1 
-F-~,  ~M d2z{Gc~B(X)bm~CLDm~l' 

+ / ~ l ~  ~e U(bm,-  e,,,,)~,,x~?,,x '~ 
+ 0,,, [ ~  (D, B~a ) ~c,,,,,O,,x e 

+B,~e,,,D,~iJ]} + O(~3). (2.1) 

Here U is the Riemann normal coordinate corre- 
sponding to y~. The covariant derivative D~ refers to 
the usual symmetric Levi-Civita connection F. D, is 
the projection on 2-space. The quantities with a hat 
refer to a connection /~ which contains a torsion 
part according to 

We renormalize the generalized a-model under dis- 
cussion in the sense of [5]. Counter terms are classi- 
fied according to their 2 and D-dimensional index 
structure and e.g. all counter terms of the type 
Hpv~mxu~;mx v are interpreted as a renormalization of 
the D-dim. metric. Till now practical calculations 
have been done in the framework of the background 
field method only. 

The effective action F(x) generating the l-particle 
irreducible vertex functions of the string position 
field is equal to the sum of the I-particle irreducible 
vacuum bubbles in string configuration background 
x~,~ = xU: /~(0, x ~) [10]. Two remarks concerning the 
relevant diagrams are in order. 

First, the fundamental relation between F and /~ 
is a relation for Green functions of local fields. 
Hence it applies to the action (1.1) only after the 

F~t~=F~-S~r S~=~c3~BB~ 1. (2.2) 

The quantum field ~ is still not convenient since its 
kinetic part in the action is multiplied by G~(x). 
Following [6] we switch to the tangent space quan- 
tity ~A via 

~A = v2 ~. (2.3) 

V a is the vielbein field: G,[3=v~Av~B(~AB. Then the 
kinetic term for the ~A field is 

1 
4~c( g d2z(~m~A~rn~BbAB" 

The boundary term produced by partial integration 
vanishes if one chooses Neumann boundary con- 
dition for the quantum field ~A together with the 
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normalization condition ~ ~Ads=O which means 
~ M  

the inclusion of constant modes into the background 
configuration x [8, 111, We want to emphasize that 
this choice is motivated by pure technical reasons. 
For the field before doing the background-quantum 
split it would correspond to a conditions involving 
the vielbein and connection on a certain reference 
configuration, just that which later on is used as 
background. We have to be careful what concerns 
both dependence on and possible renormalization of 
the boundary condition. 

Our propagator is now 

~ a ( z ) ( n ( z ' )  = 2gc( OAB N (z, Z'), (2.4) 

with N(z,  z') denoting the Neumann function for M. 
To read off from (2.1) the vertices one has to elim- 
inate ~a in favour of CA: ~ =  V~A~ A (V ~A the inverse 
of vA). We prefer to treat the total derivative term 
in (2.1) as an integral over the boundary. The ver- 
tices living in M are that of [6], i.e. 

1 AB e* 
Fig. l a  = + 4 ~ '  Cm Om 

1 
Fig. l b  - 4m (  CDA CDB (2.5) 

1 
Fig. lc  - V~BV ~c 

4na'  

�9 /~e~a(6,..-- gmn)(~ mX~ (~ n X6 

with AB 1. AB 7 A a AB C,. - ( ~ x  )o)1. --em,(OnX )V~ Sa~V aB and oJ1* 
= VA(Ou V~B+F~ V ~ )  the spin connection. 

In addition we have the vertices living on the 
boundary ~M 

1 
Fig. 2a - 41rc( VccAVpBD~Ba2"i2 

1 
Fig. 2b - V aa VPB B, ai ,  c?n 

4r~:( 

1 
Fig. 2c - V ~A v~'c B~.~ oo C ~ 22. 

4 ~ '  

(2.6) 

The dot indicates differentiation with respect to the 
contour parameter s along the boundary 0M. 

I/Q.' (W-S} l/Cd (CO-S) 2 l/Ct' 

Fig. l a-e.  Vertices living in M. A slash indicates differentiation. 
Each vertex is characterized by a short hand notation of the 
background field involved 

1/0,' DB I lW B 11~.' Bib 

Fig. 2a-e .  Vertices arising from S M and living on the boundary 
~)M. The dashed line indicates aM 

The expansion of SaM[X+y I up to second order 
is easily performed using the well known expressions 
for the first and second functional derivatives of the 
Wilson loop U-- P exp i ~ AUdx,,  see e.g. [-9]. 

tr U [x + y] = tr P(U [x] exp i ~ ds [F,~22y" 
+• 42u1., u1.2 

2 1.2 *#a2 ~ Y Y 

! F ,1., ,;1.2 + O(y3)]). (2.7) 
2 1.11.2 y Y 

Solving the geodesic equation defining C A pertur- 
batively we find 

y a =  v a A ~  A --21Fai.2 v1*Mv2L~MffL-{-OI~ t J. (2.8) 

Putting (2.8) into (2.7) our aim is of course to pro- 
duce the total covariant derivative referring to both 
gauge and gravitational background D (r+A). Since it 
applies to a tensor we need a further Christoffel 
symbol�9 We add and subtract the corresponding 
term and get 

tr g [x + y] = tr P(U Ix] exp i ~ ds [F~22 V 1*M ~v 
+• F )4.4 vaA vflBffayB 

! F  , , ,CB~-2v~CvaAffAffB 

+ { F a f l v a A v f l B ( A ~ B + o ( r  ). ( 2 . 9 )  

This yields the following additional vertices on 0M 

Fig. 3 a = i /2 ( D~ A+ r'Fa2)2 a v ~A v as 

Fig. 3b = i/2 Faa V ~A Va B in ~ n 
Fig. 3c = i/2F~o)CB22 V ~c V ~A (2.10) 

Fig. 3d = i  F~222V ~A. 

These vertices have to be applied under the operation 
t r n ( U [ x ]  ...). 

Having set the general framework let us start 
with the l- loop diagrams which by power counting 
might be divergent. The 2dim. propagator behaves 
logarithmically for short distances. Those diagrams 
containing only vertices inside M are shown in 
Fig. 4. They heve been studied in [61. 

D(F"A)F F FCO F 

Fig. 3a-d.  Vertices arising from SoN 
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l/Ct' R ~ '  ~/celco-s)OCr 

C~ ~ 

l/Cd (~-S) 2 l/0t' (~-S) 1/~' ((O-S) 

X-C( 

Fig.& Potentially divergent l-loop diagrams with vertices in 
M. Powers of c~' originating from vertices and propagators are 
indicated 

Fig. 4 =�89 "~ ~ z)[R~p-S~ Suv,~)8,.x 8rex 

--DuSuoiflgmn~rnXa~n Xfl] q-UV finite. (2.11) 

Here /~ has been separated in the usual Riemannian 
R and the torsion contribution. R ~  is the Ricci 
tensor. 

Potentially divergent diagrams containing ver- 
tices on 8M are shown in Fig. 5. One immediately 
gets 

Fig. 5a = - �89 z(s))D~B,~X~(s)+fin. 

Fig. 5b = 0  (2.12) 

Fig. 5 c 

= - �89  ~ ds N(z(s), z(s))V ~A VPRB~t~ofA2*(s)+ fin. 

A little bit more effort is necessary to evaluate 
Fig. 5d. We sketch the calculation in our 
Appendix A. 

Fig. 5d =�89 ~ ds N (z(s), z(s))(V ~a V~B B ~o2fA 2 ~ 

- -  Zm 13mk ((~k Xfl) Sail c5 B~) + fin. (2.13) 

In the sum the term ~Bo)  cancels. For  this effect 
the interference diagram 5d is crucial. 

The diagrams 5e-h have exactly the same struc- 
ture as 5a-d,  one only has to replace ~aD ~-  r~(A+Y),_,~ , Bo~fl 
~ - 2 r c i e ' F ~  and to put the whole expression un- 
der t rP(U. . . ) .  Summarizing (2.11)-(2.13) we get for 

a) 1/C~ J DB I/0UB 1/Cs Be0 I/CdB 

I/U.'(LO-S) 
D {F+A}F F FC0 F 

1let' {CO- S) 

Fig. Sa-h. Possible divergent l-loop diagrams involving vertices 
on 8 M  

the effective action F(x) 

r ( x ) = � 8 9  .v ~ z ) [ ( R ~ - S ~  S~.~)SmX 8mX 
_ D  u ~ fl S#afl'~,mnSmX 8nX ] 

- �89  ~ dsN(z(s),z(s))(D~B~p)~ p 
OM 

+ s  

+ni t (  ~ dsN(z(s), z(s)) tr P(U[D(A+r)~F~ ~ 
OM 

+ i,~emk(Skx~)S~F~) + fin. (2.14) 

In the closed string case where only the integral over 
M is present one can cancel the uv divergence due 
to N(z,z)  by counter terms G ~ G ~ + b G ~ ,  B 
~ B ~ + 6 B ~  leading to lowest order fi-functions 
(for a discussion of the relation between coefficients 
of counter terms and fi-functions compare 
Appendix B) 

fig 2 ' ~/~ ,2 ~ = -  c~(Ruv-S . S~ev)+O(~ ) 

B --  f a ]3,~-2c~ D Sa#v--~- O((x'2). 

In our open string case we are seeking for a further 
independent fla function. However, there are some 
subtleties. In the Abelian case by Stokes theorem the 
boundary integrals can be transformed in integrals 
over M. These integrals have at least for on shell 
background configuration x index structure fitting 
into fig and fiR. Hence, in some sense, the elec- 
tromagnetic field disappears. This is the reflection in 
our language of an effect discussed at various oc- 
casions already [12]. In the non-Abelian case there 
is no suitable Stokes theorem [13]. This we take as 
a justification for the absenxe of any interference 
between the non-Abelian 8M-integral and the re- 
maining terms of (2.14). Even if we go to infinitesi- 
mal M where we can use an expansion of the 8M- 
integral, the coefficient multiplying the area of M is 
projected to zero by the trace operation. 

The first term in the non-Abelian boundary in- 
tegral can be cancelled by a counter term (N(z,z) 

= Nai ~ + Nfi.) 

6 Au= -- ~z~' NdivD(A+ r)~ F~u + pure gauge 

leading to 

fiA = _ c(DtA+ r)~F~" + O (c(2). (2.15) 

Till now we have no convenient interpretation for 
the second term. It may signal the need of a further 
independent coupling or may be connected with the 
renormalization of the boundary condition. Leaving 
this problem for further study we must restrict our- 
selves (to be selfconsistent) to an open string cou- 
pling only to G.~ and A.. Then the absence of uv- 
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singularities requires the background fields to fulfil ct' 
al - - - ~  - -  

R~  = O(~') (2.16) 
D~A + r)~ Fv,= O(cQ. or' 

The exclusion of the interaction with the antisym- dl~.~---~--- 
metric tensor field could be justified by a restriction 
to nonorientable strings [14]. In this connection one 
should add that typeI  superstrings are nonorient- 
able. 

3. Pure Yang-Mills Background in 2-Loop Order 

We start with the straightforward generalization of 
(2.7) to all orders 

tr U[x + y] 

=tr P (U[x] expi ~ ds[F~2~y u 

1D t7 .;z,,u~,,u2.%~ ,,u~,;uz 
" ~  #2 */,12a'~ Y Y / 2 " # 1 # 2 Y  Y 

1 D F 2a , ,u , . . . yU .  
n =  3 " n 1 # n 2  Y 

+ ~ . ~  Du~ ...Du,_ Fu,_~u,y"' ). 

(3.1) 
The Az counterterm we write as 

6A~ = ~'61Aa+ e f t 2 6 2 A  z-~ - . . . .  (3.2) 

As already known 

~51A~= - r~UalvDU F.z, (3.3) 

where N(z,z)=Naiv+Nfln(Z ). The concrete splitting 
in Nai v and Nfl n is fixed by the renormalization 
scheme used. The vertices on ~?M can be directly 
read off from (3.1). To a given number of legs >2  
there is always one vertex without any derivative 
and one vertex where one leg is differentiated. The 
one loop counter term at the two loop level has to 
be included into the background-quantum split. This 
yields the following counter vertices contributing to 
the total order ~,2 (Fig. 6) 

Fig. 6a = i~'31A~2 ~ = - io:' ~NaivD~F~z2 ~ 

Fig. 6b = i e  '262A~2 ~ 

Fig. 6c =icg2Z(Duc~A~-D~51A.) (3.4) 

Fig. 6d = i/2e'2Z(D,, Dub 1 A z -  Du~ Dz61Auz 

- i [6~ A m , Fungi ) 

Fig. 6e = i/2a' (D u~ 61Au~ - D u/5 ~ Au~ ). 

In Fig. 7 we list all a,2 diagrams which by power 
counting might be divergent. 

r 2 (I' 
b) - - -@---  c) - - - ~ - - - -  

/ 

O? 

Fig. 6a-e. Counter vertices relevant for a 2-loop calculation in the 
pure Yang-Mills case 

c) - ~ - -  

~' Ct' Ct 

U? W 2 
m) - - - - ~ - -  n) ----~---- 

U 
Fig.7a-n. By power counting possible divergent 1-particle irre- 
ducible 2-loop diagrams 

There are some trivial cases. Figures 7a, d, i and 
m are zero due to the symmetry properties of indices 
involved. Further the sum of h and k is ultraviolet 
finite, of course. We list now the results for the 
remaining diagrams, omitting Fig. 7b which requires 
a special discussion. 

i7Z2~ '2 
Fig. 7c -- 6 ~ dsN(z(s), z(s)) 2 tr P(U(D2DUFu~ 

+ DVD"DvF.~. + D~D2F.z))fc ~ + fin. (3.5) 

Fig. 7e = __~2 c(2 ~ ds 1 ds2 N (Z(S l) ' z(s O ) 

- tr P(U(D"D~F~z2z(Sl) + D~D"F~z~(sl) 
+ D2 FUZ2z(sl))Fu~2~(s2)) 

" n ( z ( s 1 )  , z(s2) ) q- fin. (3.6) 

Fig. 7j = 2 g 2 ~ ' 2 N d i  v ~ dslds 2 

�9 tr P(U(DUD~F~z2Z(sl) 

- DZD~FVU2z(sa))Fu~)i~(s2)) 

N (z(sO, z(s2) ) + fin (3.7) 
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Fig. 71 = iTc2(x '2gd i  v 5 dsN(z(s), z(s)) 
�9 trP(U(-D2DVFvz+DUDaDVFv, 

+ i EDiFy,, F~])))/Z(s) + fin. (3.8) 

The above four equations are valid for any regular- 
ization. If we make a slight restriction on the allowed 
regularizations and require 

d d 
dz-~ N(z, z')= -dz~z~ n(z,  z')+ terms not producing 

u v singularities 

then 

Fig. 7f =-43~2:(2 ~ dsN(z(s), z(s)) 2 
�9 tr P(U [DUF,~, F~])2a(s) 

+4~2~,2 ~ dslds2N(z(sO ' Z(S1)) 

�9 trP(UGD.g:i'(s 0 
�9 F ~ X ~ x ( s 2 ) ) . N ( z ( s a ) , z ( s i ) ) + f i n .  (3.9) 

Fig. 7g =2i~2c( z y dslds2N(z(st),z(sO) 
�9 trP(U[Fux)d~(sl) , FU~(sl)] 

�9 F ~ , x ~ ( s 2 ) ) N ( z ( s l ) ,  z(s2))+  fin. (3.10) 

This gives altogether 

Fig. 7 without b and n 

~2 0(2 
- 2 Ndiv~'dsNfi~trP(U[F"~'D~F"~])xa(s) 

+ n2 c( 2 N ~  ~ ds tr P ( U i (--~ D2DUFua 

+~[Fu~,DaF "~] 2X(s)+fin. (3.11) 

To get this sum use has been made of the formula 

[D,, D~] F~,a = - i [F. v, F~,e] 

as well as the Bianchi identity. Note that the double 
integrals already have been cancelled. 

The diagram 7b disregarded so far is special 
since it is the only diagram which requires a definite 
choice of the regularized Neumann function�9 We 
specialize the domain M to the unit circle in com- 
plex z-plane. Then [11, 83 

N(z, z')= - 2 ~  log ([z-z ' [  [z-2'-11). 

Since no vertices inside M are involved we only 
need 

N(z.z ' )= - 2 ~  log Iz-z'[2, Z ! , z e ~ M .  ( 3 . 1 2 )  

In the a-regularization we choose 

N{")(z, z')= - L  log( l z -  z'12 + a2) (3.13) 

and in the dimensional regularization 

m n / 2 -  1 
N(")(z, z')= 2 � 9  l z -  z'l 1 "/2 K,/2 l (m l z -  z'l), 

( ) 
(3.14) 

The mass m serves in the case of unrestricted param- 
eter space z as an intermediate infrared cutoff [5, 6]. 
Although in our case no infrared regularization is 
necessary, we need m4=0 since only then 
N(")(z,z)q=O. At the end of the calculation m can be 
put to zero. The crucial factor 2 is necessary to 
ensure for n--+2 the correct factor in front of the 
short distance singularity. It is in some sense a con- 
sequence of the restriction of y-field propagation to 
the interior of M. 

As a consequence of the symmetry properties of 
the regularized propagator near z=z ' ,  diagram 7b is 
finite in the Abelian case*. However, for non-Abe- 
lian fields due to the path ordering the left and right 
limits of the factor multiplying the propagators are 
different. After some calculation we find 

Fig. 7b =O~'2(~--4(Ndiv-J-Nfin)2-}-K)Sds 

�9 tr P(U [D~F,v , F "~ ]) 2 x + fin. 

with 

(3.15) 

1 
K - - - -  

2 ( n - 2 )  

in dimensional regularization and 

K = l o g a  

in a-regularization. 
We further need 

Nd a) -- -- 1/n log a, iv-- 

(3.16) 

(3.17) 

1 
Nd (") -- -- 1/~Z n (3�9 iv-- --2" 

1 
The different factors relating ~ and log a in 

(3.16), (3.17) on one side and (3.18) on the other 
lead to a renormalization scheme dependence�9 

Adding (3.11) and (3.15) we get the two loop 
counter term 62Ax. This yields the/3A-function (com- 
pare Appendix B) 

/3A(.) = , u i 
- c ~ D  fu,~-~o:'eEDzFuv, FUV]q-O(o~'3) (3.19) 

* We ignore linear divergencies (poles at n= 1) 
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in minimal subtracted dimensional regularization 
and 

fiA(~) = _ ~,DUFu ~ _ i~,2 [DzF,~, V ~]  + O(~ '3 ) (3.20) 

in minimal subtracted a-regularization. Putting fiA 
=0  e.g. for (3.20) gives the following equation for 
the background field A 

DU Fu~ + is' [DzF~,,, , F u~] = O(c(2). (3.21) 

Let us compare with the equation of motion related 
to the action derived in the a ' ~ 0  limit of dual S- 
matrix elements in [7] (after fitting the different 
normalizations of the Yang-Mills field and use of 
the Bianchi identity) 

DUF~ z + 12 i a' [D,F" ~, F~ a] + 6 ia' [DzF~ ~ , F" ~] = O (c(2). 
(3.22) 

Since D FU~=O(cd) the second term in (3.22) can be 
neglected. Then (3.21) and (3.22) differ only by a 
numerical coefficient. Having already established a 
renormalization scheme dependence, this difference 
is no surprise, however. We make some general 
comments on the scheme dependence in Sect. 5. 

4. Abelian Gauge Field Background 
to 3-Loop Order 

The order c( non-linearity in (321) vanishes for Abe- 
lian Au. To get contact with the "non-linear elec- 
trodynamics" of [8] we have to analyze the next 
order. Having in mind the renormalization scheme 
dependence this makes only sense if both ap- 
proaches are based on the same scheme. In [8] ~- 
regularization is performed. Using the formulas pre- 
sented there one finds in a straightforward manner 
that minimal subtracted a-regularization reproduces 
the ~-result exactly. The action of [8] derived to all 
orders in c( but for constant fields is 

[det (6,~ + 2 Z e' F, ~)]1/2. (4.1) 

Taking this expression seriously for arbitrary Fu~ one 
gets the equation of motion 

~U(Fu~ +~'2 ~Z(4Fu~F~Fpz-Fu~F~F~))=O(cg3 ). (4.2) 

Let us turn to the study of ultraviolet divergencies. 
For the total sum of c( 3 contributions from dia- 
grams of pure tadpole type we easily find 

i ~ 3  7~3 
6 N~vSdS(~2)ZOuFuxx~(s)+fin" (4.3) 

a) - - ~ ~ - -  bl _ _ ~ _ _  

c) - ~ - -  

Fig. 8a-c. Possible divergent c(3-diagrams without tadpoles (Abe- 
lian case). Each diagram stands for all contractions of the vertices 
involved 

Since the coefficients of log a arising in single dia- 
grams have cancelled, (4.3) is without any influence 
on the/?-function we are looking for. As discussed in 
the previous section due to the symmetry properties 
of the propagator the coincidence of two vertices 
cannot produce a (logarithmic) divergence in the 
Abelian case. Hence we have to look for an effect 
from a triple coincidence of vertices. The diagrams 
potentially divergent in this region are shown in 
Fig. 8. We find 

Fig. 8 a = - 4 i ~,3 ~3 log a S ds (~3"F~)F~oFP ~2~(s) + fin. 

Fig. 8 b = fin. (4.4) 

Fig. 8 c = fin. 

This divergence is balanced by a counter term 

6 3 A~ = 4~ 2 log a(~UF,,~)F~,pF ~ (4.5) 

The total /?A function to order ~,3 is 

/?2= -c~'OUFux-e'34~zz(OuF~x)FuoFo~+O(c('*). (4.6) 

(In dimensional regularization: 4rcz---~2rc2), and the 
equation for F following from /?a=0 

O"F,~ + 4re 2 ~'2(c~"F,~)FupF p~ = 0(o(3). (4.7) 

To compare (4.2) and (4.7) we write the ~,2 term of 
(4.2) as 

c( 2 ~2 dU( 4 Fu~F~a Fa x _ F, z I~a Fa~ ) 

=4nzc(2(eUF~z)FuoFP~- ~'2 z2(c?,Vux)F a /a"  

+ c( 222 Fax(40, (Fu~F~a) - #~(Fu~F,~)). 

The second term on the rhs is effectively ~c~ '3. The 
third term has the structure F ~ z f  ~. Such renormali- 
zations of A a can be generated by a change of the 
coordinates x and an accompanying gauge transfor- 
mation. Hence, in the same spirit as for the metric 
fl-function one discards contributions which are 
due to a diffeomorphism of the manifold [5], we can 
neglect contributions to the /?a function of the struc- 
ture Fpzf  ~ as unphysical. 
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In this sense we get the remarkable result, that 
up to ~,2 the absence of ultraviolet divergencies in 
the 2-dimensional field theory yields the equation of 
motion of the "non-linear electrodynamics" of [8]. 

5. Conclusions 

We have demonstrated how by the use of functional 
derivatives of the Wilson loop and careful treatment 
of other boundary effects the calculation of fi-func- 
tions for a string in background fields can be ex- 
tended from closed to open strings coupled at the 
end points to the Yang-Mills field. Future work 
should complete this first step analysis by inclusion 
of the 2-dimensional metric as well as the dilaton 
field. Furthermore, the possible impact of changing 
the boundary conditions has to be clarified�9 Finally, 
one should extend the analysis to type 1 superstrings. 

The renormalization scheme dependence found 
by explicit calculation is a quite familiar property of 
any kind of renormalization. In the context of in- 
terpreting the background field equations gained by 
setting f l=0  as equation of motion it certainly re- 
quires more attention. Here we have in mind studies 
looking for symmetry fixed numbers. As an example 
one would expect this in the superstring case for the 
Chern-Simons completion of dB. 
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Appendix A 

Evaluation of the Ultraviolet Divergent 
Part of Fig. 5 d 

Using the formulated Feyman rules one finds 

Fig. 5 d = 1 ~ ds ~ d 2 z' V ~A VaBB~a(z(s))(OmxU(z ') 

B A --  k2rnn ~nXY (2,) V ?  S~v7 g v  A (z,)) �9 (DbL 

d d 
N(z, z') N(z(s), z ) 

ds 

d N(z(s ) , z , )ddN(z , z , ) )  (A1) 
ds 

T h e  d2z ' integral is near z'=z(s) logarithmically di- 
vergent. To study the ultraviolet divergent part we 
can put the background fields co, S and V on the 
boundary. The second term in the remaining z' in- 
tegral we treat by partial integration. The boundary 
term is ultraviolet convergent due to the antisym- 
merry of the derivated propagator. Hence we arrive 

at 

Fig. 5d = ~ ds(V "A vflB Ba~mXUCOB~ A 

- ~,,, ~,x~S~'B,a)ik(S) 
d 2 

�9 ~ d2z'N(z(s), z') ~ N(z, z') + 
dZkdZ,. 

fin. (A2) 

Let us call the d2z ' integral tkm. Then the ultraviolet 
divergent part of Ik, . has the structure 

Ik~ = OkmA + fin. 

A further contribution iki, ,B we can exclude since 
the divergence does not depend on the tangent 
orientation in the z-plane. From A=l/2Imm, 

d 2 d 2 
- - N ( z , z ' ) =  N(z,z') near z=z'  and 
dzkdZ',, dz'kdz' ~ 
~2N(z, z')= - 6 ( z - z ' )  we get 

lkm = 1/2 6kin N (z(s), z(s)) + fin. (A3) 

Putting this into (A2) we arrive at (2.13). 

Appendix B 

Relation of fi-Function Coefficients to Counter Terms 

The relation of generalized fl-function coefficients to 
that of single and multiple poles in dimensional re- 
gularization has been discussed in [5] for the metric 
contribution. We have some problems in correctly 
handling the corresponding dimensional scaling 
arguments for the Yang-Mills field coupling on the 
boundary. The main obstacle is how to handle one 
dimensional (?M while M gets dimension 4=2. 

Therefore we define 

d f iA(Abare b a r e  Afix 
,= d l o g a A ,  I (B1) 

o r  

d 
A b a r e  b a r e  f i "  fl~,(A )= A u ]A x. 

Writing 

A bare = A + Z K(u ")(A) (log a)" 
n 

(82) 

one gets 

flA (Abate) = __ ~ K(u.)(A)n(log a)"- 1. 
n 
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Inverting (B2) and eliminating A in favour of A bare 

we get fiA(Abare) as  a function of A bare and loga. The 
explicit log a dependence must cancel. This yields 
(replacing at the end the argument A bare by A) 

- K(2)(A) (B3) 

and relations a m o n g  the K~ ") starting with 

= 

6 K(ul)(A)(x) 
c~A~ (y) KI))(A) (y) dy. (B 4) 

Relation (B4) is a welcome test of our calculations. 
From (3.3), (3.18) we know 

K(1) , v ,2 U (A)=c~ D V,,u+O(c~ ). 

Then (B4) leads to 

K ~ ) ( A ) = ~  (D2D~F~u-2i[DF ~p, Fp.])+ O(~'3). (B6) 

Picking up the (loga) 2 terms in (3.11) and (3.15) we 
find consistency with this relation. 
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Note Added in Proof. Meanwhile we realized that c(-*c(#  z-n is 
the correct scaling required for dimensional regularization in Ap- 

~3 0K~ ~)(') 
i pendix B. This leads to fl~(,l_= # ~ A ~ = - c ~  ~3 7~ and hence 

to the same 2-loop fiA-function as in a-regularization. The two fi- 
functions differ then at the 3-loop level, however. 


